The Antimicrobial Resistance (AMR) Rates of Enterobacterales in a Rural Hospital from the Eastern Region, Ghana: A Retrospective Study, 2022
Abstract
:1. Introduction
2. Results
2.1. Population
2.2. Etiological Diagnosis
2.3. Sensitivity Analysis of Enterobacterales
2.3.1. Urine
E. coli (114) R/Total Strains Tested | Enterobacter spp. (7) R/Total Strains Tested | Klebsiella spp. (87) R/Total Strains Tested | Proteus spp. (10) R/Total Strains Tested | |
---|---|---|---|---|
Amoxicillin/clavulanic acid | 25/26 (96.2%) | 3/3 (100%) | 23/24 (95.8%) | 2/3 (66.7%) |
Amikacin | 9/108 (8.3%) | 0/7 (0%) | 4/85 (4.7%) | 1/10 (10.0%) |
Ampicillin | 2/3 (66.7%) | 1/1 (100%) | 2/2 (100%) | 1/1 (100%) |
Cefixime | 29/48 (60.4%) | 1/1 (100%) | 17/30 (56.7%) | 1/3 (33.3%) |
Ceftazidime | 33/41 (80.5%) | 4/4 (100%) | 36/42 (85.7%) | 4/5 (80.0%) |
Ceftriaxone | 57/103 (55.3%) | 3/6 (50.0%) | 59/84 (70.2%) | 4/9 (44.4%) |
Cefotaxime | 22/32 (68.8%) | 1/2 (50.0%) | 12/20 (60.0%) | 2/3 (66.7%) |
Cefuroxime | 9/15 (60.0%) | 3/3 (100%) | 8/8 (100%) | 1/2 (50.0%) |
Ciprofloxacin | 61/109 (56.0%) | 5/7 (71.4%) | 49/80 (61.3%) | 4/10 (40.0%) |
Meropenem | 2/13 (15.4%) | 0/1 (0%) | 3/4 (75.0%) | 1/2 (50.0%) |
Levofloxacin | 6/35 (17.1%) | 0/4 (0%) | 5/27 (18.5%) | 0/3 (0%) |
Gentamicin | 49/104 (47.1%) | 4/7 (57.1%) | 41/75 (54.7%) | 3/9 (33.3%) |
Tetracycline | 13/21 (61.9%) | 2/2 (100%) | 14/19 (73.7%) | 2/3 (66.7%) |
Nitrofurantoin | 27/89 (30.3%) | 4/4 (100%) | 37/70 (52.9%) | 4/8 (50.0%) |
Norfloxacin | 7/17 (41.2%) | - | 7/11 (63.6%) | 0/1 (0%) |
Trimethoprim/sulfamethoxazole | 1/1 (100%) | 1/1 (100%) | 2/2 (100%) | 1/1 (100%) |
Nalidixic acid | 68/89 (76.4%) | 5/6(83.3%) | 42/68 (61.8%) | 4/5 (80.0%) |
Pipemedic acid | 19/20 (95.0%) | 4/4 (100%) | 22/23 (95.7%) | 3/3 (100%) |
2.3.2. High Vaginal Swab
E. coli (24) R | Klebsiella spp. (27) R | Proteus spp. (6) R | Non-Identified Enterobacterium (17) R | |
---|---|---|---|---|
Amoxicillin/clavulanic acid | 3/4 (75.0%) | 4/4 (100%) | - | 1/1 (100%) |
Amikacin | 1/24 (4.2%) | 1/26 (3.8%) | 1/6 (16.7%) | 1/13 (7.7%) |
Ampicillin | 4/4 (100%) | 1/1 (100%) | 0/1 (0%) | 3/5 (60.0%) |
Chloramphenicol | 1/2 (50.0%) | - | - | 0/3 (0%) |
Cefixime | 6/9 (66.7%) | 8/10 (80.0%) | 0/2 (0%) | 4/4 (100%) |
Ceftazidime | 3/4 (75.0%) | 7/9 (77.8%) | - | 2/2 (100%) |
Ceftriaxone | 14/24 (58.3%) | 15/24 (62.5%) | 0/6 (0%) | 9/15 (60.0%) |
Cefotaxime | 8/9 (88.9%) | 6/8 (75.0%) | 0/2 (0%) | 8/11 (72.7%) |
