The Klebsiella pneumoniae carbapenemase (KPC) β-Lactamase Has Evolved in Response to Ceftazidime Avibactam
Abstract
:1. Introduction
2. Results
2.1. Alignment and Fisher’s Exact Test
2.2. Phylogenetic Reconstruction
2.3. Analysis of Sites under Positive Selection
3. Discussion
4. Methods
4.1. Alignment
4.2. Test for Selection
4.3. β-Lactamase Numbering Scheme
4.4. Phylogenies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-Negative Bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [Google Scholar] [CrossRef] [PubMed]
- Plazak, M.E.; Tamma, P.D.; Heil, E.L. The Antibiotic Arms Race: Current and Emerging Therapy for Klebsiella Pneumoniae Carbapenemase (KPC)—Producing Bacteria. Expert. Opin. Pharmacother. 2018, 19, 2019–2031. [Google Scholar] [CrossRef] [PubMed]
- Tilahun, M.; kassa, Y.; Gedefie, A.; Ashagire, M. Emerging Carbapenem-Resistant Enterobacteriaceae Infection, Its Epidemiology and Novel Treatment Options: A Review. Infect. Drug Resist. 2021, 14, 4363–4374. [Google Scholar] [CrossRef] [PubMed]
- Ambler, R.P.; Coulson, A.F.; Frère, J.M.; Ghuysen, J.M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G. A Standard Numbering Scheme for the Class A Beta-Lactamases. Biochem. J. 1991, 276 Pt 1, 269–270. [Google Scholar] [CrossRef] [PubMed]
- Chopra, T.; Rivard, C.; Awali, R.A.; Krishna, A.; Bonomo, R.A.; Perez, F.; Kaye, K.S. Epidemiology of Carbapenem-Resistant Enterobacteriaceae at a Long-Term Acute Care Hospital. Open Forum Infect. Dis. 2018, 5, ofy224. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Chen, L.; Cheng, S.; Chavda, K.D.; Press, E.G.; Snyder, A.; Pandey, R.; Doi, Y.; Kreiswirth, B.N.; Nguyen, M.H.; et al. Emergence of Ceftazidime-Avibactam Resistance Due to Plasmid-Borne blaKPC-3 Mutations during Treatment of Carbapenem-Resistant Klebsiella Pneumoniae Infections. Antimicrob. Agents Chemother. 2017, 61, e02097-16. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Chen, J.; Shen, H.; Chen, Z.; Yang, Q.; Zhu, J.; Li, X.; Yang, Q.; Zhao, F.; Ji, J.; et al. Emergence and Rising of Ceftazidime-Avibactam Resistant KPC-Producing Pseudomonas Aeruginosa in China: A Molecular Epidemiology Study. medRxiv 2020. [Google Scholar] [CrossRef]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella Pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef]
- Nordmann, P.; Naas, T.; Poirel, L. Global Spread of Carbapenemase-Producing Enterobacteriaceae. Emerg. Infect. Dis. 2011, 17, 1791–1798. [Google Scholar] [CrossRef]
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef]
- Gupta, N.; Limbago, B.M.; Patel, J.B.; Kallen, A.J. Carbapenem-Resistant Enterobacteriaceae: Epidemiology and Prevention. Clin. Infect. Dis. 2011, 53, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Bratu, S.; Tolaney, P.; Karumudi, U.; Quale, J.; Mooty, M.; Nichani, S.; Landman, D. Carbapenemase-Producing Klebsiella Pneumoniae in Brooklyn, NY: Molecular Epidemiology and in Vitro Activity of Polymyxin B and Other Agents. J. Antimicrob. Chemother. 2005, 56, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Hobson, C.A.; Pierrat, G.; Tenaillon, O.; Bonacorsi, S.; Bercot, B.; Jaouen, E.; Jacquier, H.; Birgy, A. Klebsiella Pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: An Evolutionary Overview. Antimicrob. Agents Chemother. 2022, 66, e0044722. [Google Scholar] [CrossRef] [PubMed]
