A Study on the Epidemiological-Molecular Role of Staphylococcus aureus Strains in the Development of Ventilator-Associated Pneumonia in a Tertiary Hospital in Brazil
Abstract
:1. Introduction
2. Results
2.1. Microbial Isolation and Identification
2.2. Detection of mecA Gene, Cassette Chromosome Typing and Antimicrobial Resistance
2.3. Virulence Factors of S. aureus Isolates
2.4. Clonal Characterization of S. aureus Isolates
2.5. Risk Factors
3. Discussion
4. Materials and Methods
4.1. Study Place and Sample
4.2. Collection of Clinical Data
4.3. Collection, Isolation, and Microbial Identification
4.4. Antimicrobial Susceptibility Testing
4.5. Determination of Minimum Inhibitory Concentration (MIC)
4.6. DNA Extraction from S. aureus
4.7. Detection of the mecA Gene
4.8. Classification of SCCmec in S. aureus
4.9. Detection of Genes Encoding Virulence Factors
4.10. Visualization of Amplified Products
4.11. Characterization and Quantification of Phenol-Soluble Modulins (PSM) with High-Performance Liquid Chromatography (HPLC)
4.12. Western Blot for the Quantification of spa and hla Expression
4.13. Pulsed-Field Gel Electrophoresis (PFGE)
4.14. Multilocus Sequence Typing (MLST)
4.15. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papazian, L.; Klompas, M. Ventilator-associated pneumonia in adults: A narrative review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef]
- Isac, C.; Samson, H.R. Prevention of VAP: Endless evolving evidences–systematic literature review. Nurs. Forum 2021, 56, 905–915. [Google Scholar] [CrossRef]
- Melsen, W.G.; Rovers, M.M. Attributable mortality of ventilator-associated pneumonia: A meta-analysis of individual patient data from randomised prevention studies. Lancet Infect. Dis. 2013, 13, 665–671. [Google Scholar] [CrossRef]
- Magill, S.S.; Edwards, J.R. Emerging Infections Program Healthcare-Associated Infections and Antimicrobial Use Prevalence Survey Team. Multistate point-prevalence survey of health care-associated infections. N. Engl. J. Med. 2014, 370, 1198–1208. [Google Scholar] [CrossRef]
- Zaragoza, R.; Vidal-Cortés, P. Update of the treatment of nosocomial pneumonia in the ICU. Crit. Care 2020, 24, 383. [Google Scholar] [CrossRef]
- Haque, N.Z.; Arshad, S. Analysis of pathogen and host factors related to clinical outcomes in patients with hospital-acquired pneumonia due to methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2012, 50, 1640–1644. [Google Scholar] [CrossRef]
- IWG-SCC. International Working Group on the Staphylococcal Cassette Chromosome Elements. Web Page on the Internet. Available online: https://www.sccmec.org/index.php/en/sccmmcc-structure/sccmmcc-types-from1-toxiv-smn (accessed on 28 April 2023).
