Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment
Abstract
:1. Introduction
2. Fungal Ocular Infection
2.1. Candida Ocular Infection
2.2. Epidemiology of Candida spp.
2.3. Diagnosis
3. Role of Biofilms in Ocular Infection
4. Current Treatment Options
5. Antifungal Resistance in Ocular Infections
6. Novel Strategies to Control Biofilm-Associated Ocular Infections
7. Synergistic Therapy against Biofilms Involved in Ocular Infections
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Armstrong, R.A. The microbiology of the eye. Ophthalmic Physiol. Opt. 2000, 20, 429–441. [Google Scholar] [CrossRef]
- Patil, R.; Dehari, D.; Chaudhuri, A.; Kumar, D.N.; Kumar, D.; Singh, S.; Nath, G.; Agrawal, A.K. Recent advancements in nanotechnology-based bacteriophage delivery strategies against bacterial ocular infections. Microbiol. Res. 2023, 273, 127413. [Google Scholar] [CrossRef]
- Sharma, S. Diagnosis of infectious diseases of the eye. Eye 2012, 26, 177–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fungal infection of the eye. Br. Msed. J. 1977, 1, 667–668. [CrossRef]
- Krachmer, J.H.; Mannis, M.J.; Holland, E.J. Cornea: Fundamentals, Diagnosis, and Management. Am. Orthopt. J. 2011, 61, 147. [Google Scholar]
- Kojic, E.M.; Darouiche, R.O. Candida infections of medical devices. Clin. Microbiol. Rev. 2004, 17, 255–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritsch, L.N.; Dias, A.L.T.; Silva, N.C.; Fernandes, G.J.M.; Ribeiro, F.B.d.A.O. Comparative analysis of biofilm formation by Candida albicans and Candida krusei in different types of contact lenses. Arq. Bras. Oftalmol. 2021, 85, 235–239. [Google Scholar]
- Słowik, M.; Biernat, M.M.; Urbaniak-Kujda, D.; Kapelko-Słowik, K.; Misiuk-Hojło, M. Mycotic Infections of the Eye. Adv. Clin. Exp. Med. Off. Organ. Wroc. Med. Univ. 2015, 24, 1113–1117. [Google Scholar] [CrossRef]
- De Pauw, B. Antifungal therapy. Transplant. Proc. 2011, 43, 2461–2462. [Google Scholar] [CrossRef] [PubMed]
- Reginatto, P.; de Jesus Agostinetto, G.; do Nascimento Fuentefria, R.; Marinho, D.R.; Pizzol, M.D.; Fuentefria, A.M. Eye fungal infections: A mini review. Arch. Microbiol. 2023, 205, 236. [Google Scholar] [CrossRef]
- Brown, L.; Leck, A.K.; Gichangi, M.; Burton, M.J.; Denning, D.W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis. 2021, 21, e49–e57. [Google Scholar] [CrossRef]
- Bourcier, T.; Sauer, A.; Dory, A.; Denis, J.; Sabou, M. Fungal keratitis. J. Fr. D’Ophtalmol. 2017, 40, e307–e313. [Google Scholar] [CrossRef]
- Sheu, S.-J. Endophthalmitis. Korean J. Ophthalmol. 2017, 31, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Haseeb, A.A.; Elhusseiny, A.M.; Siddiqui, M.Z.; Ahmad, K.T.; Sallam, A.B. Fungal endophthalmitis: A comprehensive review. J. Fungi 2021, 7, 996. [Google Scholar] [CrossRef] [PubMed]
- Garrett, M.; Ziegler, A.; Thorpe, E. A Case of Panophthalmitis Secondary to Odontogenic Maxillary Sinusitis. Cureus 2022, 14, e30801. [Google Scholar]
- Fritsch, L.N.; Dias, A.L.T.; Silva, N.C.; Fernandes, G.J.M.; Ribeiro, F.B.d.A.O. Análise comparativa da formação de biofilmes, por Candida albicans e Candida krusei, em diferentes tipos de lentes de contato. Arq. Bras. Oftalmol. 2022, 85, 235–239. [Google Scholar] [CrossRef]