Cefuroxime | 6/6 (100%) | 4/4 (100%) | 0/1 (0%) | 6/8 (75.0%) |
Ciprofloxacin | 10/22 (45.5%) | 11/27 (40.7%) | 2/6 (33.3%) | 5/16 (31.3%) |
Meropenem | 6/16 (37.5%) | 1/14 (7.1%) | 0/3 (0%) | 7/12 (58.3%) |
Levofloxacin | 1/3 (33.3%) | 0/4 (0%) | 0/1 (0%) | |
Gentamicin | 12/23 (52.2%) | 9/26 (34.6%) | 2/6 (33.3%) | 3/14 (21.4%) |
Tetracycline | 3/5 (60.0%) | 2/3 (66.7%) | - | 2/5 (40.0%) |
Nitrofurantoin | 0/1 (0%) | 0/1 (0%) | - | - |
Norfloxacin | 0/2 (0%) | - | - | - |
Trimethoprim/sulfamethoxazole | 3/3 (100%) | 1/1 (100%) | 0/1 (0%) | 3/6 (50.0%) |
2.3.3. Blood
Enterobacterium (9) R | |
---|---|
Amikacin | 0/9 (0%) |
Ceftriaxone | 4/8 (50.0%) |
Ciprofloxacin | 1/5 (20.0%) |
Cefotaxime | 2/7 (28.6%) |
Cefixime | 5/6 (83.3%) |
Gentamicin | 3/8 (37.5%) |
Meropenem | 2/6 (33.3%) |
2.3.4. Body Fluids and Aspirates
Enterobacterium (21) R | |
---|---|
Amoxicillin/clavulanic acid | 3/4 (75.0%) |
Amikacin | 1/20 (5.0%) |
Ampicillin | 3/4 (75.0%) |
Ceftazidime | 3/5 (60.0%) |
Ceftriaxone | 6/20 (30.0%) |
Ciprofloxacin | 3/19 (15.8%) |
Cefotaxime | 4/10 (40.0%) |
Cefuroxime | 5/6 (83.3%) |
Cefixime | 3/8 (37.5%) |
Gentamicin | 4/19 (21.1%) |
Meropenem | 1/10 (10.0%) |
Tetracycline | 4/4 (100%) |
2.3.5. Sputum
Enterobacterium (23) R | |
---|---|
Amikacin | 0/22 (0%) |
Azithromycin | 10/15 (66.7%) |
Ceftazidime | 3/4 (75.0%) |
Ceftriaxone | 6/21 (28.6%) |
Ciprofloxacin | 3/23 (13.0%) |
Cefotaxime | 4/5 (80.0%) |
Cefixime | 7/12 (58.3%) |
Gentamicin | 4/20 (20.0%) |
Meropenem | 1/12 (8.3%) |
2.3.6. Enterobacterales
E. coli (144) R | Enterobacter spp. (11) R | Klebsiella spp. (138) R | Proteus spp. (23) R | Non-Identified Enterobacterium (79) R | |
---|---|---|---|---|---|
Amoxicillin/Clavulanic acid | 28/31 (90.3%) | 4/4 (100%) | 29/31 (93.6%) | 3/4 (75.0%) | 10/10 (100%) |
Amikacin | 10/137 (7.3%) | 0/11 (0%) | 5/136 (3.7%) | 3/23 (13.0%) | 3/74 (4.1%) |
Ampicillin | 8/9 (88.9%) | 1/1 (100%) | 6/6 (100%) | 1/3 (33.3%) | 3/5 (60.0%) |
Azithromycin | 0/1 (0%) | 2/2 (100%) | 5/7 (71.4%) | 1/1 (100%) | 3/6 (50.0%) |
Chloramphenicol | 2/5 (40.0%) | 0/1 (0%) | - | 1/1 (100%) | 0/3 (0%) |
Cefixime | 37/59 (62.7%) | 2/3 (66.7%) | 29/51 (56.9%) | 2/7 (28.6%) | 19/28 (67.9%) |
Ceftazidime | 36/46 (78.2%) | 5/5 (100%) | 45/55 (81.8%) | 6/7 (85.7%) | 20/24 (83.3%) |
Ceftriaxone | 75/132 (56.8%) | 3/10 (30.0%) | 83/132 (62.9%) | 5/21 (23.8%) | 39/75 (52.0%) |
Cefotaxime | 34/45 (75.6%) | 1/3 (33.3%) | 24/38 (63.2%) | 2/7 (28.6%) | 11/21 (52.4%) |