- Villegas, M.V.; Lolans, K.; Correa, A.; Kattan, J.N.; Lopez, J.A.; Quinn, J.P. Colombian Nosocomial Resistance Study Group First Identification of Pseudomonas Aeruginosa Isolates Producing a KPC-Type Carbapenem-Hydrolyzing Beta-Lactamase. Antimicrob. Agents Chemother. 2007, 51, 1553–1555. [Google Scholar] [CrossRef] [PubMed]
- Forero-Hurtado, D.; Corredor-Rozo, Z.L.; Ruiz-Castellanos, J.S.; Márquez-Ortiz, R.A.; Abril, D.; Vanegas, N.; Lafaurie, G.I.; Chambrone, L.; Escobar-Pérez, J. Worldwide Dissemination of blaKPC Gene by Novel Mobilization Platforms in Pseudomonas Aeruginosa: A Systematic Review. Antibiotics 2023, 12, 658. [Google Scholar] [CrossRef]
- Cuzon, G.; Naas, T.; Nordmann, P. Functional Characterization of Tn4401, a Tn3-Based Transposon Involved in blaKPC Gene Mobilization. Antimicrob. Agents Chemother. 2011, 55, 5370–5373. [Google Scholar] [CrossRef]
- Cuzon, G.; Naas, T.; Truong, H.; Villegas, M.-V.; Wisell, K.T.; Carmeli, Y.; Gales, A.C.; Navon-Venezia, S.; Quinn, J.P.; Nordmann, P. Worldwide Diversity of Klebsiella Pneumoniae That Produce β-Lactamase blaKPC-2 Gene. Emerg. Infect. Dis. 2010, 16, 1349–1356. [Google Scholar] [CrossRef]
- Chen, L.; Mathema, B.; Chavda, K.D.; DeLeo, F.R.; Bonomo, R.A.; Kreiswirth, B.N. Carbapenemase-Producing Klebsiella Pneumoniae: Molecular and Genetic Decoding. Trends Microbiol. 2014, 22, 686–696. [Google Scholar] [CrossRef]
- Jousset, A.B.; Bonnin, R.A.; Takissian, J.; Girlich, D.; Mihaila, L.; Cabanel, N.; Dortet, L.; Glaser, P.; Naas, T. Concomitant Carriage of KPC-Producing and Non-KPC-Producing Klebsiella Pneumoniae ST512 within a Single Patient. J. Antimicrob. Chemother. 2020, 75, 2087–2092. [Google Scholar] [CrossRef]
- Eilertson, B.; Chen, L.; Li, A.; Chavda, K.D.; Chavda, B.; Kreiswirth, B.N. CG258 Klebsiella Pneumoniae Isolates without β-Lactam Resistance at the Onset of the Carbapenem-Resistant Enterobacteriaceae Epidemic in New York City. J. Antimicrob. Chemother. 2019, 74, 17–21. [Google Scholar] [CrossRef]
- Li, D.; Li, P.; Peng, M.; Zhao, X.; Jiang, X.; Wang, D.; Yuan, Y.; Guo, Q.; Wang, M.; Xu, X.; et al. Transmission Barrier of the blaKPC Plasmid Mediated by Type I Restriction-Modification Systems in Escherichia Coli. J. Antimicrob. Chemother. 2022, 77, 952–956. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Wu, Y.; Huang, L.; Zhang, Y.; Sun, Q.; Lu, J.; Zeng, Y.; Dong, N.; Cai, C.; Shen, Z.; et al. The Rapid Emergence of Ceftazidime-Avibactam Resistance Mediated by KPC Variants in Carbapenem-Resistant Klebsiella Pneumoniae in Zhejiang Province, China. Antibiotics 2022, 11, 731. [Google Scholar] [CrossRef] [PubMed]
- Campogiani, L.; Vitale, P.; Lodi, A.; Imeneo, A.; Fontana, C.; D’Agostini, C.; Compagno, M.; Coppola, L.; Spalliera, I.; Malagnino, V.; et al. Resistance to Ceftazidime/Avibactam in Klebsiella Pneumoniae KPC-Producing Isolates: A Real-Life Observational Study. Antibiotics 2023, 12, 820. [Google Scholar] [CrossRef] [PubMed]