- Silva, S.; Negri, M.; Henriques, M.; Oliveira, R.; Williams, D.W.; Azeredo, J. Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol. 2011, 19, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Masoumi, A.; Soleimani, M.; Azizkhani, M.; Izadi, A.; Cheraqpour, K.; Tabatabaei, S.A.; Khodavaisy, S.; Aminzadeh, M. Clinical Features, Risk Factors, and Management of Candida keratitis. Ocul. Immunol. Inflamm. 2023; online ahead of print. [Google Scholar]
- Cabrera-Aguas, M.; Khoo, P.; Watson, S.L. Infectious keratitis: A review. Clin. Exp. Ophthalmol. 2022, 50, 543–562. [Google Scholar] [CrossRef]
- Donovan, C.; Arenas, E.; Ayyala, R.S.; Margo, C.E.; Espana, E.M. Fungal keratitis: Mechanisms of infection and management strategies. Surv. Ophthalmol. 2022, 67, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Thomas, P.A.; Leck, A.K.; Myatt, M. Characteristic clinical features as an aid to the diagnosis of suppurative keratitis caused by filamentous fungi. Br. J. Ophthalmol. 2005, 89, 1554–1558. [Google Scholar] [CrossRef]
- Thomas, P.; Kaliamurthy, J. Mycotic keratitis: Epidemiology, diagnosis and management. Clin. Microbiol. Infect. 2013, 19, 210–220. [Google Scholar] [CrossRef] [Green Version]
- Ramírez-Soto, M.C.; Bonifaz, A. Ocular Fungal Infections. J. Fungi 2022, 8, 1078. [Google Scholar] [CrossRef] [PubMed]
- Shah, C.; McKey, J.; Spirn, M.; Maguire, J. Ocular candidiasis: A review. Br. J. Ophthalmol. 2008, 92, 466–468. [Google Scholar] [CrossRef] [PubMed]
- Durand, M.L. Endophthalmitis. Clin. Microbiol. Infect. 2013, 19, 227–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oude Lashof, A.M.; Rothova, A.; Sobel, J.D.; Ruhnke, M.; Pappas, P.G.; Viscoli, C.; Schlamm, H.T.; Oborska, I.T.; Rex, J.H.; Kullberg, B.J. Ocular manifestations of candidemia. Clin. Infect. Dis. 2011, 53, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Adrián, L.J.; King, R.T.; Tamayo-Derat, L.G.; Miller, J.W.; Garcia, C.A.; Rex, J.H. Retinal lesions as clues to disseminated bacterial and candidal infections: Frequency, natural history, and etiology. Medicine 2003, 82, 187–202. [Google Scholar]
- Breazzano, M.P.; Bond, J.B., III; Bearelly, S.; Kim, D.H.; Donahue, S.P.; Lum, F.; Olsen, T.W. American Academy of Ophthalmology recommendations on screening for endogenous Candida endophthalmitis. Ophthalmology 2022, 129, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Son, H.J.; Kim, M.J.; Lee, S.; Choi, S.; Jung, K.H.; Jung, J.; Chong, Y.P.; Kim, S.H.; Choi, S.H.; Kim, Y.S.; et al. Risk factors and outcomes of patients with ocular involvement of candidemia. PLoS ONE 2019, 14, e0222356. [Google Scholar] [CrossRef]
- Uppuluri, A.; Zarbin, M.A.; Budoff, G.; Bhagat, N. Risk factors for endogenous endophthalmitis in hospitalized patients with Candida fungemia. Ophthalmol. Retin. 2021, 5, 687–695. [Google Scholar] [CrossRef]
- McCray, E.; Rampell, N.; Solomon, S.; Bond, W.; Martone, W.; O’Day, D. Outbreak of Candida parapsilosis endophthalmitis after cataract extraction and intraocular lens implantation. J. Clin. Microbiol. 1986, 24, 625–628. [Google Scholar] [CrossRef]
- Sakamoto, T.; Gotoh, K.; Hashimoto, K.; Tanamachi, C.; Watanabe, H. Risk Factors and Clinical Characteristics of Patients with Ocular Candidiasis. J. Fungi 2022, 8, 497. [Google Scholar] [CrossRef] [PubMed]
- Ranjith, K.; Sontam, B.; Sharma, S.; Joseph, J.; Chathoth, K.N.; Sama, K.C.; Murthy, S.I.; Shivaji, S. Candida species from eye infections: Drug susceptibility, virulence factors, and molecular characterization. Investig. Ophthalmol. Vis. Sci. 2017, 58, 4201–4209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belanger, N.L.; Kim, S.J.; Bispo, P.J. Molecular characterization of fungal Endophthalmitis and keratitis caused by yeasts. Med. Mycol. 2023, 61, myac099. [Google Scholar] [CrossRef] [PubMed]
