Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms
Abstract
:1. Introduction
2. Environmental Concentrations of Antibiotics in Soils
3. Antibiotic Effects on Terrestrial Plants
3.1. Antibiotics and Oxidative Stress in Plants
Antibiotic | Plant Species | Effect | Reference |
---|---|---|---|
Sulfamethoxazole (SMX) Sulfathiazole (STZ) Sulfadiazine (SDZ) Sulfamethazine (SMZ) | Brassica campestris Lens culinaris Oryza sativa | primary root length (EC50: 5 mg/L) | [92] |
ciprofloxacin (CIP) levofloxacin (LEV) ofloxacin (OFL) amoxicillin (AMX) ampicillin (AMP) | Oryza sativa | LEV (10 mg/kg): significant decrease in root/shoot length and biomass reduction CIP (10 mg/kg): significant reduction in seedling vigour index CIP and AMX (10 mg/kg each): significant decrease in root/shoot length and maturity stage. OFL and LEV (10 mg/kg each): reduction in P assimilation All ABs (10 mg/kg each) showed genotoxicity at root tips (DNA damage, evaluated by the comet assay). | [89] |
tetracycline (TET) sulfamethazine (SMZ) norfloxacin (NOR) erythromycin (ERY) chloramphenicol (CLP) | 1. Lactuca sativa 2. Daucus carota 3. Cucumis sativus 4. Lycopersicon esculentum | Root elongation—TET 1. EC10: 0.11 mg/L; EC50: 14.4 mg/L 2. EC10: 0.26 mg/L; EC50: 10.3 mg/L 3. EC10: 0.43 mg/L; EC50: 34.8 mg/L 4. EC10: 0.1 mg/L; EC50: 11.6 mg/L Root elongation—SMZ 1. EC10: 1.94 mg/L; EC50: 157 mg/L 2. EC10: 25 mg/L; EC50 > 300 mg/L 3. EC10 > 300 mg/L; EC50 > 300 mg/L 4. EC10: 5.83 mg/L; EC50 > 300 mg/L Root elongation—NOR 1. EC10: 0.61 mg/L; EC50: 49 mg/L 2. EC10: 13 mg/L; EC50: 109 mg/L 3. EC10: 0.93 mg/L; EC50: 75 mg/L 4. EC10: 1.1 mg/L; EC50: 32 mg/L Root elongation—ERY 1. EC10: 0.85 mg/L; EC50: 69 mg/L 2. EC10: 8.6 mg/L; EC50 > 300 mg/L 3. EC10: 22.5 mg/L; EC50 > 300 mg/L 4. EC10: 25.9 mg/L; EC50 > 300 mg/L Root elongation—CLP 1. EC10: 2.52 mg/L; EC50: 204 mg/L 2. EC10: 102 mg/L; EC50 > 300 mg/L 3. EC10: 10.2 mg/L; EC50 > 300 mg/L 4. EC10: 29 mg/L; EC50 > 300 mg/L | [86] |
chlortetracycline (CTC) tetracycline (TET) tylosin (TYL) sulfamethoxazole (SMX) sulfamethazine (SMZ) | 1. Oryza sativa 2. Cucumis sativus 3. Cichaorium endivia | Root elongation—CTC 1. EC10: 0.2 mg/L; EC50: 16 mg/L 2. EC10: 8 mg/L; EC50: 39 mg/L 3. EC10: 0.7 mg/L; EC50: 48 mg/L Root elongation—TET 1. EC10: 14 mg/L; EC50: 57 mg/L 2. EC10: 16 mg/L; EC50: 69 mg/L 3. EC10: 8 mg/L; EC50: 203 mg/L Root elongation—TYL 1. EC10: 19 mg/L; EC50: 141 mg/L 2. EC10 > 500 mg/L; EC50 > 500 mg/L 3. EC10: 217 mg/L; EC50 > 500 mg/L Root elongation—SMX 1. EC10: 16 mg/L; EC50: 69 mg/L 2. EC10: 0.1 mg/L; EC50: 8 mg/L 3. EC10 > 300 mg/L; EC50 > 300 mg/L Root elongation—SMZ 1. EC10: 2 mg/L; EC50: 37 mg/L 2. EC10: 6 mg/L; EC50: 45 mg/L 3. EC10: 6 mg/L; EC50 > 300 mg/L | [85] |
oxytetracycline (OTC) enrofloxacin (ENR) | Triticum aestivum L. | OTC (10 mg/L) Reduction in root length (18.6%), biomass (19.8%), surface area (24.8%) and an increase in abscisic acid (ABA) content ENR (5 mg/L) Reduction in root length (29.6%), biomass (32.5%), surface area (35%) and an increase in abscisic acid (ABA) content | [79] |
tetracycline (TET) oxytetracycline (OTC) norfloxacin (NOR) | Brassica rapa ssp. chinensis | TET (100 mg/Kg) 20% plant height reduction; 11% biomass reduction; 9% Fv/Fm reduction OTC (100 mg/Kg) Reduction in plant height (12%); fresh weight (12%) and Fv/Fm (6%) NOR (100 mg/Kg) Reduction in plant height (20%), fresh weight (7%) and chlorophyll fluorescence parameter (Fv/Fm) (2%) | [96] |
enrofloxacin (ENR) norfloxacin (NOR) levofloxacin (LEV) | Arabidopsis thaliana | ENR Reduction in fresh leaf weight (33%, with 50 mg/L), in chlorophyll fluorescence parameter (Fv/Fm) (5.33%, 56.69%, 57.92%, 73.22% with a concentration of 2, 10, 20, 50 mg/L) and increase in ion leakage (3.17%, with 5.0 mg/L) NOR Increase in ion leakage (2.68%, with 5.0 mg/L) and a reduction in chlorophyll fluorescence parameter (Fv/Fm) (3.42%, 6.42%, 50.96%, 61.48% at a concentration of 2, 10, 20, 50 mg/L) LEV Increase in ion leakage (2.54% with 5.0 mg/L) and a reduction in chlorophyll fluorescence parameter (Fv/Fm) (3.01%, 6.15%, 36.07% at a concentration of 2, 10, 20, 50 mg/L) The MDA content at 50 mg/L ENR was 1.17 times higher than LEV treatment group. | [97] |
3.2. Antibiotic Effects on Plant-Microbiome System
Antibiotics | ARGs | Microbial Composition | References | |||
---|---|---|---|---|---|---|
Soil | Plant | Soil | Plant Microbiome | Soil | Plant Microbiome | |
ABs: 2.5 mg/kg each enrofloxacin (ENR) ciprofloxacin (CIP) sulfamethazine (SMZ) sulfamethoxazole (SMX) doxycycline (DOX) chlortetracycline hydrochloride (CTCC) lincomycin (LIN) | Lettuce: SMX: 0.044 mg/kg fresh weight LIN: 0.051 mg/kg fresh weight SMZ: 0.021 mg/kg fresh weight | - | - | - | - | [81] |
Sulfamethoxazole (SMX) 100 mg/kg 200 mg/kg 300 mg/kg | Lettuce: 0.084 mg/kg 0.181 mg/kg 0.503 mg/kg | sul1 sul2 tetM tetA/P tet34 tetG1 tetG2 qnrS1 qnrS2 cmlA1 floR | - | Control soil microbial community dominated by: Gaiella, Streptomyces, Sphingomonas Soil + SMX dominated by: Lysobacter, Bacillus | - | [86] |