- Ehmann, D.E.; Jahić, H.; Ross, P.L.; Gu, R.-F.; Hu, J.; Kern, G.; Walkup, G.K.; Fisher, S.L. Avibactam Is a Covalent, Reversible, Non–β-Lactam β-Lactamase Inhibitor. Proc. Natl. Acad. Sci. USA 2012, 109, 11663–11668. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, J.; Wang, R.; Cai, Y. Resistance to Ceftazidime-Avibactam and Underlying Mechanisms. J. Glob. Antimicrob. Resist. 2020, 22, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Barnes, M.D.; Winkler, M.L.; Taracila, M.A.; Page, M.G.; Desarbre, E.; Kreiswirth, B.N.; Shields, R.K.; Nguyen, M.-H.; Clancy, C.; Spellberg, B.; et al. Klebsiella Pneumoniae Carbapenemase-2 (KPC-2), Substitutions at Ambler Position Asp179, and Resistance to Ceftazidime-Avibactam: Unique Antibiotic-Resistant Phenotypes Emerge from β-Lactamase Protein Engineering. mBio 2017, 8, e00528-17. [Google Scholar] [CrossRef]
- Compain, F.; Dorchène, D.; Arthur, M. Combination of Amino Acid Substitutions Leading to CTX-M-15-Mediated Resistance to the Ceftazidime-Avibactam Combination. Antimicrob. Agents Chemother. 2018, 62, e00357-18. [Google Scholar] [CrossRef]
- Livermore, D.M.; Mushtaq, S.; Doumith, M.; Jamrozy, D.; Nichols, W.W.; Woodford, N. Selection of Mutants with Resistance or Diminished Susceptibility to Ceftazidime/Avibactam from ESBL- and AmpC-Producing Enterobacteriaceae. J. Antimicrob. Chemother. 2018, 73, 3336–3345. [Google Scholar] [CrossRef]
- Winkler, M.L.; Papp-Wallace, K.M.; Taracila, M.A.; Bonomo, R.A. Avibactam and Inhibitor-Resistant SHV β-Lactamases. Antimicrob. Agents Chemother. 2015, 59, 3700–3709. [Google Scholar] [CrossRef]
- Fröhlich, C.; Sørum, V.; Thomassen, A.M.; Johnsen, P.J.; Leiros, H.-K.S.; Samuelsen, Ø. OXA-48-Mediated Ceftazidime-Avibactam Resistance Is Associated with Evolutionary Trade-Offs. mSphere 2019, 4, e00024-19. [Google Scholar] [CrossRef]
- Venditti, C.; Butera, O.; Meledandri, M.; Balice, M.P.; Cocciolillo, G.C.; Fontana, C.; D’Arezzo, S.; De Giuli, C.; Antonini, M.; Capone, A.; et al. Molecular Analysis of Clinical Isolates of Ceftazidime-Avibactam-Resistant Klebsiella Pneumoniae. Clin. Microbiol. Infect. 2021, 27, 1040.e1–1040.e6. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Tamura, K.; Nei, M. MEGA: Molecular Evolutionary Genetics Analysis Software for Microcomputers. Comput. Appl. Biosci. 1994, 10, 189–191. [Google Scholar] [CrossRef] [PubMed]
- Barlow, M.; Fatollahi, J.; Salverda, M. Evidence for Recombination among the Alleles Encoding TEM and SHV Beta-Lactamases. J. Antimicrob. Chemother. 2009, 63, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Oueslati, S.; Tlili, L.; Exilie, C.; Bernabeu, S.; Iorga, B.; Bonnin, R.A.; Dortet, L.; Naas, T. Different Phenotypic Expression of KPC β-Lactamase Variants and Challenges in Their Detection. J. Antimicrob. Chemother. 2020, 75, 769–771. [Google Scholar] [CrossRef]
- Tooke, C.L.; Hinchliffe, P.; Bonomo, R.A.; Schofield, C.J.; Mulholland, A.J.; Spencer, J. Natural Variants Modify Klebsiella Pneumoniae Carbapenemase (KPC) Acyl-Enzyme Conformational Dynamics to Extend Antibiotic Resistance. J. Biol. Chem. 2021, 296, 100126. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.C.; Rice, K.; Palzkill, T. Natural Variants of the KPC-2 Carbapenemase Have Evolved Increased Catalytic Efficiency for Ceftazidime Hydrolysis at the Cost of Enzyme Stability. PLoS Pathog. 2015, 11, e1004949. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Nguyen, M.H.; Press, E.G.; Chen, L.; Kreiswirth, B.N.; Clancy, C.J. In Vitro Selection of Meropenem Resistance among Ceftazidime-Avibactam-Resistant, Meropenem-Susceptible Klebsiella Pneumoniae Isolates with Variant KPC-3 Carbapenemases. Antimicrob. Agents Chemother. 2017, 61, e00079-17. [Google Scholar] [CrossRef]