- Motukupally, S.; Nanapur, V.; Chathoth, K.; Murthy, S.; Pappuru, R.; Mallick, A.; Sharma, S. Ocular infections caused by Candida species: Type of species, in vitro susceptibility and treatment outcome. Indian. J. Med. Microbiol. 2015, 33, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Ueda, T.; Takesue, Y.; Tokimatsu, I.; Miyazaki, T.; Nakada-Motokawa, N.; Nagao, M.; Nakajima, K.; Mikamo, H.; Yamagishi, Y.; Kasahara, K. The incidence of endophthalmitis or macular involvement and the necessity of a routine ophthalmic examination in patients with candidemia. PLoS ONE 2019, 14, e0216956. [Google Scholar] [CrossRef] [Green Version]
- Abe, M.; Kinjo, Y.; Ueno, K.; Takatsuka, S.; Nakamura, S.; Ogura, S.; Kimura, M.; Araoka, H.; Sadamoto, S.; Shinozaki, M. Differences in ocular complications between Candida albicans and non-albicans Candida infection analyzed by epidemiology and a mouse ocular candidiasis model. Front. Microbiol. 2018, 9, 2477. [Google Scholar] [CrossRef]
- Miller, J.M.; Binnicker, M.J.; Campbell, S.; Carroll, K.C.; Chapin, K.C.; Gilligan, P.H.; Gonzalez, M.D.; Jerris, R.C.; Kehl, S.C.; Patel, R. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the Infectious Diseases Society of America and the American Society for Microbiology. Clin. Infect. Dis. 2018, 67, e1–e94. [Google Scholar] [CrossRef] [Green Version]
- Mahmoudi, S.; Masoomi, A.; Ahmadikia, K.; Tabatabaei, S.A.; Soleimani, M.; Rezaie, S.; Ghahvechian, H.; Banafsheafshan, A. Fungal keratitis: An overview of clinical and laboratory aspects. Mycoses 2018, 61, 916–930. [Google Scholar] [CrossRef]
- Vaddavalli, P.K.; Garg, P.; Sharma, S.; Sangwan, V.S.; Rao, G.N.; Thomas, R. Role of confocal microscopy in the diagnosis of fungal and acanthamoeba keratitis. Ophthalmology 2011, 118, 29–35. [Google Scholar] [CrossRef]
- Breazzano, M.P.; Day, H.R.; Bloch, K.C.; Tanaka, S.; Cherney, E.F.; Sternberg, P.; Donahue, S.P.; Bond, J.B. Utility of ophthalmologic screening for patients with Candida bloodstream infections: A systematic review. JAMA Ophthalmol. 2019, 137, 698–710. [Google Scholar] [CrossRef]
- Danielescu, C.; Anton, N.; Stanca, H.T.; Munteanu, M. Endogenous endophthalmitis: A review of case series published between 2011 and 2020. J. Ophthalmol. 2020, 2020, 8869590. [Google Scholar] [CrossRef] [PubMed]
- Lupia, T.; Corcione, S.; Fea, A.M.; Reibaldi, M.; Fallico, M.; Petrillo, F.; Galdiero, M.; Scabini, S.; Polito, M.S.; Ciabatti, U. Exogenous fungal endophthalmitis: Clues to Aspergillus Aetiology with a pharmacological perspective. Microorganisms 2020, 9, 74. [Google Scholar] [CrossRef]
- Sallam, A.; Lynn, W.; McCluskey, P.; Lightman, S. Endogenous candida endophthalmitis. Exp. Rev. Anti-Infect. Ther. 2006, 4, 675–685. [Google Scholar] [CrossRef]
- Leal, S.M.; Rodino, K.G.; Fowler, W.C.; Gilligan, P.H. Practical Guidance for Clinical Microbiology Laboratories: Diagnosis of Ocular Infections. Clin. Microbiol. Rev. 2021, 34, e0007019. [Google Scholar] [CrossRef] [PubMed]
- Danielescu, C.; Stanca, H.T.; Iorga, R.-E.; Darabus, D.-M.; Potop, V. The diagnosis and treatment of fungal endophthalmitis: An update. Diagnostics 2022, 12, 679. [Google Scholar] [CrossRef]