- Rose, H.R.; Holzman, R.S. Cytotoxic Virulence Predicts Mortality in Nosocomial Pneumonia Due to Methicillin-Resistant Staphylococcus aureus. J. Infect. Dis. 2015, 211, 1862–1874. [Google Scholar] [CrossRef]
- Lacoma, A.; Laabei, M. Genotypic and Phenotypic Characterization of Staphylococcus aureus Isolates from the Respiratory Tract in Mechanically-Ventilated Patients. Toxins 2021, 13, 122. [Google Scholar] [CrossRef]
- Berube, B.J.; Bubeck Wardenburg, J. Staphylococcus aureus α-toxin: Nearly a century of intrigue. Toxins 2013, 5, 1140–1166. [Google Scholar] [CrossRef]
- Spaulding, A.R.; Salgado-Pabón, W. Staphylococcal and streptococcal superantigen exotoxins. Clin. Microbiol. Rev. 2013, 26, 422–447. [Google Scholar] [CrossRef]
- Krakauer, T. Staphylococcal Superantigens: Pyrogenic Toxins Induce Toxic Shock. Toxins 2019, 11, 178. [Google Scholar] [CrossRef]
- Strandberg, K.L.; Rotschafer, J.H. Staphylococcal superantigens cause lethal pulmonary disease in rabbits. J. Infect. Dis. 2010, 202, 1690–1697. [Google Scholar] [CrossRef]
- Kreienbuehl, L.; Charbonney, E. 2011. Community-acquired necrotizing pneumonia due to methicillin-sensitive Staphylococcus aureus secreting Panton-Valentine leukocidin: A review of case reports. Ann. Intensive Care 2012, 1, 52. [Google Scholar] [CrossRef]
- Larsen, S.A.H.; Kyhl, K. Life-Threatening Necrotizing Pneumonia with Panton–Valentine Leukocidin-Producing, Methicillin-Sensitive Staphylococcus aureus in a Healthy Male Co-Infected with Influenza B. Infect. Dis. Rep. 2022, 14, 12–19. [Google Scholar] [CrossRef]
- Lina, G.; Piémont, Y. Involvement of Panton-Valentine Leukocidin–Producing Staphylococcus aureus in Primary Skin Infections and Pneumonia. Clin. Infect. Dis. 1999, 29, 1128–1132. [Google Scholar] [CrossRef]
- Liassine, N.; Auckenthaler, R. Community-acquired methicillin-resistant Staphylococcus aureus isolated in Switzerland contains the Panton-Valentine leukocidin or exfoliative toxin genes. J. Clin. Microbiol. 2004, 42, 825–828. [Google Scholar] [CrossRef]
- Peng, Q.; Tang, X.; Dong, W.; Sun, N.; Yuan, W. A Review of Biofilm Formation of Staphylococcus aureus and Its Regulation Mechanism. Antibiotics 2023, 12, 12. [Google Scholar] [CrossRef]
- Lanks, C.W.; Musani, A.I. Community-acquired Pneumonia and Hospitalacquired Pneumonia. Med. Clin. N. Am. 2019, 103, 487–501. [Google Scholar] [CrossRef]
- Lee, M.S.; Walker, V. The Epidemiology of Ventilator-Associated Pneumonia in a Network of Community Hospitals: A Prospective Multicenter Study. Infect. Control. Hosp. Epidemiol. Off. J. Soc. Hosp. Epidemiol. Am. 2013, 34, 657–662. [Google Scholar] [CrossRef]
- Pickens, C.; Wunderink, R.G. Methicillin-Resistant Staphylococcus aureus Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia. Semin. Respir. Crit. Care Med. 2022, 43, 304–309. [Google Scholar] [CrossRef]
- Rasigade, J.P.; Laurent, F. Lethal necrotizing pneumonia caused by an ST398 Staphylococcus aureus strain. Emerg. Infect. Dis. Aug. 2010, 16, 1330. [Google Scholar] [CrossRef]