- | - | beta-lactam, aminoglycoside, MLSB, tetracyclinesulphonamide, FCA, vancomycin, MGEs | beta-lactam, aminoglycoside, MLSB, tetracycline, sulphonamid, FCA, vancomycin, MGEs | Soil: Actinobacteria and Deltaproteobacteria increase, Cyanobacteria decrease in AB presence | Root endophytes: Alphaproteobacteria increase and Gammaproteobacteria decrease; Phyllosphere: Actinobacteria decrease | [100] |
Swine manure added to the soil and doxycycline (DOX): 84.02 µg/kg sulfamethoxazole (SMX): 86.41 µg/kg tilmicosin (TIL): 69.37 µg/kg | Lettuce | tetA; tetG; tetM; tetX, intI1 | Phyllosphere: sul2; tetA; tetG; tetM; tetQ; ermC intI1; intI2 Endosphere: tetQ; tetL; tetA; tetO; tetX; intI1; intI2 | Fluviicola, Cohnella, Alcanivorax bacteria correlated with ARGs | Phyllosphere: Pseudomonas, Clostridium_IV correlated with ARGs Endosphere: Chelativorans, Halomonas | [101] |
ABs: 7.5 mg/kg each Sulfamethoxazole (SMX) Ciprofloxacin (CIP) Enrofloxacin (ENR) | Lettuce: CIP bioaccumulation, with significantly higher values in manure amended than digestate condition | sul2 aac-(6′)-Ib-cr qepA | Rhizosphere: sul2 aac-(6′)-Ib-cr qepA Phyllosphere: sul1 sul2 aac-(6′)-Ib-cr qepA sul1 tnpA | Significant increase in Bacilli and Bacteroida in antibiotic and manure amended conditions Significant decrease in Actinobacteria and Alphaproteobacteria | Rhizosphere: significant decrease in Actinobacteria, Alphaproteobacteria and Bacilli in antibiotic and manure amended conditions Phyllosphere: significant increase in Bacilli and Gammaproteobacteria in antibiotic and manure amended conditions | [30] |
Oxytetracycline (OTC) Streptomycin (STR) Calculated soil concentration of 59.45 mg/kg at 74 days | Cherry radish: Significantly higher presence of STR in plant tissue in comparison with OTC Phyllosphere: STR 0.3 mg/kg OTC 0.003 mg/kg Fruits: STR 0.2 mg/kg OTC 0.005 mg/kg Soil STR 0 mg/kg OTC 0.007 mg/kg | - | - | At 74 days no more Firmicutes detected and general decrease in Actinobacteria. Increase in Poteobacteria and Chloroflexi in OTC condition; decrease in Actinobcteria. Increase in Gemmatimonadetes in STR condition | At 74 days Phyllosphere: decrease in Bacterioidetes. Increase in Cyanobacteria and decrease in Firmicutes in antibiotic conditions. Fruits: increase in Actinobacteria in OTC condition. Root Endophytes: increase in Chloroflexi. Increase in Proteobacteria and Actinobacteria in OTC and STR conditions, respectively | [102] |
4. Effect on Terrestrial Invertebrates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Shao, Y.; Wang, Y.; Yuan, Y.; Xie, Y. A Systematic Review on Antibiotics Misuse in Livestock and Aquaculture and Regulation Implications in China. Sci. Total Environ. 2021, 798, 149205. [Google Scholar] [CrossRef]
- Kummerer, K. Significance of Antibiotics in the Environment. J. Antimicrob. Chemother. 2003, 52, 5–7. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Shukla, P.; Giri, B.S.; Chowdhary, P.; Chandra, R.; Gupta, P.; Pandey, A. Prevalence and Hazardous Impact of Pharmaceutical and Personal Care Products and Antibiotics in Environment: A Review on Emerging Contaminants. Environ. Res. 2021, 194, 110664. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Antibiotics in the Aquatic Environment—A Review—Part I. Chemosphere 2009, 75, 417–434. [Google Scholar] [CrossRef] [PubMed]
- Miritana, V.M.; Patrolecco, L.; Barra Caracciolo, A.; Visca, A.; Piccinini, F.; Signorini, A.; Rosa, S.; Grenni, P.; Garbini, G.L.; Spataro, F.; et al. Effects of Ciprofloxacin Alone or in Mixture with Sulfamethoxazole on the Efficiency of Anaerobic Digestion and Its Microbial Community. Antibiotics 2022, 11, 1111. [Google Scholar] [CrossRef]
- Hu, X.; Zhou, Q.; Luo, Y. Occurrence and Source Analysis of Typical Veterinary Antibiotics in Manure, Soil, Vegetables and Groundwater from Organic Vegetable Bases, Northern China. Environ. Pollut. 2010, 158, 2992–2998. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Cooper, J.M.; Lin, Z.; Li, Y.; Yang, X.; Zhao, B. Soil Microbial Community Structure and Function Are Significantly Affected by Long-Term Organic and Mineral Fertilization Regimes in the North China Plain. Appl. Soil Ecol. 2015, 96, 75–87. [Google Scholar] [CrossRef]
- Tasho, R.P.; Cho, J.Y. Veterinary Antibiotics in Animal Waste, Its Distribution in Soil and Uptake by Plants: A Review. Sci. Total Environ. 2016, 563–564, 366–376. [Google Scholar] [CrossRef]
- Reardon, S. Antibiotic Use in Farming Set to Soar despite Drug-Resistance Fears. Nature 2023, 614, 397. [Google Scholar] [CrossRef]
- Kivits, T.; Broers, H.P.; Beeltje, H.; van Vliet, M.; Griffioen, J. Presence and Fate of Veterinary Antibiotics in Age-Dated Groundwater in Areas with Intensive Livestock Farming. Environ. Pollut. 2018, 241, 988–998. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Visca, A.; Massini, G.; Patrolecco, L.; Miritana, V.M.; Grenni, P. Environmental Fate of Antibiotics and Resistance Genes in Livestock Waste and Digestate from Biogas Plants. Environ. Sci. Pollut. Res. Manag. 2020, 2020, 21–23. [Google Scholar] [CrossRef]