- Konduri, R.; Saiabhilash, C.R.; Shivaji, S. Biofilm-forming potential of ocular fluid Staphylococcus aureus and Staphylococcus epidermidis on ex vivo human corneas from attachment to dispersal phase. Microorganisms 2021, 9, 1124. [Google Scholar] [CrossRef]
- Vert, M.; Doi, Y.; Hellwich, K.-H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Chandra, J.; Kuhn, D.M.; Mukherjee, P.K.; Hoyer, L.L.; McCormick, T.; Ghannoum, M.A. Biofilm formation by the fungal pathogen Candida albicans: Development, architecture, and drug resistance. J. Bacteriol. 2001, 183, 5385–5394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramage, G.; Walle, K.V.; Wickes, B.L.; Lopez-Ribot, J.L. Characteristics of biofilm formation by Candida albicans. Rev. Iberoam. Micol. 2001, 18, 163–170. [Google Scholar]
- Al-Fattani, M.A.; Douglas, L.J. Biofilm matrix of Candida albicans and Candida tropicalis: Chemical composition and role in drug resistance. J. Med. Microbiol. 2006, 55, 999–1008. [Google Scholar] [CrossRef]
- Mitchell, K.F.; Zarnowski, R.; Andes, D.R. The extracellular matrix of fungal biofilms. In Fungal Biofilms and related infections: Advances in Microbiology, Infectious Diseases and Public Health; Springer: Cham, Switzerland, 2016; Volume 931, pp. 21–35. [Google Scholar]
- Ajetunmobi, O.H.; Badali, H.; Romo, J.A.; Ramage, G.; Lopez-Ribot, J.L. Antifungal therapy of Candida biofilms: Past, present and future. Biofilm 2023, 5, 100126. [Google Scholar] [CrossRef]
- Prasad, P.; Tippana, M. Morphogenic plasticity: The pathogenic attribute of Candida albicans. Curr. Genet. 2023, 69, 77–89. [Google Scholar] [CrossRef]
- Elder, M.J.; Stapleton, F.; Evans, E.; Dart, J.K. Biofilm-related infections in ophthalmology. Eye 1995, 9, 102–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willcox, M.D. Pseudomonas aeruginosa infection and inflammation during contact lens wear: A review. Optom. Vis. Sci. 2007, 84, 273–278. [Google Scholar] [CrossRef]
- Anju, V.; Busi, S.; Imchen, M.; Kumavath, R.; Mohan, M.S.; Salim, S.A.; Subhaswaraj, P.; Dyavaiah, M. Polymicrobial Infections and Biofilms: Clinical Significance and Eradication Strategies. Antibiotics 2022, 11, 1731. [Google Scholar] [CrossRef] [PubMed]
- Kulshrestha, A.; Gupta, P. Polymicrobial interaction in biofilm: Mechanistic insights. Pathog. Dis. 2022, 80, ftac010. [Google Scholar] [CrossRef]
- Mendonca, J.R.; Dantas, L.R.; Tuon, F.F. Activity of multipurpose contact lens solutions against Staphylococcus aureus, Pseudomonas aeruginosa, Serratia marcescens and Candida albicans biofilms. Ophthalmic Physiol. Opt. 2023; online ahead of print. [Google Scholar]
- de Oliveira, P.R.; Resende, S.M.; de Oliveira, F.C.; de Oliveira, A.C. Fungal keratitis. Arq. Bras. Oftalmol. 2001, 64, 75–79. [Google Scholar]
- Ahn, J.; Choi, M. The Ionization of Polymeric Materials Accelerates Protein Deposition on Hydrogel Contact Lens Material. Materials 2023, 16, 2119. [Google Scholar] [PubMed]
- Dutta, D.; Cole, N.; Willcox, M. Factors influencing bacterial adhesion to contact lenses. Mol. Vis. 2012, 18, 14–21. [Google Scholar] [PubMed]
- Campolo, A.; Pifer, R.; Shannon, P.; Crary, M. Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis. Pathogens 2022, 11, 1383. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, P.K.; Chandra, J.; Yu, C.; Sun, Y.; Pearlman, E.; Ghannoum, M.A. Characterization of Fusarium keratitis outbreak isolates: Contribution of biofilms to antimicrobial resistance and pathogenesis. Investig. Ophthalmol. Vis. Sci. 2012, 53, 4450–4457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, A.E.; Kragh, K.N.; Bjarnsholt, T.; Diggle, S.P. The limitations of in vitro experimentation in understanding biofilms and chronic infection. J. Mol. Biol. 2015, 427, 3646–3661. [Google Scholar] [CrossRef] [PubMed]