- Klein, E.Y.; Jiang, W. National Costs Associated With Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus Hospitalizations in the United States, 2010–2014. Clin. Infect. Dis. 2019, 68, 22–28. [Google Scholar] [CrossRef]
- Zahar, J.R.; Clec’h, C. Is methicillin resistance associated with a worse prognosis in Staphylococcus aureus ventilator-associated pneumonia? Clin. Infect. Dis. 2005, 41, 1224–1231. [Google Scholar] [CrossRef]
- Modi, A.R. Hospital-acquired and ventilator-associated pneumonia: Diagnosis, management, and prevention. Clevel. Clin. J. Med. 2020, 87, 633–639. [Google Scholar] [CrossRef]
- Cardeñosa, C.J.; Solé-Violán, J. Role of different routes of tracheal colonization in the development of pneumonia in patients receiving mechanical ventilation. Chest 1999, 116, 462–470. [Google Scholar]
- Toro, C.M.; Janvier, J. Community-associated methicillin-resistant Staphylococcus aureus necrotizing pneumonia without evidence of antecedent viral upper respiratory infection. Can. J. Infect. Dis. Med. Microbiol. 2014, 25, e76–e82. [Google Scholar] [CrossRef]
- King, M.D.; Humphrey, B.J.; Wang, Y.F.; Kourbatova, E.V.; Ray, S.M.; Blumberg, H.M. Emergence of community-acquired methicillin-resistant Staphylococcus aureus USA 300 clone as the predominant cause of skin and soft tissue infections. Ann. Intern. Med. 2006, 144, 309–317. [Google Scholar] [CrossRef]
- Pasquale, T.R.; Jabrocki, B. Emergence of methicillin-resistant Staphylococcus aureus USA300 genotype as a major cause of late-onset nosocomial pneumonia in intensive care patients in the USA. Int. J. Infect. Dis. 2013, 17, e398–e403. [Google Scholar] [CrossRef]
- Schuenck, R.P.; Nouér, S.A. Polyclonal presence of non-multiresistant methicillin-resistant Staphylococcus aureus isolates carrying SCCmec IV in health care-associated infections in a hospital in Rio de Janeiro, Brazil. Diagn. Microbiol. Infect. Dis. 2009, 64, 434–441. [Google Scholar] [CrossRef]
- Wardenburg, J.B.; Patel, R.J. Surface proteins and exotoxins are required for the pathogenesis of Staphylococcus aureus pneumonia. Infect. Immun. 2007, 75, 1040–1044. [Google Scholar] [CrossRef]
- Park, S.A.; Cho, S.S. Factors influencing ventilator-associated pneumonia in cancer patients. Asian Pac. J. Cancer Prev. 2014, 15, 5787–5791. [Google Scholar] [CrossRef] [PubMed]
- Muralimohan, G.; Rossi, R.J. Inhalation of Staphylococcus aureus enterotoxin A induces IFN-gamma and CD8 T cell-dependent airway and interstitial lung pathology in mice. J. Immunol. 2008, 181, 3698–3705. [Google Scholar] [CrossRef]
- Hayashida, A.; Bartlett, A.H. Staphylococcus aureus Beta-Toxin Induces Lung Injury through Syndecan-1. Am. J. Pathol. 2009, 174, 509–518. [Google Scholar] [CrossRef]
- Horan, T.C.; Andrus, M. CDC/NHSN surveillance definition of health care–associated infection and criteria for specific types of infections in the acute care setting. Am. J. Infect. Control 2008, 36, 309–332. [Google Scholar] [CrossRef] [PubMed]
- Milheirico, C.; Oliveira, D.C. Update to the Multiplex PCR Strategy for Assignment of mec Element Types in Staphylococcus aureus. Antimicrob. Agents Chemother. 2007, 51, 4537. [Google Scholar] [CrossRef]