- Pan, X.; Qiang, Z.; Ben, W.; Chen, M. Residual Veterinary Antibiotics in Swine Manure from Concentrated Animal Feeding Operations in Shandong Province, China. Chemosphere 2011, 84, 695–700. [Google Scholar] [CrossRef] [PubMed]
- Massé, D.; Saady, N.; Gilbert, Y. Potential of Biological Processes to Eliminate Antibiotics in Livestock Manure: An Overview. Animals 2014, 4, 146–163. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Transfer of Antibiotics from Wastewater or Animal Manure to Soil and Edible Crops. Environ. Pollut. 2017, 231, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Tolls, J. Sorption of Veterinary Pharmaceuticals in Soils: A Review. Environ. Sci. Technol. 2001, 35, 3397–3406. [Google Scholar] [CrossRef]
- Grenni, P.; Barra Caracciolo, A.; Patrolecco, L.; Ademollo, N.; Rauseo, J.; Saccà, M.L.; Mingazzini, M.; Palumbo, M.T.; Galli, E.; Muzzini, V.G.; et al. A Bioassay Battery for the Ecotoxicity Assessment of Soils Conditioned with Two Different Commercial Foaming Products. Ecotoxicol. Environ. Saf. 2018, 148, 1067–1077. [Google Scholar] [CrossRef]
- Kulik, K.; Lenart-Boroń, A.; Wyrzykowska, K. Impact of Antibiotic Pollution on the Bacterial Population within Surface Water with Special Focus on Mountain Rivers. Water 2023, 15, 975. [Google Scholar] [CrossRef]
- Li, M.; Yang, L.; Yen, H.; Zhao, F.; Wang, X.; Zhou, T.; Feng, Q.; Chen, L. Occurrence, Spatial Distribution and Ecological Risks of Antibiotics in Soil in Urban Agglomeration. J. Environ. Sci. 2023, 125, 678–690. [Google Scholar] [CrossRef]
- Pauwels, B.; Verstraete, W. The Treatment of Hospital Wastewater: An Appraisal. J. Water Health 2006, 4, 405–416. [Google Scholar] [CrossRef]
- Koike, S.; Krapac, I.G.; Oliver, H.D.; Yannarell, A.C.; Chee-Sanford, J.C.; Aminov, R.I.; Mackie, R.I. Monitoring and Source Tracking of Tetracycline Resistance Genes in Lagoons and Groundwater Adjacent to Swine Production Facilities over a 3-Year Period. Appl. Environ. Microbiol. 2007, 73, 4813–4823. [Google Scholar] [CrossRef]
- Pallecchi, L.; Bartoloni, A.; Paradisi, F.; Rossolini, G.M. Antibiotic Resistance in the Absence of Antimicrobial Use: Mechanisms and Implications. Expert Rev. Anti. Infect. Ther. 2008, 6, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. Environmental Pollution by Antibiotics and by Antibiotic Resistance Determinants. Environ. Pollut. 2009, 157, 2893–2902. [Google Scholar] [CrossRef] [PubMed]
- Serwecińska, L. Antimicrobials and Antibiotic-Resistant Bacteria: A Risk to the Environment and to Public Health. Water 2020, 12, 3313. [Google Scholar] [CrossRef]
- Baquero, F.; Alvarez-Ortega, C.; Martinez, J.L. Ecology and Evolution of Antibiotic Resistance. Environ. Microbiol. Rep. 2009, 1, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Ohore, O.E.; Wei, Y.; Wang, Y.; Nwankwegu, A.S.; Wang, Z. Tracking the Influence of Antibiotics, Antibiotic Resistomes, and Salinity Gradient in Modulating Microbial Community Assemblage of Surface Water and the Ecological Consequences. Chemosphere 2022, 305, 135428. [Google Scholar] [CrossRef]
- Zheng, Y.; Liu, Y.; Qu, M.; Hao, M.; Yang, D.; Yang, Q.; Wang, X.C.; Dzakpasu, M. Fate of an Antibiotic and Its Effects on Nitrogen Transformation Functional Bacteria in Integrated Vertical Flow Constructed Wetlands. Chem. Eng. J. 2021, 417, 129272. [Google Scholar] [CrossRef]
- Moura de Sousa, J.; Lourenço, M.; Gordo, I. Horizontal Gene Transfer among Host-Associated Microbes. Cell Host Microbe 2023, 31, 513–527. [Google Scholar] [CrossRef]
- Seyoum, M.M.; Obayomi, O.; Bernstein, N.; Williams, C.F.; Gillor, O. Occurrence and Distribution of Antibiotics and Corresponding Antibiotic Resistance Genes in Different Soil Types Irrigated with Treated Wastewater. Sci. Total Environ. 2021, 782, 146835. [Google Scholar] [CrossRef]
- Visca, A.; Barra Caracciolo, A.; Grenni, P.; Patrolecco, L.; Rauseo, J.; Massini, G.; Mazzurco Miritana, V.; Spataro, F. Anaerobic Digestion and Removal of Sulfamethoxazole, Enrofloxacin, Ciprofloxacin and Their Antibiotic Resistance Genes in a Full-Scale Biogas Plant. Antibiotics 2021, 10, 502. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Visca, A.; Rauseo, J.; Spataro, F.; Garbini, G.L.; Grenni, P.; Mariani, L.; Mazzurco Miritana, V.; Massini, G.; Patrolecco, L. Bioaccumulation of Antibiotics and Resistance Genes in Lettuce Following Cattle Manure and Digestate Fertilization and Their Effects on Soil and Phyllosphere Microbial Communities. Environ. Pollut. 2022, 315, 120413. [Google Scholar] [CrossRef]
- Bengtsson, B.; Greko, C. Antibiotic Resistance—Consequences for Animal Health, Welfare, and Food Production. Upsala J. Med. Sci. 2014, 119, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Hanna, N.; Tamhankar, A.J.; Lundborg, C.S. The Development of an Integrated Environment–Human Risk Approach for the Prioritisation of Antibiotics for Policy Decisions. Sci. Total Environ. 2023, 880, 163301. [Google Scholar] [CrossRef] [PubMed]