Cefuroxime | 17/23 (73.9%) | 3/3 (100%) | 16/17 (94.1%) | 2/5 (40.0%) | 9/14 (64.3%) |
Ciprofloxacin | 75/136 (55.1%) | 5/11 (45.5%) | 63/131 (48.1%) | 6/22 (27.3%) | 39/72 (54.2%) |
Meropenem | 10/32 (31.3%) | 0/3 (0%) | 5/31 (16.1%) | 1/8 (12.5%) | 8/23 (34.8%) |
Levofloxacin | 7/38 (18.4%) | 0/5 (0%) | 5/33 (15.2%) | 1/4 (25.0%) | 2/15 (13.3%) |
Gentamicin | 63/131 (48.1%) | 4/11 (36.4%) | 54/125 (43.2%) | 7/21 (33.3%) | 30/73 (41.1%) |
Tetracycline | 18/28 (64.3%) | 3/3 (100%) | 18/24 (75.0%) | 3/4 (75.0%) | 10/14 (71.4%) |
Nitrofurantoin | 27/90 (30.0%) | 4/4 (100%) | 38/72 (52.8%) | 4/8 (50.0%) | 19/40 (47.5%) |
Norfloxacin | 7/19 (36.8%) | - | 7/12 (58.3%) | 0/1 (0%) | 3/5 (60.0%) |
Trimethoprim/sulfamethoxazole | 6/6 (100%) | 1/1 (100%) | 4/4 (100%) | 1/3 (33.3%) | 3/6 (50.0%) |
Nalidixic acid | 68/89 (76.4%) | 5/6 (83.3%) | 42/69 (60.9%) | 4/5 (80.0%) | 31/37 (83.8%) |
Pipemedic acid | 19/20 (95.0%) | 4/4 (100%) | 23/24 (95.8%) | 3/3 (100%) | 7/7 (100%) |
A. MDR | Univariate OR (95% CI) | p-Value | Multivariate OR (95% CI) | p-Value |
Age (n = 420) | 1.01 (1.01–1.02) | 0.002 | 1.01 (1.00–1.02) | 0.049 |
Male (n = 142) | 2.35 (1.52–3.61) | <0.001 | 2.39 (1.49–3.83) | <0.001 |
Leucocytes (n = 339) | 1.01 (1.00–1.02) | 0.279 | ||
Sample Type | ||||
Urine (n = 270) | 1.56 (1.05–2.32) | 0.028 | Not included p > 0.05 | |
High Vaginal Swabs (n = 75) | 0.75 (0.46–1.24) | 0.263 | ||
Blood (n = 25) | 1.95 (0.80–4.76) | 0.145 | ||
Body fluids and aspirates (n = 25) | 0.46 (0.20–1.06) | 0.069 | ||
Sputum (n = 34) | 0.48 (0.24–0.98) | 0.044 | 0.33(0.14–0.76) | 0.009 |
B. XDR | Univariate OR (95% CI) | p-Value | Multivariate OR (95% CI) | p-Value |
Age (n = 420) | 1.02 (1.01–1.03) | 0.004 | Not included p > 0.05 | |
Male (n = 142) | 1.88 (1.14–3.08) | 0.013 | 1.95 (1.08–3.54) | 0.027 |
Leucocytes (n = 339) | 1.01 (1.00–1.02) | 0.223 | ||
Sample Type | ||||
Urine (n = 270) | 5.21 (2.60–10.46) | <0.001 | 7.46 (2.55–21.87) | <0.001 |
High Vaginal Swabs (n = 75) | 0.33 (0.14–0.79) | 0.013 | Not included p > 0.05 | n.s. |
Blood (n = 25) | 0.36 (0.08–1.57) | 0.176 | ||
Body fluids and aspirates (n = 25) | 0.36 (0.08–1.57) | 0.176 | ||
Sputum * (n = 34) | - | - |
3. Discussion
4. Materials and Methods
4.1. Location
4.2. Inclusion Criteria
4.3. Specimen’s Collection and Processing
4.4. Statistical Analysis
5. Conclusions
- -
- The majority of samples arriving at the microbiology laboratory come from urine, the subjects being mainly women.