- Konemman, E.V.; Allen, S.D.; Sowell, V.R.; Sommer, H.M. Introdução à Microbiologia Médica. In Diagnóstico Microbiológico: Texto e Atlas Colorido, 5th ed.; Medsi: Rio de Janeiro, Brazil, 2001. [Google Scholar]
- Martineau, F.; Picard, F.J.; Roy, P.H.; Ouellette, M.; Bergeron, M.G. Species-Specific and Ubiquitous-DNA-Based Assays for Rapid Identification of Staphylococcus aureus. J. Clin. Microbiol. 1998, 36, 618–623. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests, 31st ed.; CLSI Supplement M100; CLSI: Wayne, PA, USA, 2021. [Google Scholar]
- Murakami, K.; Minamide, K. Identification of methicillin-resistant strains of staphylococci by polymerase chain reaction. J. Clin. Microb. 1991, 29, 2240–2244. [Google Scholar] [CrossRef]
- Johnson, W.M.; Tyler, S.D. Detection of genes for enterotoxins, exfoliative toxins, and toxic shock syndrome toxin 1 in Staphylococcus aureus by the polymerase chain reaction. J. Clin. Microbiol. 1991, 29, 426–430. [Google Scholar] [CrossRef]
- Cunha, M.D.L.R.S.; Calsolari, R.O. Detection of enterotoxin and toxic shock syndrome toxin 1 genes in Staphylococcus, with emphasis on coagulase-negative staphylococci. Microbiol. Immunol. 2007, 51, 381–390. [Google Scholar] [CrossRef]
- Rohde, H.; Burandt, E.C. Polysaccharide intercellular adhesin or protein factors in biofilm accumulation of Staphylococcus epidermidis and Staphylococcus aureus isolated from prosthetic hip and knee joint infections. Biomaterials 2007, 28, 1711–1720. [Google Scholar] [CrossRef]
- Arciola, C.R.; Gamberini, S. A multiplex PCR method for the detection of all five individual genes of ica locus in Staphylococcus epidermidis. A survey on 400 clinical isolates from prosthesis-associated infections. J. Biomed. Mater. Res. A 2005, 75, 408–413. [Google Scholar] [CrossRef] [PubMed]
- Cucarella, C.; Tormo, M.A. Role of Biofilm–Associated Protein Bap in the Pathogenesis of Bovine Staphylococcus aureus. Infect. Immun. 2004, 72, 2177–2185. [Google Scholar] [CrossRef] [PubMed]
- Jarraud, S.; Mougel, C. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect. Immun. 2002, 70, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Marconi, C.; Cunha, M.L.R.S. Standardization of the PCR technique for the detection of delta toxin in Staphylococcus spp. J. Venom. Anim. Toxins Incl. Trop. Dis. 2005, 11, 117–128. [Google Scholar] [CrossRef]
- Joo, H.S.; Otto, M. The isolation and analysis of phenol-soluble modulins of Staphylococcus epidermidis. Methods Mol. Biol. 2014, 1106, 93–100. [Google Scholar] [PubMed]
- McDougal, L.K.; Steward, C.D. Pulsed-Field Gel Electrophoresis Typing of Oxacillin-Resistant Staphylococcus aureus Isolates from the United States: Establishing a National Database. J. Clin. Microbiol. 2003, 41, 5113–5120. [Google Scholar] [CrossRef]
- Enright, M.C.; Day, N.P.J. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000, 38, 1008–1015. [Google Scholar] [CrossRef]
Antimicrobial | MIC Range | Susceptibility (%) | MIC50 | MIC90 |
---|---|---|---|---|
Oxacillin | 0.016–>256 | 55 | 0.5 | >256 |
Vancomycin | 0.125–1.5 | 100 | 0.75 | 1.5 |
Quinupristin- Dalfopristin | 0.094–0.75 | 100 | 0.38 | 0.75 |
Tigecycline | 0.047–0.94 | 100 | 0.094 | 0.125 |