- Margulis, L. Origins of Species: Acquired Genomes and Individuality. Biosystems 1993, 31, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Youle, M.; Knowlton, N.; Rohwer, F.; Gordon, J.; Relman, D.A. Superorganisms and Holobionts. Microbe Mag. 2013, 8, 152–153. [Google Scholar] [CrossRef]
- Bordenstein, S.R.; Theis, K.R. Host Biology in Light of the Microbiome: Ten Principles of Holobionts and Hologenomes. PLoS Biol. 2015, 13, e1002226. [Google Scholar] [CrossRef]
- Archie, E.A.; Theis, K.R. Animal Behaviour Meets Microbial Ecology. Anim. Behav. 2011, 82, 425–436. [Google Scholar] [CrossRef]
- Ezenwa, V.O.; Gerardo, N.M.; Inouye, D.W.; Medina, M.; Xavier, J.B. Animal Behavior and the Microbiome. Science (80-. ). 2012, 338, 198–199. [Google Scholar] [CrossRef]
- Cryan, J.F.; Dinan, T.G. Mind-Altering Microorganisms: The Impact of the Gut Microbiota on Brain and Behaviour. Nat. Rev. Neurosci. 2012, 13, 701–712. [Google Scholar] [CrossRef]
- Lombardo, M.P. Access to Mutualistic Endosymbiotic Microbes: An Underappreciated Benefit of Group Living. Behav. Ecol. Sociobiol. 2008, 62, 479–497. [Google Scholar] [CrossRef]
- Stilling, R.M.; Bordenstein, S.R.; Dinan, T.G.; Cryan, J.F. Friends with Social Benefits: Host-Microbe Interactions as a Driver of Brain Evolution and Development? Front. Cell. Infect. Microbiol. 2014, 4, 147. [Google Scholar] [CrossRef]
- McFall-Ngai, M.; Hadfield, M.G.; Bosch, T.C.G.; Carey, H.V.; Domazet-Lošo, T.; Douglas, A.E.; Dubilier, N.; Eberl, G.; Fukami, T.; Gilbert, S.F.; et al. Animals in a Bacterial World, a New Imperative for the Life Sciences. Proc. Natl. Acad. Sci. USA 2013, 110, 3229–3236. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, S.F.; Sapp, J.; Tauber, A.I. A Symbiotic View of Life: We Have Never Been Individuals. Q. Rev. Biol. 2012, 87, 325–341. [Google Scholar] [CrossRef]
- Rosenberg, E.; Zilber-Rosenberg, I. The Hologenome Concept: Human, Animal and Plant Microbiota; Springer International Publishing: Cham, Switzerland, 2013; ISBN 978-3-319-04240-4. [Google Scholar]
- Kodešová, R.; Kočárek, M.; Klement, A.; Golovko, O.; Koba, O.; Fér, M.; Nikodem, A.; Vondráčková, L.; Jakšík, O.; Grabic, R. An Analysis of the Dissipation of Pharmaceuticals under Thirteen Different Soil Conditions. Sci. Total Environ. 2016, 544, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Friman, V.-P.; Guzman, L.M.; Reuman, D.C.; Bell, T. Bacterial Adaptation to Sublethal Antibiotic Gradients Can Change the Ecological Properties of Multitrophic Microbial Communities. Proc. R. Soc. B Biol. Sci. 2015, 282, 20142920. [Google Scholar] [CrossRef] [PubMed]
- Barra Caracciolo, A.; Topp, E.; Grenni, P. Pharmaceuticals in the Environment: Biodegradation and Effects on Natural Microbial Communities. A Review. J. Pharm. Biomed. Anal. 2015, 106, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.C.; Kolvenbach, B.A.; Nunes, O.C.; Corvini, P.F.X. Biodegradation of Antibiotics: The New Resistance Determinants—Part I. New Biotechnol. 2020, 54, 34–51. [Google Scholar] [CrossRef]
- Hanna, N.; Sun, P.; Sun, Q.; Li, X.; Yang, X.; Ji, X.; Zou, H.; Ottoson, J.; Nilsson, L.E.; Berglund, B.; et al. Presence of Antibiotic Residues in Various Environmental Compartments of Shandong Province in Eastern China: Its Potential for Resistance Development and Ecological and Human Risk. Environ. Int. 2018, 114, 131–142. [Google Scholar] [CrossRef]
- Chen, H.; Jing, L.; Teng, Y.; Wang, J. Characterization of Antibiotics in a Large-Scale River System of China: Occurrence Pattern, Spatiotemporal Distribution and Environmental Risks. Sci. Total Environ. 2018, 618, 409–418. [Google Scholar] [CrossRef]
- Sun, J.; Zeng, Q.; Tsang, D.C.W.; Zhu, L.Z.; Li, X.D. Antibiotics in the Agricultural Soils from the Yangtze River Delta, China. Chemosphere 2017, 189, 301–308. [Google Scholar] [CrossRef]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity. Front. Microbiol. 2019, 10, 338. [Google Scholar] [CrossRef]
- Patrolecco, L.; Rauseo, J.; Ademollo, N.; Grenni, P.; Cardoni, M.; Levantesi, C.; Luprano, M.L.; Barra Caracciolo, A. Persistence of the Antibiotic Sulfamethoxazole in River Water Alone or in the Co-Presence of Ciprofloxacin. Sci. Total Environ. 2018, 640–641, 1438–1446. [Google Scholar] [CrossRef]
- Andriamalala, A.; Vieublé-Gonod, L.; Dumeny, V.; Cambier, P. Fate of Sulfamethoxazole, Its Main Metabolite N-Ac-Sulfamethoxazole and Ciprofloxacin in Agricultural Soils Amended or Not by Organic Waste Products. Chemosphere 2018, 191, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Jaiswal, S.; Sodhi, K.K.; Shree, P.; Singh, D.K.; Agrawal, P.K.; Shukla, P. Antibiotics Bioremediation: Perspectives on Its Ecotoxicity and Resistance. Environ. Int. 2019, 124, 448–461. [Google Scholar] [CrossRef] [PubMed]