- Urwin, L.; Okurowska, K.; Crowther, G.; Roy, S.; Garg, P.; Karunakaran, E.; MacNeil, S.; Partridge, L.J.; Green, L.R.; Monk, P.N. Corneal infection models: Tools to investigate the role of biofilms in bacterial keratitis. Cells 2020, 9, 2450. [Google Scholar] [CrossRef]
- Sharma, N.; Bagga, B.; Singhal, D.; Nagpal, R.; Kate, A.; Saluja, G.; Maharana, P.K. Fungal keratitis: A review of clinical presentations, treatment strategies and outcomes. Ocul. Surf. 2022, 24, 22–30. [Google Scholar] [CrossRef]
- Austin, A.; Lietman, T.; Rose-Nussbaumer, J. Update on the management of infectious keratitis. Ophthalmology 2017, 124, 1678–1689. [Google Scholar] [CrossRef]
- Khan, F.; Slain, D.; Khakoo, R. Candida endophthalmitis: Focus on culture and future antifungal treatment options. Pharmacotherapy 2012, 27, 1711–1721. [Google Scholar] [CrossRef]
- O’Donnell, M.; Eller, A.W.; Waxman, E.L.; Clancy, C.J.; Nguyen, M.H. Screening for ocular candidiasis among patients with candidemia: Is it time to change practice? Clin. Infect. Dis. 2022, 75, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Chee, Y.E.; Eliott, D. The role of vitrectomy in the management of fungal endophthalmitis. Semin. Ophthalmol. 2017, 32, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Eye Care in the Intensive Care Unit (The Royal College of Ophthalmologists, Ophthalmic Services Guidance). 2020. Available online: https://www.rcophth.ac.uk/resources-listing/eye-care-in-the-intensive-care-unit-icu/ (accessed on 5 July 2023).
- Ung, L.; Bispo, P.J.; Shanbhag, S.S.; Gilmore, M.S.; Chodosh, J. The persistent dilemma of microbial keratitis: Global burden, diagnosis, and antimicrobial resistance. Surv. Ophthalmol. 2019, 64, 255–271. [Google Scholar] [CrossRef]
- Whaley, S.G.; Berkow, E.L.; Rybak, J.M.; Nishimoto, A.T.; Barker, K.S.; Rogers, P.D. Azole antifungal resistance in Candida albicans and emerging non-albicans Candida species. Front. Microbiol. 2017, 7, 2173. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Ye, Y.; Zhang, D.; Yao, K.; Zhou, M. Visualized Gallium/Lyticase-Integrated Antifungal Strategy for Fungal Keratitis Treatment. Adv. Mater. 2022, 34, 2206437. [Google Scholar] [CrossRef]
- Enoch, D.A.; Yang, H.; Aliyu, S.H.; Micallef, C. The Changing Epidemiology of Invasive Fungal Infections. Methods Mol. Biol. 2017, 1508, 17–65. [Google Scholar] [CrossRef]
- Perlin, D.S.; Rautemaa-Richardson, R.; Alastruey-Izquierdo, A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017, 17, e383–e392. [Google Scholar] [CrossRef]
- Dosler, S.; Hacioglu, M.; Yilmaz, F.N.; Oyardi, O. Biofilm modelling on the contact lenses and comparison of the in vitro activities of multipurpose lens solutions and antibiotics. PeerJ 2020, 8, e9419. [Google Scholar] [CrossRef]
- Allyn, M.M.; Luo, R.H.; Hellwarth, E.B.; Swindle-Reilly, K.E. Considerations for Polymers Used in Ocular Drug Delivery. Front. Med. 2021, 8, 787644. [Google Scholar] [CrossRef] [PubMed]
- Ingle, A.P.; Paralikar, P.; Grupenmacher, A.; Padovani, F.H.; Ferrer, M.T.; Rai, M.; Alves, M. Nanotechnological interventions for drug delivery in eye diseases. In Nanotechnology Applied to Pharmaceutical Technology; Springer: Cham, Switzerland, 2017; pp. 279–306. [Google Scholar]
