Antimicrobial Susceptibility from a One Health Perspective Regarding Porcine Escherichia coli from Bavaria, Germany
Abstract
:1. Introduction
2. Results
2.1. Isolates
2.2. Colistin
2.3. Enrofloxacin
2.4. Ceftiofur
2.5. Co-Resistances
3. Discussion
4. Materials and Methods
4.1. Study Design and Bacterial Isolates
4.2. Susceptibility Testing and MIC Determination
4.3. Determination of Antimicrobial Resistance
4.4. Statistic Evaluation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McEwen, S.A.; Collignon, P.J. Antimicrobial Resistance: A One Health Perspective. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.J.; McEwen, S.A. One Health-Its Importance in Helping to Better Control Antimicrobial Resistance. Trop. Med. Infect. Dis. 2019, 4, 22. [Google Scholar] [CrossRef] [PubMed]
- Velazquez-Meza, M.E.; Galarde-López, M.; Carrillo-Quiróz, B.; Alpuche-Aranda, C.M. Antimicrobial resistance: One Health approach. Vet. World 2022, 15, 743–749. [Google Scholar] [CrossRef] [PubMed]
- Mader, R.; Damborg, P.; Amat, J.P.; Bengtsson, B.; Bourély, C.; Broens, E.M.; Busani, L.; Crespo-Robledo, P.; Filippitzi, M.E.; Fitzgerald, W.; et al. Building the European Antimicrobial Resistance Surveillance network in veterinary medicine (EARS-Vet). Eurosurveillance 2021, 26, 2001359. [Google Scholar] [CrossRef]
- Barton, M.D. Impact of antibiotic use in the swine industry. Curr. Opin. Microbiol. 2014, 19, 9–15. [Google Scholar] [CrossRef]
- Holmes, A.H.; Moore, L.S.; Sundsfjord, A.; Steinbakk, M.; Regmi, S.; Karkey, A.; Guerin, P.J.; Piddock, L.J. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016, 387, 176–187. [Google Scholar] [CrossRef]
- Vieira, A.R.; Collignon, P.; Aarestrup, F.M.; McEwen, S.A.; Hendriksen, R.S.; Hald, T.; Wegener, H.C. Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: An ecological study. Foodborne Pathog. Dis. 2011, 8, 1295–1301. [Google Scholar] [CrossRef]
- Barton, M.D. Antibiotic use in animal feed and its impact on human healt. Nutr. Res. Rev. 2000, 13, 279–299. [Google Scholar] [CrossRef]
- Collignon, P.J.; Conly, J.M.; Andremont, A.; McEwen, S.A.; Aidara-Kane, A.; Agerso, Y.; Andremont, A.; Collignon, P.; Conly, J.; Dang Ninh, T.; et al. World Health Organization Ranking of Antimicrobials According to Their Importance in Human Medicine: A Critical Step for Developing Risk Management Strategies to Control Antimicrobial Resistance From Food Animal Production. Clin. Infect. Dis. 2016, 63, 1087–1093. [Google Scholar] [CrossRef]
- Maron, D.F.; Smith, T.J.; Nachman, K.E. Restrictions on antimicrobial use in food animal production: An international regulatory and economic survey. Glob. Health 2013, 9, 48. [Google Scholar] [CrossRef]
- World Health Organization. Critically Important Antimicrobials for Human Medicine, 6th Revision; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2019. Available online: https://www.who.int/publications/i/item/9789241515528 (accessed on 20 July 2023).