- -
- There is an important prevalence of AMR in all different microorganisms studied, particularly a significant number of MDR and XDR bacteria.
- -
- Males and older age groups showed a significant association with MDR and XDR bacteria.
- -
- Urine samples exhibited a significant association with XDR bacteria.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Global Report on Surveillance 2014; WHO 2014 AMR Rep.; World Health Organization: Geneva, Switzerland, 2014; pp. 1–8. [Google Scholar]
- García-Vello, P.; González-Zorn, B.; Saba, C.K.S. Antibiotic Resistance Patterns in Human, Animal, Food and Environmental Isolates in Ghana: A Review. Pan Afr. Med. J. 2020, 35, 37. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Hossain, M.J.; Sobur, M.A.; Punom, S.A.; Rahman, A.M.M.T.; Rahman, M.T. A Systematic Review on the Occurrence of Antimicrobial-Resistant Escherichia Coli in Poultry and Poultry Environments in Bangladesh between 2010 and 2021. Biomed Res. Int. 2023, 2023, 2425564. [Google Scholar] [CrossRef]
- Vicar, E.K.; Alo, D.B.; Koyiri, V.C.; Opare-Asamoah, K.; Obeng-Bempong, M.; Mensah, G.I. Carriage of Antibiotic Resistant Bacteria and Associated Factors among Food Handlers in Tamale Metropolis, Ghana: Implications for Food. Microbiol. Insights 2023, 16, 117863612211506. [Google Scholar] [CrossRef] [PubMed]
- Madec, J.Y.; Haenni, M.; Nordmann, P.; Poirel, L. Extended-Spectrum β-Lactamase/AmpC- and Carbapenemase-Producing Enterobacteriaceae in Animals: A Threat for Humans? Clin. Microbiol. Infect. 2017, 23, 826–833. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.B.; Sraboni, A.S.; Hossain, M.I.; Roy, S.; Mozmader, T.A.U.; Unicomb, L.; Rousham, E.K.; Islam, M.A. Occurrence and Genetic Characteristics of Mcr-1-Positive Colistin-Resistant E. Coli from Poultry Environments in Bangladesh. J. Glob. Antimicrob. Resist. 2020, 22, 546–552. [Google Scholar] [CrossRef]
- Ohene Larbi, R.; Adeapena, W.; Ayim-Akonor, M.; Ansa, E.D.O.; Tweya, H.; Terry, R.F.; Labi, A.K.; Harries, A.D. Antimicrobial, Multi-Drug and Colistin Resistance in Enterobacteriaceae in Healthy Pigs in the Greater Accra Region of Ghana, 2022: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 10449. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organisation Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Yang, W.T.; Chiu, I.J.; Huang, Y.T.; Liu, P.Y. Comparative Genomics Revealed Fluoroquinolone Resistance Determinants and OmpF Deletion in Carbapenem-Resistant Escherichia Coli. Front. Microbiol. 2022, 13, 886428. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Technical Report Series The Selection and Use of Essential Medicines: Report of the WHO Expert Committee; World Health Organization: Geneva, Switzerland, 2011; Volume 1006, ISBN 978-92-4-121015-7. [Google Scholar]
- Dwomoh, F.P.; Kotey, F.C.N.; Dayie, N.T.K.D.; Osei, M.M.; Amoa-Owusu, F.; Bannah, V.; Alzahrani, F.M.; Halawani, I.F.; Alzahrani, K.J.; Egyir, B.; et al. Phenotypic and Genotypic Detection of Carbapenemase-Producing Escherichia Coli and Klebsiella Pneumoniae in Accra, Ghana. PLoS ONE 2022, 17, e0279715. [Google Scholar] [CrossRef] [PubMed]