- Sahay, P.; Singhal, D.; Nagpal, R.; Maharana, P.K.; Farid, M.; Gelman, R.; Sinha, R.; Agarwal, T.; Titiyal, J.S.; Sharma, N. Pharmacologic therapy of mycotic keratitis. Surv. Ophthalmol. 2019, 64, 380–400. [Google Scholar] [CrossRef]
- Razavi, M.S.; Ebrahimnejad, P.; Fatahi, Y.; D’Emanuele, A.; Dinarvand, R. Recent developments of nanostructures for the ocular delivery of natural compounds. Front. Chem. 2022, 10, 850757. [Google Scholar] [CrossRef]
- Suh, D.H.; Choi, J.H.; Lee, S.J.; Jeong, K.-H.; Song, K.Y.; Shin, M.K. Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin. J. Cosmet. Laser Ther. 2015, 17, 230–236. [Google Scholar] [CrossRef]
- Kumar, V.; Kumari, P.; Lomi, N.; Vanathi, M.; Gupta, N.; Tandon, R.; Velpandian, T.; Ahmed, N.H.; Satpathy, G. Evaluation of liposomal amphotericin B for the treatment of fungal keratitis in a tertiary eye care hospital. Indian. J. Ophthalmol. 2023, 71, 518. [Google Scholar]
- Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020, 10, 1403. [Google Scholar] [CrossRef]
- Almehmady, A.M.; El-Say, K.M.; Mubarak, M.A.; Alghamdi, H.A.; Somali, N.A.; Sirwi, A.; Algarni, R.; Ahmed, T.A. Enhancing the Antifungal Activity and Ophthalmic Transport of Fluconazole from PEGylated Polycaprolactone Loaded Nanoparticles. Polymers 2023, 15, 209. [Google Scholar] [CrossRef]
- Khan, S.A.; Shahid, S.; Mahmood, T.; Lee, C.-S. Contact lenses coated with hybrid multifunctional ternary nanocoatings (Phytomolecule-coated ZnO nanoparticles:Gallic Acid:Tobramycin) for the treatment of bacterial and fungal keratitis. Acta Biomater. 2021, 128, 262–276. [Google Scholar] [CrossRef]
- Alakkad, A.; Stapleton, P.; Schlosser, C.; Murdan, S.; Odunze, U.; Schatzlein, A.; Uchegbu, I.F. Amphotericin b polymer nanoparticles show efficacy against candida species biofilms. Pathogens 2022, 11, 73. [Google Scholar] [CrossRef]
- Durgun, M.E.; Kahraman, E.; Hacıoğlu, M.; Güngör, S.; Özsoy, Y. Posaconazole micelles for ocular delivery: In vitro permeation, ocular irritation and antifungal activity studies. Drug Deliv. Transl. Res. 2022, 12, 662–675. [Google Scholar] [CrossRef] [PubMed]
- Mirghani, R.; Saba, T.; Khaliq, H.; Mitchell, J.; Do, L.; Chambi, L.; Diaz, K.; Kennedy, T.; Alkassab, K.; Huynh, T. Biofilms: Formation, drug resistance and alternatives to conventional approaches. AIMS Microbiol. 2022, 8, 239–277. [Google Scholar] [CrossRef]
- Shah, S.T.; Yehye, W.A.; Saad, O.; Simarani, K.; Chowdhury, Z.Z.; Alhadi, A.A.; Al-Ani, L.A. Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials 2017, 7, 306. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.; Amin, M.M.; El-Korany, S.M.; Sayed, S. Pronounced capping effect of olaminosomes as nanostructured platforms in ocular candidiasis management. Drug Deliv. 2022, 29, 2945–2958. [Google Scholar] [CrossRef]
- Genovese, C.; D’Angeli, F.; Attanasio, F.; Caserta, G.; Scarpaci, K.S.; Nicolosi, D. Phytochemical composition and biological activities of Orobanche crenata Forssk: A review. Nat. Prod. Res. 2021, 35, 4579–4595. [Google Scholar] [CrossRef]
- D’Angeli, F.; Guadagni, F.; Genovese, C.; Nicolosi, D.; Trovato Salinaro, A.; Spampinato, M.; Mannino, G.; Lo Furno, D.; Petronio Petronio, G.; Ronsisvalle, S. Anti-candidal activity of the parasitic plant orobanche crenata forssk. Antibiotics 2021, 10, 1373. [Google Scholar] [CrossRef] [PubMed]
- Saraiva, S.M.; Martín-Banderas, L.; Durán-Lobato, M. Cannabinoid-Based Ocular Therapies and Formulations. Pharmaceutics 2023, 15, 1077. [Google Scholar] [CrossRef]