- European Medicines Agency. European Surveillance of Veterinary Antimicrobial Consumption. In Sales of Veterinary Antimicrobial Agents in 31 European Countries in 2021; (EMA/795956/2022); European Medicines Agency: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Bluemlein, K.; Nowak, N.; Ellinghusen, B.; Gerling, S.; Badorrek, P.; Hansen, T.; Hohlfeld, J.M.; Paul, R.; Schuchardt, S. Occupational exposure to veterinary antibiotics: Pharmacokinetics of enrofloxacin in humans after dermal, inhalation and oral uptake—A clinical study. Environ. Toxicol. Pharmacol. 2023, 100, 104139. [Google Scholar] [CrossRef] [PubMed]
- Martinez, M.; McDermott, P.; Walker, R. Pharmacology of the fluoroquinolones: A perspective for the use in domestic animals. Vet. J. 2006, 172, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Valitutto, M.T.; Newton, A.L.; Wetzlich, S.; Kishbaugh, J.C.; Raphael, B.L.; Calle, P.P.; Tell, L.A. Pharmakocinetics and clinical safety of a sustained-release formulation of ceftifofur crystalline free acid in ringneck doves (Streptopelia risoria) after a single intramuscular injection. J. Zoo Wildl. Med. 2021, 52, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Ryan, C.A.; McNeal, C.D.; Credille, B.C. Ceftiofur use and antimicrobial stewardship in the horse. Equine Vet. J. 2023. [Google Scholar] [CrossRef]
- Hancock, R.E. Peptide antibiotics. Lancet 1997, 349, 418–422. [Google Scholar] [CrossRef]
- Olaitan, A.O.; Morand, S.; Rolain, J.M. Mechanisms of polymyxin resistance: Acquired and intrinsic resistance in bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Wang, Y.; Walsh, T.R.; Yi, L.X.; Zhang, R.; Spencer, J.; Doi, Y.; Tian, G.; Dong, B.; Huang, X.; et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 2016, 16, 161–168. [Google Scholar] [CrossRef]
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef]
- Hawkey, P.M.; Warren, R.E.; Livermore, D.M.; McNulty, C.A.M.; Enoch, D.A.; Otter, J.A.; Wilson, A.P.R. Treatment of infections caused by multidrug-resistant Gram-negative bacteria: Report of the British Society for Antimicrobial Chemotherapy/Healthcare Infection Society/British Infection Association Joint Working Party. J. Antimicrob. Chemother. 2018, 73, iii2–iii78. [Google Scholar] [CrossRef]
- Lhermie, G.; La Ragione, R.M.; Weese, J.S.; Olsen, J.E.; Christensen, J.P.; Guardabassi, L. Indications for the use of highest priority critically important antimicrobials in the veterinary sector. J. Antimicrob. Chemother. 2020, 75, 1671–1680. [Google Scholar] [CrossRef]
- De Briyne, N.; Atkinson, J.; Pokludová, L.; Borriello, S.P. Antibiotics used most commonly to treat animals in Europe. Vet. Rec. 2014, 175, 325. [Google Scholar] [CrossRef] [PubMed]
- Kempf, I.; Jouy, E.; Chauvin, C. Colistin use and colistin resistance in bacteria from animals. Int. J. Antimicrob. Agents 2016, 48, 598–606. [Google Scholar] [CrossRef] [PubMed]
- Ustundag, G.; Oncel, E.K.; Sahin, A.; Keles, Y.E.; Aksay, A.K.; Ciftdogan, D.Y. Colistin Treatment for Multidrug-Resistant Gram-Negative Infections in Children: Caution Required for Nephrotoxicity. Med. Bull. Sisli Etfal Hosp. 2022, 56, 427–434. [Google Scholar] [CrossRef]
- Falagas, M.E.; Rafailidis, P.I. Re-emergence of colistin in today’s world of multidrug-resistant organisms: Personal perspectives. Expert Opin. Investig. Drugs 2008, 17, 973–981. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority; European Centre for Disease Prevention and Control. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2017. EFSA J. 2019, 17, e05598. [Google Scholar] [CrossRef]
- Bailey, J.K.; Pinyon, J.L.; Anantham, S.; Hall, R.M. Commensal Escherichia coli of healthy humans: A reservoir for antibiotic-resistance determinants. J. Med. Microbiol. 2010, 59, 1331–1339. [Google Scholar] [CrossRef]
- Szmolka, A.; Nagy, B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front. Microbiol. 2013, 4, 258. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control (ECDC); European Food Safety Authority (EFSA); European Medicines Agency (EMA). Third joint inter-agency report on integrated analysis of consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals in the EU/EEA: JIACRA III 2016–2018. EFSA J. 2021, 19, e06712. [Google Scholar] [CrossRef]
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit; Paul-Ehrlich-Gesellschaft für Chemotherapie e.V. GERMAP 2015—Bericht über den Antibiotikaverbrauch und die Verbreitung von Antibiotikaresistenzen in der Human- und Veterinärmedizin in Deutschland. 2016. Available online: https://www.bvl.bund.de/SharedDocs/Downloads/05_Tierarzneimittel/germap2015.pdf;jsessionid=494A182BA492B5A47F6EB6550AF3A1BE.internet012?__blob=publicationFile&v=5 (accessed on 1 December 2022).