- Gaballah, M.S.; Guo, J.; Sun, H.; Aboagye, D.; Sobhi, M.; Muhmood, A.; Dong, R. A Review Targeting Veterinary Antibiotics Removal from Livestock Manure Management Systems and Future Outlook. Bioresour. Technol. 2021, 333, 125069. [Google Scholar] [CrossRef] [PubMed]
- Griffin, M.O.; Fricovsky, E.; Ceballos, G.; Villarreal, F. Tetracyclines: A Pleitropic Family of Compounds with Promising Therapeutic Properties. Review of the Literature. Am. J. Physiol. Physiol. 2010, 299, C539–C548. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Luo, Y.; Song, J. Occurrence and Assessment of Veterinary Antibiotics in Swine Manures: A Case Study in East China. Chin. Sci. Bull. 2012, 57, 606–614. [Google Scholar] [CrossRef]
- Hou, J.; Wan, W.; Mao, D.; Wang, C.; Mu, Q.; Qin, S.; Luo, Y. Occurrence and Distribution of Sulfonamides, Tetracyclines, Quinolones, Macrolides, and Nitrofurans in Livestock Manure and Amended Soils of Northern China. Environ. Sci. Pollut. Res. 2015, 22, 4545–4554. [Google Scholar] [CrossRef]
- Bhatt, S.; Chatterjee, S. Fluoroquinolone Antibiotics: Occurrence, Mode of Action, Resistance, Environmental Detection, and Remediation—A Comprehensive Review. Environ. Pollut. 2022, 315, 120440. [Google Scholar] [CrossRef]
- Zhao, L.; Dong, Y.H.; Wang, H. Residues of Veterinary Antibiotics in Manures from Feedlot Livestock in Eight Provinces of China. Sci. Total Environ. 2010, 408, 1069–1075. [Google Scholar] [CrossRef]
- Van Doorslaer, X.; Dewulf, J.; Van Langenhove, H.; Demeestere, K. Fluoroquinolone Antibiotics: An Emerging Class of Environmental Micropollutants. Sci. Total Environ. 2014, 500–501, 250–269. [Google Scholar] [CrossRef]
- Riaz, L.; Mahmood, T.; Khalid, A.; Rashid, A.; Ahmed Siddique, M.B.; Kamal, A.; Coyne, M.S. Fluoroquinolones (FQs) in the Environment: A Review on Their Abundance, Sorption and Toxicity in Soil. Chemosphere 2018, 191, 704–720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, D.; Xie, J.; Zhang, Y.; Wan, Y.; Zhang, Y.; Shi, X. Impacts of Farmland Application of Antibiotic-Contaminated Manures on the Occurrence of Antibiotic Residues and Antibiotic Resistance Genes in Soil: A Meta-Analysis Study. Chemosphere 2022, 300, 134529. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Wei, S.; Sun, R.; Zou, W.; Zhang, X.; Zhou, Q.; Liu, R.; Huang, L. The Forms, Distribution, and Risk Assessment of Sulfonamide Antibiotics in the Manure–Soil–Vegetable System of Feedlot Livestock. Bull. Environ. Contam. Toxicol. 2020, 105, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, J.; Chen, P.; Ding, R.; Zhang, P.; Li, X. Occurrence of Antibiotics and Antibiotic Resistances in Soils from Wastewater Irrigation Areas in Beijing and Tianjin, China. Environ. Pollut. 2014, 193, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamy, S.; Kakarla, D.; Venkateswarlu, K.; Megharaj, M.; Yoon, Y.-E.; Lee, Y.B. Veterinary Antibiotics (VAs) Contamination as a Global Agro-Ecological Issue: A Critical View. Agric. Ecosyst. Environ. 2018, 257, 47–59. [Google Scholar] [CrossRef]
- Rauseo, J.; Barra Caracciolo, A.; Ademollo, N.; Cardoni, M.; Di Lenola, M.; Gaze, W.; Stanton, I.; Grenni, P.; Pescatore, T.; Spataro, F.; et al. Dissipation of the Antibiotic Sulfamethoxazole in a Soil Amended with Anaerobically Digested Cattle Manure. J. Hazard. Mater. 2019, 378, 120769. [Google Scholar] [CrossRef] [PubMed]
- Milić, N.; Milanović, M.; Letić, N.G.; Sekulić, M.T.; Radonić, J.; Mihajlović, I.; Miloradov, M.V. Occurrence of Antibiotics as Emerging Contaminant Substances in Aquatic Environment. Int. J. Environ. Health Res. 2013, 23, 296–310. [Google Scholar] [CrossRef]
- Liu, L.; Wu, W.; Zhang, J.; Lv, P.; Xu, L.; Yan, Y. Progress of Research on the Toxicology of Antibiotic Pollution in Aquatic Organisms. Acta Ecol. Sin. 2018, 38, 36–41. [Google Scholar] [CrossRef]
- Grenni, P.; Ancona, V.; Barra Caracciolo, A. Ecological Effects of Antibiotics on Natural Ecosystems: A Review. Microchem. J. 2018, 136, 25–39. [Google Scholar] [CrossRef]
- Polianciuc, S.I.; Gurzău, A.E.; Kiss, B.; Ștefan, M.G.; Loghin, F. Antibiotics in the Environment: Causes and Consequences. Med. Pharm. Rep. 2020, 93, 231–240. [Google Scholar] [CrossRef]
- Bombaywala, S.; Mandpe, A.; Paliya, S.; Kumar, S. Antibiotic Resistance in the Environment: A Critical Insight on Its Occurrence, Fate, and Eco-Toxicity. Environ. Sci. Pollut. Res. 2021, 28, 24889–24916. [Google Scholar] [CrossRef] [PubMed]
- Willing, B.P.; Russell, S.L.; Finlay, B.B. Shifting the Balance: Antibiotic Effects on Host–Microbiota Mutualism. Nat. Rev. Microbiol. 2011, 9, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Kakumanu, M.L.; Reeves, A.M.; Anderson, T.D.; Rodrigues, R.R.; Williams, M.A. Honey Bee Gut Microbiome Is Altered by In-Hive Pesticide Exposures. Front. Microbiol. 2016, 7, 1255. [Google Scholar] [CrossRef] [PubMed]