Linezolid | 0.19–1.5 | 100 | 0.75 | 1 |
Daptomycin | 0.016–0.47 | 100 | 0.094 | 0.125 |
Virulence Genes | Total (%) | mecA | p-Value | |
---|---|---|---|---|
Positive N (%) | Negative N (%) | |||
hla | 53 (100) | 23 (100) | 30 (100) | 1 |
hld | 53 (100) | 23 (100) | 30 (100) | 1 |
icaA | 53 (100) | 23 (100) | 30 (100) | 1 |
icaD | 44 (83) | 19 (82) | 25 (83) | 0.08 |
hlb | 18 (34) | 9 (39) | 9 (30) | 0.48 |
sea | 17 (32) | 5 (21) | 12 (10) | 0.15 |
sec | 10 (19) | 5 (21) | 5 (16) | 0.21 |
icaC | 6 (11) | 4 (17) | 2 (6) | 0.61 |
tst | 1 (2) | 0 | 1 (3) | 0.89 |
pvl | 1 (2) | 0 | 1 (3) | 0.89 |
eta | 0 | 0 | 0 | -- |
etb | 0 | 0 | 0 | -- |
seb | 0 | 0 | 0 | -- |
bap | 0 | 0 | 0 | -- |
Strain | ST | mecA | SCCmec | Virulence Genes | Alpha-Toxin (A.U) | Protein A (A.U) |
---|---|---|---|---|---|---|
47 | 105 | + | II | hla/hlb/hld/icaA/icaD/sea | 24373527 | 9767104 |
54 | 398 | - | hla/hld/icaA/icaD/sea | 76362660 | 0 | |
64 | 1635 | - | hla/hlb/hld/icaA/icaD | 0 | 32265275 | |
70 | 1 | - | hla/hlb/hld/sea/icaA/icaD | 6982199 | 21823765 | |
97 | 398 | - | hla/hld/sea/sec/icaA/icaD | 41033870 | 455862 | |
129 | 8 | + | IV | hla/hld/sea/icaA/icaD | 38447276 | 1576784 |
148 | slv 546 | - | hla/hld/sec/icaA | 41687067 | 0 | |
166-1 | 5 | - | hla/hld/sea/sec/icaA/icaD | 7356952 | 10672368 | |
166-2 | 5 | + | IV | hla/hld/icaA | 0 | 0 |
211 | 5 | + | IV | hla/hld/icaA/icaD | 0 | 28944479 |
220-1 | 45 | - | hla/hlb/hld/sea/icaA/icaD | 0 | 0 | |
220-2 | 45 | - | hla/hlb/hld/sea/icaA | 1939185 | 73614614 | |
239 | 105 | + | II | hla/hlb/hld/icaA/icaD | 6919452 | 9918149 |
Strain | PSM Alpha 1 | PSM Alpha 2 | PSM Alpha 3 | PSM Alpha 3 N22Y | PSM Beta 1 | PSM Beta 2 | Delta Toxin | Delta Toxin G10S | PSM Delta mec |
---|---|---|---|---|---|---|---|---|---|
P47 | 641000000 * | 228000000 | 240000000 | __ | 237000000 | 72415500 | 2770000000 | __ | 7590000000 |
54 | 1470000000 | 942000000 | 1510000000 | __ | 218000000 | __ | 10100000000 | __ | __ |
64 | __ ** | __ | __ | 117000000 | __ | __ | __ | ||
70 | 470000000 | 212000000 | 194000000 | __ | 101000000 | 62116000 | 1120000000 | 0 | __ |
97 | 2120000000 | 1060000000 | 1430000000 | __ | 265000000 | 83428420 | 8230000000 | 0 | __ |
129 | 4430000000 | 2110000000 | 1900000000 | __ | 286000000 | 99102590 | 7410000000 | __ | __ |
148 | 1150000000 | 640000000 | 438000000 | __ | 143000000 | __ | 9560001000 | __ | __ |
166-1 | 437000000 | 291000000 | 234000000 | __ | __ | 65587410 | 2220000000 | __ | __ |
166-2 | __ | __ | __ | 107000000 | __ | __ | __ | __ | __ |
211 | __ | __ | __ | 101000000 | __ | __ | __ | __ | __ |
220-1 | 2140000000 | 1470000000 | 1630000000 | __ | 327000000 | 52123570 | 3740000000 | 0 | __ |
220-2 | __ | __ | __ | __ | __ | __ | __ | __ | __ |
239 | 647000000 | 325000000 | 294000000 | __ | 189000000 | 66117540 | 2980000000 | __ | 6860000000 |
Risk Factors | Univariate | p-Value | Multivariate (Final Model) | p-Value |
---|---|---|---|---|
RR (95% CI) | RR (95% CI) | |||
Category 1: demographic data | ||||
Male gender | 1.91 (0.68–5.30) | 0.2 | ||
Age | 0.99 (0.98–1.02) | 0.9 | ||
Category 2: comorbidities | ||||