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 5th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018; CLSI standard Vet01. [Google Scholar]
- Kahlmeter, G.; Brown, D.F.; Goldstein, F.W.; MacGowan, A.P.; Mouton, J.W.; Osterlund, A.; Rodloff, A.; Steinbakk, M.; Urbaskova, P.; Vatopoulos, A. European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. J. Antimicrob. Chemother. 2003, 52, 145–148. [Google Scholar] [CrossRef]
- Kahlmeter, G.; Turnidge, J. How to: ECOFFs-the why, the how, and the don’ts of EUCAST epidemiological cutoff values. Clin Microbiol. Infect. 2022, 28, 952–954. [Google Scholar] [CrossRef]
- European Committee on Antimicrobial Susceptibility Testing. 2023. Available online: https://mic.eucast.org/search/?search%5Bmethod%5D=mic&search%5Bantibiotic%5D=-1&search%5Bspecies%5D=261&search%5Bdisk_content%5D=-1&search%5Blimit%5D=50&page=2 (accessed on 1 August 2023).
- Federal Office of Consumer Protection and Food Safety (BVL). Bericht zur Resistenzmonitoringstudie 2020. 2022. Available online: https://www.bvl.bund.de/SharedDocs/Berichte/07_Resistenzmonitoringstudie/Bericht_Resistenzmonitoring_2020.pdf?__blob=publicationFile&v=5 (accessed on 1 April 2023).
- World Organization for Animal Health (WOAH). OIE List of Antimicrobial Agents of Veterinary Importance. June 2021. Available online: https://www.woah.org/app/uploads/2021/06/a-oie-list-antimicrobials-june2021.pdf (accessed on 10 January 2023).
- Categorisation of antibiotics in the European Union. EMA/CVMP/CHMP/682198/2017. Available online: https://www.ema.europa.eu/en/documents/report/categorisation-antibiotics-european-union-answer-request-european-commission-updating-scientific_en.pdf (accessed on 10 July 2023).
- Jansen, W.; van Hout, J.; Wiegel, J.; Iatridou, D.; Chantziaras, I.; De Briyne, N. Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Vet. Sci. 2022, 9, 650. [Google Scholar] [CrossRef] [PubMed]
- Schmerold, I.; van Geijlswijk, I.; Gehring, R. European regulations on the use of antibiotics in veterinary medicine. Eur. J. Pharm. Sci. 2023, 189, 106473. [Google Scholar] [CrossRef] [PubMed]
- Rhouma, M.; Madec, J.Y.; Laxminarayan, R. Colistin: From the shadows to a One Health approach for addressing antimicrobial resistance. Int. J. Antimicrob. Agents 2023, 61, 106713. [Google Scholar] [CrossRef]
- QS. 4. Statusbericht zum Antibiotikamonitoring im QS-System. 2022. Available online: https://www.q-s.de/monitoring-programme/monitoringprogramme-antibiotikamonitoring.html (accessed on 30 June 2023).