- Di Onofrio, V.; Gesuele, R.; Maione, A.; Liguori, G.; Liguori, R.; Guida, M.; Nigro, R.; Galdiero, E. Prevention of Pseudomonas aeruginosa Biofilm Formation on Soft Contact Lenses by Allium sativum Fermented Extract (BGE) and Cannabinol Oil Extract (CBD). Antibiotics 2019, 8, 258. [Google Scholar] [CrossRef] [Green Version]
- Breit, S.M.; Hariprasad, S.M.; Mieler, W.F.; Shah, G.K.; Mills, M.D.; Grand, M.G. Management of endogenous fungal endophthalmitis with voriconazole and caspofungin. Am. J. Ophthalmol. 2005, 139, 135–140. [Google Scholar] [CrossRef]
- Qiao, G.L.; Ling, J.; Wong, T.; Yeung, S.N.; Iovieno, A. Candida keratitis: Epidemiology, management, and clinical outcomes. Cornea 2020, 39, 801–805. [Google Scholar] [CrossRef]
- Jiang, T.; Tang, J.; Wu, Z.; Sun, Y.; Tan, J.; Yang, L. The combined utilization of Chlorhexidine and Voriconazole or Natamycin to combat Fusarium infections. BMC Microbiol. 2020, 20, 275. [Google Scholar] [CrossRef]
- Díaz-Tomé, V.; Bendicho-Lavilla, C.; García-Otero, X.; Varela-Fernández, R.; Martín-Pastor, M.; Llovo-Taboada, J.; Alonso-Alonso, P.; Aguiar, P.; González-Barcia, M.; Fernández-Ferreiro, A.; et al. Antifungal Combination Eye Drops for Fungal Keratitis Treatment. Pharmaceutics 2023, 15, 35. [Google Scholar] [CrossRef]
Infection | Sites | Most Frequent Etylogical Agents | Risk Factors or Comments | Symptomps and Signs |
---|---|---|---|---|
Keratitis | Cornea | C. albicans, C. parapsilosis, C. viswanathii | - Ocular disease (e.g., insufficient tear secretion, defective eyelid closure). - Systemic disease (e.g., diabetes mellitus, immunosuppression). - Epithelial defect due to herpes keratitis or contact lenses. | - Foreign body sensation. Vision loss, sensitivity to light, slow onset of increasing pain. - Purulent discharge, conjunctival hyperemia, corneal epithelial defects, stromal infiltrate, anterior chamber reaction, and hypopyon. |
Choroiditis/ Chorioretinitis | Choroid +/− Retina | C. albicans, C. parapsilosis, C. viswanathii, C. glabrata | Immunocompromised, drug addicts, intravenous catheters, corticosteroids, parenteral or broad-spectrum antibiotic therapy during septicemia. | - Asymptomatic or reduced vision in the case of macular involvment - Multiple, bilateral, white, well-circumscribed chorioretinal lesions less than 1mm in diameter, vascular sheathing, intraretinal hemorrhages. |
Endophthalmitis | Anterior chamber, Vitreous, Retina, Choroid | C. albicans, C. parapsilosis, C. viswanathii, C. dubliniensis, C. glabrata | - Exogenous: post-trauma, post-surgery, and post-keratitis. - Endogenous: immunocompromised, drug addicts, intravenous catheters, corticosteroid, parenteral or broad-spectrum antibiotic therapy during septicemia. | - Severe eye pian redness of the sclera, sensitivity to light, reduced vision. - Chorioretinal lesion. Vascular sheathing. Intraretinal haemorrhages. - Vitritis with characteristic exudates with string of pearl appearance and inflammation of the anterior segment. |
Eye Disease | Diagnosis |
---|---|
Keratitis |
|
Ocular candidiasis |
|
Treatment | Comments | |
---|---|---|
Candida Keratitis | Topical natamycin 5% Topical amphotericin B 0.15–0.3% Topical voriconazole 1% | - Consider the addition of systemic treatment (oral azoles) in the case of severe disease and/or immunocompromised patients. - Cycloplegics and antibiotics for the management of pain and complications caused by bacterial infections. - Keratoplasty in the presence of perforation or ineffectiveness of therapy. |