Heart disease | 1.30 (0.74–2.29) | 0.4 | ||
Lung disease | 0.74 (0.27–2.07) | 0.6 | ||
Kidney disease | 0.87 (0.41–1.85) | 0.7 | ||
Liver disease | 2.28 (0.82–6.34) | 0.1 | ||
Central nervous system disease | 0.50 (0.26–0.97) | 0.04 | ||
Solid tumor | 1.99 (0.92–4.24) | 0.08 | 2.51 (1.08–5.88) | 0.03 |
AIDS | 1.68 (0.61–4.69) | 0.3 | ||
Diabetes mellitus | 1.16 (0.55–2.50) | 0.7 | ||
Trauma | 0.81 (0.29–2.26) | 0.7 | ||
Category 3: procedures | ||||
Indwelling urinary catheter | 1.16 (0.42–3.25) | 0.8 | ||
Central venous catheter | 0.69 (0.38–1.26) | 0.2 | ||
Surgery | 0.74 (0.42–1.31) | 0.3 | ||
Use of steroids | 0.52 (0.19–1.45) | 0.2 | ||
Category 4: antimicrobials | ||||
Carbapenems | … * | … * | ||
Other beta-lactams (anti-pseudomonas) | 1.05 (0.59–1.86) | 0.9 | ||
Other beta-lactams (non-anti-pseudomonas) | 1.27 (0.71–2.25) | 0.4 | ||
Glycopeptides | 0.58 (0.21–1.61) | 0.3 | ||
Quinolones | 0.00 (0.00–…) | 1 | ||
Polymyxins | 0.00 (0.00–…) | 1 | ||
Macrolides | 1.39 (0.50–3.87) | 0.5 | ||
Sulfa drugs | … * | … * | ||
Anaerobicides | 0.00 (0.00–…) | … * | ||
Category 5: resistance and virulence | ||||
mecA | 1.21 (0.69–2.14) | 0.5 | ||
SCCmec | ||||
Absent (reference) | … | … | ||
SCCmec I | 0.00 (0.00–…) | 1 | ||
SCCmec II | 0.00 (0.00–…) | 1 | ||
SCCmec III | 39.80 (0.00–…) | 1 | ||
SCCmec IV | 200.04 (0.00–…) | 1 | ||
pvl | 0.00 (0.00–…) | 1 | ||
tsst-1 | 0.00 (0.00–…) | 1 | ||
hla | 4756.52 (0.00–…) | 1 | ||
hlb | 1.25 (0.70–2.22) | 0.4 | ||
hld | 0.95 (0.34–2.64) | 0.9 | ||
etA | … * | … * | ||
etB | … * | … * | ||
sea | 2.07 (1.17–3.69) | 0.01 | 1.88 (1.04–3.41) | 0.04 |
seb | … * | … * | ||
sec | 1.10 (0.57–2.11) | 0.8 | ||
bap | … * | … * | ||
icaA | … * | … * | ||
icaC | 1.92 (1.00–3.69) | 0.049 | ||
icaD | 10527 (0.00–…) | 1 |
Risk Factors | Univariate | p-Value | Multivariate (Final Model) | p-Value |
---|---|---|---|---|
RR (95% CI) | RR (95% CI) | |||
Category 1: demographic data | ||||
Male gender | 5063 (0.00–…) | 1 | ||
Age | 0.99 (0.96–1.03) | 0.9 | ||
Category 2: comorbidities | ||||
Heart disease | 1.10 (0.45–2.70) | 0.8 | ||
Lung disease | 0.00 (0.00–…) | 1 | ||
Kidney disease | 0.97 (0.33–2.92) | 0.9 | ||
Liver disease | 3.63 (1.21–10.85) | 0.02 | ||
Central nervous system disease | 0.48 (0.16–1.44) | 0.2 | ||
Solid tumor | 0.00 (0.00–…) | 1 | ||
AIDS | 2.66 (0.89–7.96) | 0.08 | ||
Diabetes mellitus | 1.24 (0.41–3.71) | 0.7 | ||
Trauma | 1.43 (0.48–4.28) | 0.5 | ||
Category 3: procedures | ||||
Indwelling urinary catheter | 0.66 (0.222–1.99) | 0.5 | ||
Central venous catheter | 0.39 (0.16–0.97) | 0.04 | ||
Surgery | 0.43 (0.14–1.29) | 0.1 | ||
Use of steroids | 0.88 (0.30–2.65) | 0.8 | ||
Category 4: antimicrobials | ||||
Carbapenems | … * | … * | ||
Other beta-lactams (anti-pseudomonas) | 1.56 (0.64–3.18) | 0.3 | ||
Other beta-lactams (non-anti-pseudomonas) | 0.51 (0.17–1.51) | 0.2 | ||
Glycopeptides | 0.97 (0.33–2.92) | 0.9 | ||
Quinolones | 0.00 (0.00–…) | 1 | ||
Polymyxins | 0.00 (0.00–…) | 1 | ||
Macrolides | 2.05 (0.69–6.14) | 0.2 | ||
Sulfa drugs | … * | … * | ||
Anaerobicides | 0.00 (0.00–…) | … * | ||
Category 6: resistance and virulence | ||||