- Moennighoff, C.; Thomas, N.; Nienhaus, F.; Hartmann, M.; Menrath, A.; Merkel, J.; Detlefsen, H.; Kreienbrock, L.; Hennig-Pauka, I. Phenotypic antimicrobial resistance in Escherichia coli strains isolated from swine husbandries in North Western Germany–temporal patterns in samples from laboratory practice from 2006 to 2017. BMC Vet. Res. 2020, 16, 37. [Google Scholar] [CrossRef]
- Miguela-Villoldo, P.; Hernández, M.; Moreno, M.A.; Rodríguez-Lázaro, D.; Quesada, A.; Domínguez, L.; Ugarte-Ruiz, M. National colistin sales versus colistin resistance in Spanish pig production. Res. Vet. Sci. 2019, 123, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Miguela-Villoldo, P.; Moreno, M.A.; Rodríguez-Lázaro, D.; Gallardo, A.; Hernández, M.; Serrano, T.; Sáez, J.L.; de Frutos, C.; Agüero, M.; Quesada, A.; et al. Longitudinal study of the mcr-1 gene prevalence in Spanish food-producing pigs from 1998 to 2021 and its relationship with the use of polymyxins. Porc. Health Manag. 2022, 8, 12. [Google Scholar] [CrossRef]
- Coz, E.; Jouy, E.; Cazeau, G.; Jarrige, N.; Chauvin, C.; Delignette-Muller, M.L. Evolution of the proportion of colistin-resistant isolates in animal clinical Escherichia coli over time—A hierarchical mixture model approach. Prev. Vet. Med. 2023, 213, 105881. [Google Scholar] [CrossRef]
- EFSA (European Food Safety Authority); ECDC (European Centre for DiseasePrevention and Control). The European Union Summary Report on Antimicrobial Resistance inzoonotic and indicator bacteria from humans, animals and food in 2019–2020. EFSA J. 2022, 20, e7209. [Google Scholar] [CrossRef]
- Marengo, J.R.; Kok, R.A.; O’Brien, K.; Velagaleti, R.R.; Stamm, J.M. Aerobic biodegradation of (14C)-sarafloxacin hydrochloride in soil. Environ. Toxicol. Chem. 1997, 16, 462–471. [Google Scholar] [CrossRef]
- Ingram, P.R.; Rogers, B.A.; Sidjabat, H.E.; Gibson, J.S.; Inglis, T.J.J. Co-selection may explain high rates of ciprofloxacin non-susceptible Escherichia coli from retail poultry reared without prior fluoroquinolone exposure. J. Med. Microbiol. 2013, 62, 1743–1746. [Google Scholar] [CrossRef]
- Dolejska, M.; Villa, L.; Minoia, M.; Guardabassi, L.; Carattoli, A. Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. J. Antimicrob. Chemother. 2014, 69, 2388–2393. [Google Scholar] [CrossRef] [PubMed]
- Michael, G.B.; Kaspar, H.; Siqueira, A.K.; de Freitas Costa, E.; Corbellini, L.G.; Kadlec, K.; Schwarz, S. Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolates collected from diseased food-producing animals in the GERM-Vet monitoring program 2008–2014. Vet. Microbiol. 2017, 200, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Tyson, G.H.; Li, C.; Hsu, C.H.; Bodeis-Jones, S.; McDermott, P.F. Diverse Fluoroquinolone Resistance Plasmids From Retail Meat E. coli in the United States. Front. Microbiol. 2019, 10, 2826. [Google Scholar] [CrossRef] [PubMed]
- van Rennings, L.; von Münchhausen, C.; Ottilie, H.; Hartmann, M.; Merle, R.; Honscha, W.; Käsbohrer, A.; Kreienbrock, L. Cross-sectional study on antibiotic usage in pigs in Germany. PLoS ONE 2015, 10, e0119114. [Google Scholar] [CrossRef]
- Marshall, B.; Petrowski, D.; Levy, S.B. Inter- and intraspecies spread of Escherichia coli in a farm environment in the absence of antibiotic usage. Proc. Natl. Acad. Sci. USA 1990, 87, 6609–6613. [Google Scholar] [CrossRef]