- Calzada, F.C.; Aguilera-Correa, J.J.; González, J.C.; Moreno, J.E.; Biosca, D.R.; Pérez-Tanoira, R. Urinary Tract Infection and Antimicrobial Susceptibility of Bacterial Isolates in Saint Joseph Kitgum Hospital, Kitgum, Uganda. Antibiotics 2022, 11, 504. [Google Scholar] [CrossRef]
- Pereira, A.L.; de Oliveira, P.M.; Faria-Junior, C.; Alves, E.G.; de Castro e Caldo Lima, G.R.; da Costa Lamounier, T.A.; Haddad, R.; de Araújo, W.N. Environmental Spreading of Clinically Relevant Carbapenem-Resistant Gram-Negative Bacilli: The Occurrence of BlaKPC-or-NDM Strains Relates to Local Hospital Activities. BMC Microbiol. 2022, 22, 6. [Google Scholar] [CrossRef]
- Kopotsa, K.; Osei Sekyere, J.; Mbelle, N.M. Plasmid Evolution in Carbapenemase-Producing Enterobacteriaceae: A Review. Ann. N. Y. Acad. Sci. 2019, 1457, 61–91. [Google Scholar] [CrossRef]
- Rahman, M.T.; Sobur, M.A.; Islam, M.S.; Ievy, S.; Hossain, M.J.; Zowalaty, M.E.E.; Rahman, A.M.M.T.; Ashour, H.M. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms 2020, 8, 1405. [Google Scholar] [CrossRef] [PubMed]
- Iredell, J.; Brown, J.; Tagg, K. Antibiotic Resistance in Enterobacteriaceae: Mechanisms and Clinical Implications. BMJ 2016, 352, h6420. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Marr, C.M. Hypervirulent Klebsiella Pneumoniae. Clin. Microbiol. Rev. 2019, 32, e00001-19. [Google Scholar] [CrossRef]
- Amponsah, O.K.O.; Nagaraja, S.B.; Ayisi-Boateng, N.K.; Nair, D.; Muradyan, K.; Asense, P.S.; Wusu-Ansah, O.K.; Terry, R.F.; Khogali, M.; Buabeng, K.O. High Levels of Outpatient Antibiotic Prescription at a District Hospital in Ghana: Results of a Cross Sectional Study. Int. J. Environ. Res. Public Health 2022, 19, 10286. [Google Scholar] [CrossRef]
- Abujnah, A.A.; Zorgani, A.; Sabri, M.A.M.; El-Mohammady, H.; Khalek, R.A.; Ghenghesh, K.S. Multidrug Resistance and Extended-Spectrum β-Lactamases Genes among Escherichia Coli from Patients with Urinary Tract Infections in Northwestern Libya. Libyan J. Med. 2015, 10, 26412. [Google Scholar] [CrossRef] [PubMed]
- Afriyie, D.K.; Sefah, I.A.; Sneddon, J.; Malcolm, W.; McKinney, R.; Cooper, L.; Kurdi, A.; Godman, B.; Andrew Seaton, R. Antimicrobial Point Prevalence Surveys in Two Ghanaian Hospitals: Opportunities for Antimicrobial Stewardship. JAC-Antimicrob. Resist. 2020, 2, dlaa001. [Google Scholar] [CrossRef]
- Labi, A.K.; Obeng-Nkrumah, N.; Nartey, E.T.; Bjerrum, S.; Adu-Aryee, N.A.; Ofori-Adjei, Y.A.; Yawson, A.E.; Newman, M.J. Antibiotic Use in a Tertiary Healthcare Facility in Ghana: A Point Prevalence Survey. Antimicrob. Resist. Infect. Control 2018, 7, 15. [Google Scholar] [CrossRef]
- Amponsah, O.K.O.; Buabeng, K.O.; Owusu-Ofori, A.; Ayisi-Boateng, N.K.; Hämeen-Anttila, K.; Enlund, H. Point Prevalence Survey of Antibiotic Consumption across Three Hospitals in Ghana. JAC-Antimicrob. Resist. 2021, 3, dlab008. [Google Scholar] [CrossRef]