mecA | 0.92 (0.38–2.25) | 0.9 | ||
SCCmec | ||||
Absent (reference) | … | … | ||
SCCmec I | 0.00 (0.00–…) | 1 | ||
SCCmec II | 4021.00 (0.00–…) | 1 | ||
SCCmec III | … * | … * | ||
SCCmec IV | 0.00 (0.00–…) | 1 | ||
pvl | 0.00 (0.00–…) | 1 | ||
tsst-1 | 0.00 (0.00–…) | 1 | ||
hla | 2910.00 (0.00–…) | 1 | ||
hlb | 1.89 (0.77–4.63) | 0.2 | 3.85 (1.43–10.32) | 0.007 |
hld | 4188.26 (0.00–…) | 1 | ||
etA | … * | … * | ||
etB | … * | … * | ||
sea | 3.24 (1.08–9.67) | 0.04 | 6.58 (1.86–23.38) | 0.003 |
seb | … * | … * | ||
sec | 1.40 (0.51–3.42) | 0.5 | ||
BAP | … * | … * | ||
icaA | … * | … * | ||
icaC | 1.62 (0.54–4.85) | 0.4 | ||
icaD | 6358.39 (0.00–…) | 1 |
Genes | bp | Positive Control | References |
---|---|---|---|
sea | 120 | ATCC 13565 | Johnson et al., Cunha et al. [41,42] |
seb | 478 | ATCC 14458 | Johnson et al., Cunha et al. [41,42] |
sec-1 | 257 | ATCC 19095 | Johnson et al., Cunha et al. [41,42] |
tst | 350 | ATCC 51650 | Johnson et al., Cunha et al. [41,42] |
lukPV | 433 | ATCC 49775 | Lina et al. [16] |
icaA | 600 | ATCC 35556 | Rohde et al. [43] |
icaD | 450 | ATCC 35556 | Arciola et al. [44] |
Bap | 220 | None | Cucarella et al. [45] |
eta | 119 | ZM | Jarraud et al. [46] |
etb | 200 | N5 | Jarraud et al. [46] |
hla | 209 | N315 | Jarraud et al. [46] |
hlb | RN4220 | Jarraud et al. [46] | |
hld | 357 | ATCC 19095 | Marconi et al. [47] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonesso, M.F.; Fortaleza, C.M.C.B.; Cavalcante, R.d.S.; Sobrinho, M.T.; Ronchi, C.F.; Abraão, L.M.; Joo, H.-S.; Otto, M.; Ribeiro de Souza da Cunha, M.d.L. A Study on the Epidemiological-Molecular Role of Staphylococcus aureus Strains in the Development of Ventilator-Associated Pneumonia in a Tertiary Hospital in Brazil. Antibiotics 2023, 12, 1336. https://doi.org/10.3390/antibiotics12081336
Bonesso MF, Fortaleza CMCB, Cavalcante RdS, Sobrinho MT, Ronchi CF, Abraão LM, Joo H-S, Otto M, Ribeiro de Souza da Cunha MdL. A Study on the Epidemiological-Molecular Role of Staphylococcus aureus Strains in the Development of Ventilator-Associated Pneumonia in a Tertiary Hospital in Brazil. Antibiotics. 2023; 12(8):1336. https://doi.org/10.3390/antibiotics12081336
Chicago/Turabian StyleBonesso, Mariana Fávero, Carlos Magno Castelo Branco Fortaleza, Ricardo de Souza Cavalcante, Moises Teixeira Sobrinho, Carlos Fernando Ronchi, Lígia Maria Abraão, Hwang-Soo Joo, Michael Otto, and Maria de Lourdes Ribeiro de Souza da Cunha. 2023. "A Study on the Epidemiological-Molecular Role of Staphylococcus aureus Strains in the Development of Ventilator-Associated Pneumonia in a Tertiary Hospital in Brazil" Antibiotics 12, no. 8: 1336. https://doi.org/10.3390/antibiotics12081336
APA StyleBonesso, M. F., Fortaleza, C. M. C. B., Cavalcante, R. d. S., Sobrinho, M. T., Ronchi, C. F., Abraão, L. M., Joo, H. -S., Otto, M., & Ribeiro de Souza da Cunha, M. d. L. (2023). A Study on the Epidemiological-Molecular Role of Staphylococcus aureus Strains in the Development of Ventilator-Associated Pneumonia in a Tertiary Hospital in Brazil. Antibiotics, 12(8), 1336. https://doi.org/10.3390/antibiotics12081336