- Zhu, D.; An, X.-L.; Chen, Q.-L.; Yang, X.-R.; Christie, P.; Ke, X.; Wu, L.-H.; Zhu, Y.-G. Antibiotics Disturb the Microbiome and Increase the Incidence of Resistance Genes in the Gut of a Common Soil Collembolan. Environ. Sci. Technol. 2018, 52, 3081–3090. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ma, L.; Liu, Z.; Chen, J.; Song, H.; Wang, J.; Cui, H.; Yang, Z.; Xiao, S.; Liu, K.; et al. Microbial Interactions Play an Important Role in Regulating the Effects of Plant Species on Soil Bacterial Diversity. Front. Microbiol. 2022, 13, 4200. [Google Scholar] [CrossRef]
- Zhu, Y.; Xiong, C.; Wei, Z.; Chen, Q.; Ma, B.; Zhou, S.; Tan, J.; Zhang, L.; Cui, H.; Duan, G. Impacts of Global Change on the Phyllosphere Microbiome. New Phytol. 2022, 234, 1977–1986. [Google Scholar] [CrossRef]
- Zheng, F.; Bi, Q.-F.; Giles, M.; Neilson, R.; Chen, Q.-L.; Lin, X.-Y.; Zhu, Y.-G.; Yang, X.-R. Fates of Antibiotic Resistance Genes in the Gut Microbiome from Different Soil Fauna under Long-Term Fertilization. Environ. Sci. Technol. 2021, 55, 423–432. [Google Scholar] [CrossRef]
- Li, L.; Li, T.; Liu, Y.; Li, L.; Huang, X.; Xie, J. Effects of Antibiotics Stress on Root Development, Seedling Growth, Antioxidant Status and Abscisic Acid Level in Wheat (Triticum aestivum L.). Ecotoxicol. Environ. Saf. 2023, 252, 114621. [Google Scholar] [CrossRef]
- Rocha, D.C.; da Silva Rocha, C.; Tavares, D.S.; de Morais Calado, S.L.; Gomes, M.P. Veterinary Antibiotics and Plant Physiology: An Overview. Sci. Total Environ. 2021, 767, 144902. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Delgado, M. del M.; Miguel, E.; Pérez, R.A. Analysis of Multiclass Antibiotics in Lettuce by Liquid Chromatography–Tandem Mass Spectrometry to Monitor Their Plant Uptake. Molecules 2019, 24, 4066. [Google Scholar] [CrossRef]
- ISO 11269-2:2012; Soil Quality—Determination of the Effects of Pollutants on Soil Flora—Part 2: Effects of Chemicals on the Emergence and Growth of Higher Plants. International Organization for Standardization: Genève, Switzerland, 2012.
- Khadra, A.; Pinelli, E.; Lacroix, M.Z.; Bousquet-Melou, A.; Hamdi, H.; Merlina, G.; Guiresse, M.; Hafidi, M. Assessment of the Genotoxicity of Quinolone and Fluoroquinolones Contaminated Soil with the Vicia Faba Micronucleus Test. Ecotoxicol. Environ. Saf. 2012, 76, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Magdaleno, A.; Carusso, S.; Moretton, J. Toxicity and Genotoxicity of Three Antimicrobials Commonly Used in Veterinary Medicine. Bull. Environ. Contam. Toxicol. 2017, 99, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ying, G.-G.; Tao, R.; Zhao, J.-L.; Yang, J.-F.; Zhao, L.-F. Effects of Six Selected Antibiotics on Plant Growth and Soil Microbial and Enzymatic Activities. Environ. Pollut. 2009, 157, 1636–1642. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Chu, L.M. Phytotoxicity of Veterinary Antibiotics to Seed Germination and Root Elongation of Crops. Ecotoxicol. Environ. Saf. 2016, 126, 228–237. [Google Scholar] [CrossRef] [PubMed]
- White, P. Chloride in Soils and Its Uptake and Movement within the Plant: A Review. Ann. Bot. 2001, 88, 967–988. [Google Scholar] [CrossRef]
- Virto, R.; Mañas, P.; Álvarez, I.; Condon, S.; Raso, J. Membrane Damage and Microbial Inactivation by Chlorine in the Absence and Presence of a Chlorine-Demanding Substrate. Appl. Environ. Microbiol. 2005, 71, 5022–5028. [Google Scholar] [CrossRef]
- Mukhtar, A.; Manzoor, M.; Gul, I.; Zafar, R.; Jamil, H.I.; Niazi, A.K.; Ali, M.A.; Park, T.J.; Arshad, M. Phytotoxicity of Different Antibiotics to Rice and Stress Alleviation upon Application of Organic Amendments. Chemosphere 2020, 258, 127353. [Google Scholar] [CrossRef]
- Evans-Roberts, K.M.; Mitchenall, L.A.; Wall, M.K.; Leroux, J.; Mylne, J.S.; Maxwell, A. DNA Gyrase Is the Target for the Quinolone Drug Ciprofloxacin in Arabidopsis Thaliana. J. Biol. Chem. 2016, 291, 3136–3144. [Google Scholar] [CrossRef]
- Bhattacharya, P.; Mukherjee, S.; Mandal, S.M. Fluoroquinolone Antibiotics Show Genotoxic Effect through DNA-Binding and Oxidative Damage. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117634. [Google Scholar] [CrossRef]
- Cheong, M.S.; Seo, K.H.; Chohra, H.; Yoon, Y.E.; Choe, H.; Kantharaj, V.; Lee, Y.B. Influence of Sulfonamide Contamination Derived from Veterinary Antibiotics on Plant Growth and Development. Antibiotics 2020, 9, 456. [Google Scholar] [CrossRef]