- Darkwah, T.O.; Afriyie, D.K.; Sneddon, J.; Cockburn, A.; Opare-Addo, M.N.A.; Tagoe, B.; Amponsah, S.K. Assessment of Prescribing Patterns of Antibiotics Using National Treatment Guidelines and World Health Organization Prescribing Indicators at the Ghana Police Hospital: A Pilot Study. Pan Afr. Med. J. 2021, 39, 222. [Google Scholar] [CrossRef]
- Eibach, D.; Campos, C.B.; Krumkamp, R.; Al-Emran, H.M.; Dekker, D.; Boahen, K.G.; Kreuels, B.; Adu-Sarkodie, Y.; Aepfelbacher, M.; Park, S.E.; et al. Extended Spectrum Beta-Lactamase Producing Enterobacteriaceae Causing Bloodstream Infections in Rural Ghana, 2007–2012. Int. J. Med. Microbiol. 2016, 306, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.M.; Lowder, J.L. Diagnosis and Treatment of Urinary Tract Infections across Age Groups. Am. J. Obstet. Gynecol. 2018, 219, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Bouza, E.; San Juan, R.; Muñoz, P.; Voss, A.; Kluytmans, J. A European Perspective on Nosocomial Urinary Tract Infections II. Report on Incidence, Clinical Characteristics and Outcome (ESGNI-004 Study). European Study Group on Nosocomial Infection. Clin. Microbiol. Infect. 2001, 7, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Leski, T.A.; Taitt, C.R.; Bangura, U.; Stockelman, M.G.; Ansumana, R.; Cooper, W.H.; Stenger, D.A.; Vora, G.J. High Prevalence of Multidrug Resistant Enterobacteriaceae Isolated from Outpatient Urine Samples but Not the Hospital Environment in Bo, Sierra Leone. BMC Infect. Dis. 2016, 16, 167. [Google Scholar] [CrossRef]
- Zwane, T.; Shuping, L.; Perovic, O. Etiology and Antimicrobial Susceptibility of Pathogens Associated with Urinary Tract Infections among Women Attending Antenatal Care in Four South African Tertiary-Level Facilities, 2015–2019. Antibiotics 2021, 10, 669. [Google Scholar] [CrossRef]
- Öztürk, R.; Murt, A. Epidemiology of Urological Infections: A Global Burden. World J. Urol. 2020, 38, 2669–2679. [Google Scholar] [CrossRef]
- Deberu, O.; Nkrumah, B.; Sylverken, A.A.; Sambian, D.; Acheampong, G.; Amuasi, J.; Stebleson, A.; Agboyie, D.; Yenbaree, M.; Mensah, S.; et al. Common Bacteria in Sputum or Gastric Lavage of Patients Presenting with Signs and Symptoms of Lower Respiratory Tract Infections. Pan Afr. Med. J. 2021, 38, 383. [Google Scholar] [CrossRef]
- Kern, W.V.; Rieg, S. Burden of Bacterial Bloodstream Infection—A Brief Update on Epidemiology and Significance of Multidrug-Resistant Pathogens. Clin. Microbiol. Infect. 2020, 26, 151–157. [Google Scholar] [CrossRef]
- Deininger, S.; Gründler, T.; Deininger, S.H.M.; Lütcke, K.; Lütcke, H.; Agbesi, J.; Ladzaka, W.; Gyamfi, E.; Wichlas, F.; Hofmann, V.; et al. The Antimicrobial Resistance (AMR) Rates of Uropathogens in a Rural Western African Area—A Retrospective Single-Center Study from Kpando, Ghana. Antibiotics 2022, 11, 1808. [Google Scholar] [CrossRef]
- Jara, M.C.; Frediani, A.V.; Zehetmeyer, F.K.; Bruhn, F.R.P.; Müller, M.R.; Miller, R.G.; Nascente, P.D.S. Multidrug-Resistant Hospital Bacteria: Epidemiological Factors and Susceptibility Profile. Microb. Drug Resist. 2021, 27, 433–440. [Google Scholar] [CrossRef]
- Al-Tamimi, M.; Abu-Raideh, J.; Albalawi, H.; Shalabi, M.; Saleh, S. Effective Oral Combination Treatment for Extended-Spectrum Beta-Lactamase-Producing Escherichia coli. Microb. Drug Resist. 2019, 25, 1132–1141. [Google Scholar] [CrossRef]