Candida Choroiditis | Systemic amphotericin B | The lesions are external to the BRB, so amphotericin B, which is effective against Candida but poorly cross the BRB, is indicated. |
Candida Chorioretinitis | Systemic fluconazole (oral or intravenous) | The lesions are internal to the BRB, so a drug which has demonstrated crossing the BRB is necessary. |
Candida endophthalmitis | Intravitreal amphotericin B plus systemic fluconazole +/− Vitrectomy | Vitrectomy is useful both as a diagnostic and as a therapeutic tool. |
Treatment | Advantages and Disadvantages |
---|---|
FLZ-polymeric nanoparticle formulation | Higher antifungal activity compared to the pure drug. |
MET nanoparticles | MET penetrates within biofilms and MET-AmB eye drop formulations may provide a superior therapeutic outcome in biofilm-associated ocular fungal infections. MET-AmB formulation was a more active antifungal formulation when compared to the drug alone. |
Posaconazole (PSC) | Broad-spectrum antifungal action. Highly lipophilic molecule, insoluble in water, and a relatively high-molecular-weight compound, which is likely to limit its ocular bioavailability. A novel delivery system of PSC-micelles presents safe anti-fungal activity, which providse delivery via the ocular route. |
Metal-based anti-infective agents | Antimicrobial properties. Should be used with caution because of their toxicity. |
Lyticase and gallium ions co-integrated nanoparticle (MLPGa) | MLPGa can degrade exopolysaccharides and act on planktonic cells and mature biofilms of Candida, without causing adverse effects. |
Olaminosomes | Olaminosomes improve the corneal penetration and antifungal efficacy of fenticonazole nitrate. |
Orobanche crenata (OCLE) | Fungistatic effect. |
Cannabinoids | Cannabinoids show side effects, especially when administered systemically. Nanostructures composed of hydrophobic materials seem to be the best option to carry cannabinoids due to their lipophilic character. CBD has a good effect on inhibiting biofilm formation and removing preformed biofilms. |
Coated contact lenses | Coated contact lenses with ternary multifunctional hybrid nanocoatings are designed for the treatment of bacterial and fungal keratitis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrillo, F.; Sinoca, M.; Fea, A.M.; Galdiero, M.; Maione, A.; Galdiero, E.; Guida, M.; Reibaldi, M. Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment. Antibiotics 2023, 12, 1277. https://doi.org/10.3390/antibiotics12081277
Petrillo F, Sinoca M, Fea AM, Galdiero M, Maione A, Galdiero E, Guida M, Reibaldi M. Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment. Antibiotics. 2023; 12(8):1277. https://doi.org/10.3390/antibiotics12081277
Chicago/Turabian StylePetrillo, Francesco, Marica Sinoca, Antonio Maria Fea, Marilena Galdiero, Angela Maione, Emilia Galdiero, Marco Guida, and Michele Reibaldi. 2023. "Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment" Antibiotics 12, no. 8: 1277. https://doi.org/10.3390/antibiotics12081277
APA StylePetrillo, F., Sinoca, M., Fea, A. M., Galdiero, M., Maione, A., Galdiero, E., Guida, M., & Reibaldi, M. (2023). Candida Biofilm Eye Infection: Main Aspects and Advance in Novel Agents as Potential Source of Treatment. Antibiotics, 12(8), 1277. https://doi.org/10.3390/antibiotics12081277