- Von Ah, S.; Stephan, R.; Zurfluh, K.; Sidler, X.; Kümmerlen, D. Occurrence of quinolone-resistant Escherichia coli in environmental samples from a sow pool system in Switzerland. Schweiz. Arch. Tierheilkd. 2019, 161, 387–394. [Google Scholar] [CrossRef]
- Fan, S.; Foster, D.; Miller, W.G.; Osborne, J.; Kathariou, S. Impact of Ceftiofur Administration in Steers on the Prevalence and Antimicrobial Resistance of Campylobacter spp. Microorganisms 2021, 9, 318. [Google Scholar] [CrossRef]
- Coetzee, J.F.; Magstadt, D.R.; Sidhu, P.K.; Follett, L.; Schuler, A.M.; Krull, A.C.; Cooper, V.L.; Engelken, T.J.; Kleinhenz, M.D.; O’Connor, A.M. Association between antimicrobial drug class for treatment and retreatment of bovine respiratory disease (BRD) and frequency of resistant BRD pathogen isolation from veterinary diagnostic laboratory samples. PLoS ONE 2019, 14, e0219104. [Google Scholar] [CrossRef]
- Lanckohr, C.; Bracht, H. Antimicrobial stewardship. Curr. Opin. Crit. Care 2022, 28, 551–556. [Google Scholar] [CrossRef]
- Friedrich, L.; Winner, E.; Härtel, H.; Gumbert, S.; Zöls, S.; Ritzmann, M.; Beisl, M.; Kempf, K.; von Altrock, A.; Kemper, N.; et al. Field trial: Disinfection of contaminated anesthetic masks for piglets. Porcine. Health Manag. 2023, 9, 25. [Google Scholar] [CrossRef]
- Büttner, K.; Krieter, J.; Traulsen, A.; Traulsen, I. Static network analysis of a pork supply chain in Northern Germany-Characterisation of the potential spread of infectious diseases via animal movements. Prev. Vet. Med. 2013, 110, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
Year | WT Isolates | NWT Isolates | |||
---|---|---|---|---|---|
MIC | <0.5 µg/mL | 1 µg/mL | 2 µg/mL | >2 µg/mL | |
2016 | 83.82% | 8.74% | 0.80% | 6.63% | |
(n = 834/995) | (n = 87/995) | (n = 8/995) | (n = 66/995) | ||
n = 939/995 | n = 66/995 | ||||
2017 | 78.29% | 14.73% | 0.78% | 6.20% | |
(n = 404/516) | (n = 76/516) | (n = 4/516) | (n = 32/516) | ||
n = 484/516 | n = 32/516 | ||||
2018 | 81.00% | 13.55% | 1.55% | 3.90% | |
(n = 1518/1874) | (n = 254/1874) | (n = 29/1874) | (n = 73/1874) | ||
n = 443/516 | n = 73/516 | ||||
2019 | 75.15% | 19.97% | 1.89% | 3.08% | |
(n = 1291/1718) | (n = 343/1718) | (n = 31/1718) | (n = 53/1718) | ||
n = 1665/1718 | n = 53/1718 | ||||
2020 | 78.89% | 17.08% | 1.02% | 3.01% | |
(n = 1155/1464) | (n = 250/1464) | (n = 15/1464) | (n = 44/1464) | ||
n = 1420/1464 | n = 44/1464 |
Odds Ratio [95% CI] | p-Value | Change [95% CI] |
---|---|---|
2.01 [1.05–3.87] | 0.013 | 101.4% [4.94–286.52%] |
Year | WT Isolates | NWT Isolates | ||||||
---|---|---|---|---|---|---|---|---|
MIC | <0.03125 µg/mL | 0.0625 µg/mL | 0.125 µg/mL | 0.25 µg/mL | 0.5 µg/mL | 1 µg/mL | >1 µg/mL | |
2016 | 74.90% | 4.66% | 2.33% | 3.85% | 3.95% | 1.42% | 8.91% | |
(n = 740/988) | (n = 46/988) | (n = 23/988) | (n = 38/988) | (n = 39/988) | (n = 14/988) | (n = 88/988) | ||
n = 809/988 | n = 179/988 | |||||||
2017 | 74.46% | 6.68% | 2.36% | 3.34% | 4.72% | 1.38% | 7.07% | |
(n = 379/509) | (n = 34/509) | (n = 12/509) | (n = 17/509) | (n = 24/509) | (n = 7/509) | (n = 36/509) | ||
n = 425/509 | n = 84/509 | |||||||
2018 | 63.68% | 5.07% | 2.24% | 6.52% | 7.75% | 2.88% | 11.86% | |