- Kiiru, S.; Maina, J.; Katana, J.; Mwaniki, J.; Asiimwe, B.B.; Mshana, S.E.; Keenan, K.; Gillespie, S.H.; Stelling, J.; Holden, M.T.G.; et al. Bacterial Etiology of Urinary Tract Infections in Patients Treated at Kenyan Health Facilities and Their Resistance towards Commonly Used Antibiotics. PLoS ONE 2023, 18, e0277279. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, S.; Tesfa, T.; Shume, T.; Tebeje, F.; Urgesa, K.; Weldegebreal, F. Bacterial Profile, Their Antibiotic Susceptibility Pattern, and Associated Factors of Urinary Tract Infections in Children at Hiwot Fana Specialized University Hospital, Eastern Ethiopia. PLoS ONE 2023, 18, e0283637. [Google Scholar] [CrossRef] [PubMed]
- Okafor, J.U.; Nwodo, U.U. Molecular Characterization of Antibiotic Resistance Determinants in Klebsiella Pneumoniae Isolates Recovered from Hospital Effluents in the Eastern Cape Province, South Africa. Antibiotics 2023, 12, 1139. [Google Scholar] [CrossRef] [PubMed]
- Leber, A.L. Clinical Microbiology Procedures Handbook, 4th ed.; Leber, A.L., Burnham, C.-A.D., Eds.; American Society for Microbiology: Washington, DC, USA, 2016; ISBN 9781555818807. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI) (Ed.) Performance Standards for Antimicrobial Susceptibility Testing, 32nd ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2022; ISBN 978-1-68440-135-2. [Google Scholar]
Total | Positive Culture (n = 872) | Negative Culture (n = 2033) | p-Value | |
SEX (n = 2905) | 985 (33.9%) | Male [248 (28.4%)] Female [624 (71.6%)] | Male [737 (36.3%)] Female [1296 (63.7%)] | <0.001 |
Age (n = 2870) | 30 (20–48) | 30 (20–51) | 30 (20–47) | <0.001 |
Leucocyte % (n = 2088) | 3 (1–12) | 10 (3–50) | 2 (1–7) | <0.001 |
Urine Samples (n = 1547) | Positive Culture (n = 352) | Negative Culture (n = 1195) | ||
Sex (n = 1547) | 580 (37.5%) | Male [102 (29%)] Female [250 (71.0%)] | Male [478 (40%)] Female [717 (60.0%)] | <0.001 |
Age (n = 1525) | 33 (24–56) | 44 (28–63.3) | 32 (23–50) | <0.001 |
Leucocyte % (n = 1526) | 2 (1–10) | 10 (2.5–50) | 2 (1–5) | <0.001 |
HVS (n = 570) | Positive Culture (n = 238) | Negative Culture (n = 332) | ||
Sex (n = 570) | N.A. | N.A. | N.A. | |
Age (n = 566) | 29 (24–37) | 28 (23–35) | 29 (25–39) | 0.010 |
Leucocyte % (n = 562) | 5 (2–15) | 10 (4–20) | 4 (2–12) | <0.001 |
Blood (n = 439) | Positive Culture (n = 184) | Negative Culture (n = 255) | ||
Sex (n = 439) | 237 (54.0%) | Male [106 (57.6%)] Female [78 (42.4%)] | Male [131 (51.4%)] Female [124 (48.6%)] | 0.196 |
Age (n = 437) | 1 (0.003–15) | 1 (0.003–23) | 0.84 (0.003–9) | 0.123 |
Leucocyte % (N.A.) | N.A. | N.A. | N.A. | |
BFA (n = 202) | Positive Culture (n = 53) | Negative Culture (n = 149) | ||
Sex (n = 202) | 94 (46.5%) | Male [17 (32.1%)] Female [36 (67.9%)] | Male [77 (51.7%)] Female [72 (48.3%)] | 0.014 |
Age (n = 195) | 34 (12–53) | 32 (7.5–50) | 35 (13–54) | 0.315 |
Leucocyte % (N.A.) | N.A. | N.A. | N.A. | |
Sputum (n = 147) | Positive Culture (n = 45) | Negative Culture (n = 102) | ||