- Ashbolt, N.J.; Amézquita, A.; Backhaus, T.; Borriello, P.; Brandt, K.K.; Collignon, P.; Coors, A.; Finley, R.; Gaze, W.H.; Heberer, T.; et al. Human Health Risk Assessment (HHRA) for Environmental Development and Transfer of Antibiotic Resistance. Environ. Health Perspect. 2013, 121, 993–1001. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Shi, M.; Xing, L.; Wang, X.; Gao, H.; Sun, Y. Sulfamethoxazole Affects the Microbial Composition and Antibiotic Resistance Gene Abundance in Soil and Accumulates in Lettuce. Environ. Sci. Pollut. Res. 2020, 27, 29257–29265. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.Y.; Ali, B.; Zhang, S.; Stoffella, P.J.; Yuan, S.; Xia, Q.; Qu, H.; Shi, Y.; Cui, X.; Guo, Y. Effects of Antibiotics Stress on Growth Variables, Ultrastructure, and Metabolite Pattern of Brassica Rapa Ssp. Chinensis. Sci. Total Environ. 2021, 778, 146333. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.-K.; Yang, Y.-T.; Zhao, C.-X.; Huang, X.-R.; Chen, H.-M.; Zhao, W.-L.; Yang, X.-R.; Zhu, Y.-G.; Liu, H.-J. ROS as a Key Player in Quinolone Antibiotic Stress on Arabidopsis Thaliana: From the Perspective of Photosystem Function, Oxidative Stress and Phyllosphere Microbiome. Sci. Total Environ. 2022, 848, 157821. [Google Scholar] [CrossRef]
- Tkacz, A.; Poole, P. The Plant Microbiome: The Dark and Dirty Secrets of Plant Growth. Plants People Planet 2021, 3, 124–129. [Google Scholar] [CrossRef]
- Barra Caracciolo, A.; Terenzi, V. Rhizosphere Microbial Communities and Heavy Metals. Microorganisms 2021, 9, 1462. [Google Scholar] [CrossRef]
- Zhang, Y.-J.; Hu, H.-W.; Chen, Q.-L.; Singh, B.K.; Yan, H.; Chen, D.; He, J.-Z. Transfer of Antibiotic Resistance from Manure-Amended Soils to Vegetable Microbiomes. Environ. Int. 2019, 130, 104912. [Google Scholar] [CrossRef]
- Huang, J.; Mi, J.; Yan, Q.; Wen, X.; Zhou, S.; Wang, Y.; Ma, B.; Zou, Y.; Liao, X.; Wu, Y. Animal Manures Application Increases the Abundances of Antibiotic Resistance Genes in Soil-Lettuce System Associated with Shared Bacterial Distributions. Sci. Total Environ. 2021, 787, 147667. [Google Scholar] [CrossRef]
- Yin, L.; Wang, X.; Li, Y.; Liu, Z.; Mei, Q.; Chen, Z. Uptake of the Plant Agriculture-Used Antibiotics Oxytetracycline and Streptomycin by Cherry Radish─Effect on Plant Microbiome and the Potential Health Risk. J. Agric. Food Chem. 2023, 71, 4561–4570. [Google Scholar] [CrossRef]
- Miller, S.A.; Ferreira, J.P.; LeJeune, J.T. Antimicrobial Use and Resistance in Plant Agriculture: A One Health Perspective. Agriculture 2022, 12, 289. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, D.; Ding, J.; Zhou, S.; Sun, L.; Qian, H. Species-Specific Response of the Soil Collembolan Gut Microbiome and Resistome to Soil Oxytetracycline Pollution. Sci. Total Environ. 2019, 668, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Gomes-Silva, G.; Plath, M.; Pereira, B.B.; UeiraVieira, C.; Wang, Z. Shifts in Bacterial Communities and Antibiotic Resistance Genes in Surface Water and Gut Microbiota of Guppies (Poecilia Reticulata) in the Upper Rio Uberabinha, Brazil. Ecotoxicol. Environ. Saf. 2021, 211, 111955. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Zhang, Y.; Shen, J.-P.; Hu, H.-W.; Zhang, J.; Shu, C.; He, J.-Z. Alteration of Manure Antibiotic Resistance Genes via Soil Fauna Is Associated with the Intestinal Microbiome. mSystems 2022, 7, e00529-22. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Gao, Y.; Ke, J.; Show, P.L.; Ge, Y.; Liu, Y.; Guo, R.; Chen, J. Antibiotics: An Overview on the Environmental Occurrence, Toxicity, Degradation, and Removal Methods. Bioengineered 2021, 12, 7376–7416. [Google Scholar] [CrossRef]
- Perković, S.; Paul, C.; Vasić, F.; Helming, K. Human Health and Soil Health Risks from Heavy Metals, Micro(Nano)Plastics, and Antibiotic Resistant Bacteria in Agricultural Soils. Agronomy 2022, 12, 2945. [Google Scholar] [CrossRef]
- Zhao, F.; Yang, L.; Li, G.; Fang, L.; Yu, X.; Tang, Y.-T.; Li, M.; Chen, L. Veterinary Antibiotics Can Reduce Crop Yields by Modifying Soil Bacterial Community and Earthworm Population in Agro-Ecosystems. Sci. Total Environ. 2022, 808, 152056. [Google Scholar] [CrossRef]
- Liu, X.; Hu, C.; Zhang, S. Effects of Earthworm Activity on Fertility and Heavy Metal Bioavailability in Sewage Sludge. Environ. Int. 2005, 31, 874–879. [Google Scholar] [CrossRef]
- Bhadauria, T.; Saxena, K.G. Role of Earthworms in Soil Fertility Maintenance through the Production of Biogenic Structures. Appl. Environ. Soil Sci. 2010, 2010, 816073. [Google Scholar] [CrossRef]
- Ahmed, N.; Al-Mutairi, K.A. Earthworms Effect on Microbial Population and Soil Fertility as Well as Their Interaction with Agriculture Practices. Sustainability 2022, 14, 7803. [Google Scholar] [CrossRef]
- Parente, C.E.; Oliveira da Silva, E.; Sales Júnior, S.F.; Hauser-Davis, R.A.; Malm, O.; Correia, F.V.; Saggioro, E.M. Fluoroquinolone-Contaminated Poultry Litter Strongly Affects Earthworms as Verified through Lethal and Sub-Lethal Evaluations. Ecotoxicol. Environ. Saf. 2021, 207, 111305. [Google Scholar] [CrossRef]
- Yeardley, R.B.; Gast, L.C.; Lazorchak, J.M. The Potential of an Earthworm Avoidance Test for Evaluation of Hazardous Waste Sites. Environ. Toxicol. Chem. 1996, 15, 1532–1537. [Google Scholar] [CrossRef]
- Hund-Rinke, K.; Wiechering, H. Earthworm Avoidance Test for Soil Assessments. J. Soils Sediments 2001, 1, 15–20. [Google Scholar] [CrossRef]
- OECD Guideline for Testing of Chemicals No. 222, Earthworm Reproduction Test (Eisenia Fetida/Eisenia Andrei); OECD: Paris, France, 2004.