(n = 1192/1872) | (n = 95/1872) | (n = 42/1872) | (n = 122/1872) | (n = 145/1872) | (n = 54/1872) | (n = 222/1872) | ||
n = 1329/1872 | n = 543/1872 | |||||||
2019 | 66.03% | 3.85% | 2.62% | 7.11% | 7.40% | 1.92% | 11.07% | |
(n = 1133/1716) | (n = 66/1716) | (n = 45/1716) | (n = 122/1716) | (n = 127/1716) | (n = 33/1716) | (n = 190/1716) | ||
n = 1244/1716 | n = 472/1716 | |||||||
2020 | 65.96% | 3.49% | 2.19% | 6.56% | 8.61% | 2.39% | 10.80% | |
(n = 965/1463) | (n = 51/1463) | (n = 32/1463) | (n = 96/1463) | (n = 126/1463) | (n = 35/1463) | (n = 158/1463) | ||
n = 1048/1463 | n = 415/1463 |
Odds Ratio [95% CI] | p-Value | Change [95% CI] |
---|---|---|
0.7 [0.5–0.97] | 0.006 | −43.56% [−100.75–−2.66%] |
WT Isolates | NWT Isolates | |||||||
---|---|---|---|---|---|---|---|---|
MIC | <0.125 µg/mL | 0.25 µg/mL | 0.5 µg/mL | 1 µg/mL | 2 µg/mL | 4 µg/mL | >4 µg/mL | |
2016 | 3.87% | 51.68% | 33.98% | 1.73% | 0.41% | 0.31% | 8.04% | |
(n = 38/983) | (n = 508/983) | (n = 334/983) | (n = 17/983) | (n = 4/983) | (n = 3/983) | (n = 79/983) | ||
n = 897/983 | n = 86/983 | |||||||
2017 | 6.07% | 52.05% | 34.25% | 1.76% | 0.98% | 0.39% | 4.50% | |
(n = 31/511) | (n = 266/511) | (n = 175/511) | (n = 9/511) | (n = 5/511) | (n = 2/511) | (n = 23/511) | ||
n = 481/511 | n = 30/511 | |||||||
2018 | 3.85% | 48.77% | 33.92% | 2.24% | 0.85% | 0.59% | 9.78% | |
(n = 72/1872) | (n = 913/1872) | (n = 635/1872) | (n = 42/1872) | (n = 16/1872) | (n = 11/1872) | (n = 183/1872) | ||
n = 1662/1872 | n = 210/1872 | |||||||
2019 | 3.15% | 51.37% | 33.18% | 1.46% | 0.76% | 0.87% | 9.21% | |
(n = 54/1715) | (n = 811/1715) | (n = 569/1715) | (n = 25/1715) | (n = 13/1715) | (n = 15/1715) | (n = 158/1715) | ||
n = 1459/1715 | n = 186/1715 | |||||||
2020 | 2.86% | 53.44% | 32.26% | 1.91% | 1.30% | 0.34% | 7.98% | |
(n = 42/1466) | (n = 782/1466) | (n = 473/1466) | (n = 28/1466) | (n = 19/1466) | (n = 5/1466) | (n = 117/1466) | ||
n = 1325/1466 | n = 141/1466 |
Odds Ratio [95% CI] | p-Value | Change [95% CI] |
---|---|---|
1.04 [0.65–1.65] | 0.897 | 3.75% [−53.3–65.03%] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ade, J.; Riehm, J.M.; Stadler, J.; Klose, C.; Zablotski, Y.; Ritzmann, M.; Kümmerlen, D. Antimicrobial Susceptibility from a One Health Perspective Regarding Porcine Escherichia coli from Bavaria, Germany. Antibiotics 2023, 12, 1424. https://doi.org/10.3390/antibiotics12091424
Ade J, Riehm JM, Stadler J, Klose C, Zablotski Y, Ritzmann M, Kümmerlen D. Antimicrobial Susceptibility from a One Health Perspective Regarding Porcine Escherichia coli from Bavaria, Germany. Antibiotics. 2023; 12(9):1424. https://doi.org/10.3390/antibiotics12091424
Chicago/Turabian StyleAde, Julia, Julia M. Riehm, Julia Stadler, Corinna Klose, Yury Zablotski, Mathias Ritzmann, and Dolf Kümmerlen. 2023. "Antimicrobial Susceptibility from a One Health Perspective Regarding Porcine Escherichia coli from Bavaria, Germany" Antibiotics 12, no. 9: 1424. https://doi.org/10.3390/antibiotics12091424
APA StyleAde, J., Riehm, J. M., Stadler, J., Klose, C., Zablotski, Y., Ritzmann, M., & Kümmerlen, D. (2023). Antimicrobial Susceptibility from a One Health Perspective Regarding Porcine Escherichia coli from Bavaria, Germany. Antibiotics, 12(9), 1424. https://doi.org/10.3390/antibiotics12091424