Sex (n = 147) | 74 (50.3%) | Male [23 (51.1%)] Female [22 (48.9%)] | Male [51 (50.0%)] Female [51 (50.0%)] | 0.901 |
Age (n = 147) | 46 (32–62) | 53 (42.5–65.5) | 42 (29.8–61) | 0.022 |
Leucocyte % (N.A.) | N.A. | N.A. | N.A. |
Antimicrobial Category | Escherichia coli | Klebsiella spp. | Proteus spp. | Enterobacter spp. | Non-Identified Enterobacterium |
---|---|---|---|---|---|
Aminoglycosides | 64/143 (44.8%) | 58/133 (43.6%) | 9/22 (40.9%) | 4/11 (36.4%) | 31/76 (40.8%) |
Chephalosporins | 95/141 (67.4%) | 99/136 (72.8%) | 10/22(45.5%) | 9/11 (81.8%) | 54/79 (68.4%) |
Penicillins | 44/47 (93.6%) | 42/44 (95.5%) | 5/7 (71.4%) | - | 17/19 (89.5%) |
Carbapenems | 10/32 (31.3%) | 5/31 (16.1%) | 1/8 (12.5%) | 0/3 (0%) | 8/23 (34.8%) |
Fluoroquinolones | 75/138 (54.3%) | 63/132 (47.7%) | 6/23 (26.1%) | 5/11 (45.5%) | 39/72 (54.2%) |
Tetracyclines | 18/28 (64.3%) | 18/24 (75.0%) | - | 3/3 (100%) | 10/14 (71.4%) |
Nitrofurantoin | 27/90 (30.0%) | 38/73 (52.1%) | - | 4/4 (100%) | 19/40 (47.5%) |
Folate pathway inhibitors * | 6/6 (100%) | 4/4 (100%) | 1/3 (33.3%) | 1/1 (100%) | 3/6 (50.0%) |
Phenicols ** | 2/5 (40.0%) | - | 1/1 (100%) | 0/1 (0%) | 0/3 (0%) |
MDR | 80/140 (57.1%) | 74/137 (54.0%) | 7/23 (30.4%) | 6/11 (54.5%) | 42/78 (53.8%) |
XDR | 27/80 (33.8%) | 30/74 (40.5%) | 1/7 (14.3%) | 4/6 (66.7%) | 16/42 (38.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seijas-Pereda, L.; Rescalvo-Casas, C.; Hernando-Gozalo, M.; Angmorkie-Eshun, V.; Agyei, E.; Adu-Gyamfi, V.; Sarsah, I.; Alfonso-Romero, M.; Cuadros-González, J.; Soliveri-de Carranza, J.; et al. The Antimicrobial Resistance (AMR) Rates of Enterobacterales in a Rural Hospital from the Eastern Region, Ghana: A Retrospective Study, 2022. Antibiotics 2023, 12, 1321. https://doi.org/10.3390/antibiotics12081321
Seijas-Pereda L, Rescalvo-Casas C, Hernando-Gozalo M, Angmorkie-Eshun V, Agyei E, Adu-Gyamfi V, Sarsah I, Alfonso-Romero M, Cuadros-González J, Soliveri-de Carranza J, et al. The Antimicrobial Resistance (AMR) Rates of Enterobacterales in a Rural Hospital from the Eastern Region, Ghana: A Retrospective Study, 2022. Antibiotics. 2023; 12(8):1321. https://doi.org/10.3390/antibiotics12081321
Chicago/Turabian StyleSeijas-Pereda, Laura, Carlos Rescalvo-Casas, Marcos Hernando-Gozalo, Vida Angmorkie-Eshun, Eunice Agyei, Vivian Adu-Gyamfi, Isaac Sarsah, Maite Alfonso-Romero, Juan Cuadros-González, Juan Soliveri-de Carranza, and et al. 2023. "The Antimicrobial Resistance (AMR) Rates of Enterobacterales in a Rural Hospital from the Eastern Region, Ghana: A Retrospective Study, 2022" Antibiotics 12, no. 8: 1321. https://doi.org/10.3390/antibiotics12081321
APA StyleSeijas-Pereda, L., Rescalvo-Casas, C., Hernando-Gozalo, M., Angmorkie-Eshun, V., Agyei, E., Adu-Gyamfi, V., Sarsah, I., Alfonso-Romero, M., Cuadros-González, J., Soliveri-de Carranza, J., & Pérez-Tanoira, R. (2023). The Antimicrobial Resistance (AMR) Rates of Enterobacterales in a Rural Hospital from the Eastern Region, Ghana: A Retrospective Study, 2022. Antibiotics, 12(8), 1321. https://doi.org/10.3390/antibiotics12081321