- Bilej, M.; Procházková, P.; Šilerová, M.; Josková, R. Earthworm Immunity. Adv. Exp. Med. Biol. 2010, 708, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Xiong, Y.; Dai, X.; Yu, F. Coadsorption Behavior and Mechanism of Ciprofloxacin and Cu(II) on Graphene Hydrogel Wetted Surface. Chem. Eng. J. 2020, 380, 122387. [Google Scholar] [CrossRef]
- Ding, J.; Zhu, D.; Hong, B.; Wang, H.T.; Li, G.; Ma, Y.B.; Tang, Y.T.; Chen, Q.L. Long-Term Application of Organic Fertilization Causes the Accumulation of Antibiotic Resistome in Earthworm Gut Microbiota. Environ. Int. 2019, 124, 145–152. [Google Scholar] [CrossRef]
- Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug Resistance: An Emerging Crisis. Interdiscip. Perspect. Infect. Dis. 2014, 2014, 541340. [Google Scholar] [CrossRef]
- Chen, Q.; An, X.; Li, H.; Su, J.; Ma, Y.; Zhu, Y.-G. Long-Term Field Application of Sewage Sludge Increases the Abundance of Antibiotic Resistance Genes in Soil. Environ. Int. 2016, 92–93, 1–10. [Google Scholar] [CrossRef]
- Granados-Chinchilla, F.; Rodríguez, C. Tetracyclines in Food and Feedingstuffs: From Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health Implications. J. Anal. Methods Chem. 2017, 2017, 1315497. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, H.; Tao, S. Environmental and Human Health Challenges of Industrial Livestock and Poultry Farming in China and Their Mitigation. Environ. Int. 2017, 107, 111–130. [Google Scholar] [CrossRef]
- Zhu, D.; Ding, J.; Yin, Y.; Ke, X.; O’Connor, P.; Zhu, Y.-G. Effects of Earthworms on the Microbiomes and Antibiotic Resistomes of Detritus Fauna and Phyllospheres. Environ. Sci. Technol. 2020, 54, 6000–6008. [Google Scholar] [CrossRef] [PubMed]
Antibiotic | Species | Effect | References |
---|---|---|---|
chlortetracycline (CTC) oxytetracycline (OTC) doxycycline (DOX) tetracycline (TET) norfloxacin (NOR) ofloxacin (OFL) lomefloxacin (LOM) ciprofloxacin (CIP) enrofloxacin (ENR) sulfamethoxazole (SMX) sulfamerazine (SMR) sulfamethazine (SMZ) | Eisenia fetida | All ABs decreased earthworm abundance (p < 0.05) SMZ and OTC also decreased earthworm biomass | [109] |
ciprofloxacin (CIP) enrofloxacin (ENR) | Eisenia Andrei | CIP LC50 (7 days): 0.25 mg/kg LC50 (14 days): 0.19 mg/kg biomass decrease (14 days) at 0.27 mg/kg Effect on reproduction at 0.14 mg/kg Immune system cell variation between 0.04 to 14 mg/kg ENR LC50 (7 days): 0.89 mg/kg LC50 (14 days): 0.67 mg/kg biomass decrease (14 days) at 0.94 mg/kg Effect on reproduction at 0.47 mg/kg Immune system cell variation between 0.12 to 0.47 mg/kg | [113] |
Antibiotics | Organism Microbiome ARGs | Organism Microbiome Microbial Composition | References | |
---|---|---|---|---|
Soil Concentration | Organism Concentration | |||
oxytetracycline (OTC) 10 mg/kg | Enchytraeus crypticus: At 21 days 45.65 mg/kg | - | OTC: decrease in Proteobacteria relative abundance, Moraxellaceae family from 15.6% to 2.64%. Planctomycetes relative abundance increase, Isosphaeraceae family from 16.9% to 28.5%. | [118] |
tetracycline (TET) oxytetracycline (OTC) chlortetracycline (CTC) doxycycline (DOX) sulfamethoxazole (SMX) sulfadiazine (SDZ) sulfaquinoxaline (SQX) sulfamonomethoxine (SMT) sulfaclozine sodium (SLC) sulfadimethoxine (SMN) sulfameter (SMT) sulfamerazine (SMR) norfloxacin (NOR) ciprofloxacin (CIP) ofloxacin (OFL) enrofloxacin (ENR) roxithromycin (RXM) | Drawida gisti | Chicken manure condition: multiple drug resistance, beta-lactam resistance, MLSB (Macrolide-Lincosamide-Streptogramin B) resistance and tetracycline resistance Sewage sludge condition: beta-lactam resistance | - | [119] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narciso, A.; Barra Caracciolo, A.; De Carolis, C. Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics 2023, 12, 1471. https://doi.org/10.3390/antibiotics12091471
Narciso A, Barra Caracciolo A, De Carolis C. Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics. 2023; 12(9):1471. https://doi.org/10.3390/antibiotics12091471
Chicago/Turabian StyleNarciso, Alessandra, Anna Barra Caracciolo, and Chiara De Carolis. 2023. "Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms" Antibiotics 12, no. 9: 1471. https://doi.org/10.3390/antibiotics12091471
APA StyleNarciso, A., Barra Caracciolo, A., & De Carolis, C. (2023). Overview of Direct and Indirect Effects of Antibiotics on Terrestrial Organisms. Antibiotics, 12(9), 1471. https://doi.org/10.3390/antibiotics12091471