- Shields, R.K.; Potoski, B.A.; Haidar, G.; Hao, B.; Doi, Y.; Chen, L.; Press, E.G.; Kreiswirth, B.N.; Clancy, C.J.; Nguyen, M.H. Clinical Outcomes, Drug Toxicity, and Emergence of Ceftazidime-Avibactam Resistance Among Patients Treated for Carbapenem-Resistant Enterobacteriaceae Infections. Clin. Infect. Dis. 2016, 63, 1615–1618. [Google Scholar] [CrossRef]
- Zhang, P.; Shi, Q.; Hu, H.; Hong, B.; Wu, X.; Du, X.; Akova, M.; Yu, Y. Emergence of Ceftazidime/Avibactam Resistance in Carbapenem-Resistant Klebsiella Pneumoniae in China. Clin. Microbiol. Infect. 2020, 26, 124.e1–124.e4. [Google Scholar] [CrossRef]
- Winkler, M.L.; Papp-Wallace, K.M.; Bonomo, R.A. Activity of Ceftazidime/Avibactam against Isogenic Strains of Escherichia Coli Containing KPC and SHV β-Lactamases with Single Amino Acid Substitutions in the Ω-Loop. J. Antimicrob. Chemother. 2015, 70, 2279–2286. [Google Scholar] [CrossRef]
- Parwana, D.; Gu, J.; Wang, Q.; Bethel, C.R.; Marshall, E.; Hujer, A.M.; Bonomo, R.A.; Haider, S. The Structural Role of N170 in Substrate-Assisted Deacylation in KPC-2 β-Lactamase. bioRxiv 2023. [Google Scholar] [CrossRef]
- Hemarajata, P.; Humphries, R.M. Ceftazidime/Avibactam Resistance Associated with L169P Mutation in the Omega Loop of KPC-2. J. Antimicrob. Chemother. 2019, 74, 1241–1243. [Google Scholar] [CrossRef] [PubMed]
- Levitt, P.S.; Papp-Wallace, K.M.; Taracila, M.A.; Hujer, A.M.; Winkler, M.L.; Smith, K.M.; Xu, Y.; Harris, M.E.; Bonomo, R.A. Exploring the Role of a Conserved Class A Residue in the Ω-Loop of KPC-2 β-Lactamase: A Mechanism for Ceftazidime Hydrolysis. J. Biol. Chem. 2012, 287, 31783–31793. [Google Scholar] [CrossRef] [PubMed]
- Alsenani, T.A.; Viviani, S.L.; Kumar, V.; Taracila, M.A.; Bethel, C.R.; Barnes, M.D.; Papp-Wallace, K.M.; Shields, R.K.; Nguyen, M.H.; Clancy, C.J.; et al. Structural Characterization of the D179N and D179Y Variants of KPC-2 β-Lactamase: Ω-Loop Destabilization as a Mechanism of Resistance to Ceftazidime-Avibactam. Antimicrob. Agents Chemother. 2022, 66, e0241421. [Google Scholar] [CrossRef] [PubMed]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L.; et al. The Comprehensive Antibiotic Resistance Database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef] [PubMed]
- Caspermeyer, J. MEGA Software Celebrates Silver Anniversary. Mol. Biol. Evol. 2018, 35, 1558–1560. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.G. Building Phylogenetic Trees from Molecular Data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef]
- PennState Eberly College of Science 4.5—Fisher’s Exact Test|STAT 504. Available online: https://online.stat.psu.edu/stat504/lesson/4/4.5 (accessed on 9 December 2023).
- Arakawa, Y.; Ohta, M.; Kido, N.; Fujii, Y.; Komatsu, T.; Kato, N. Close Evolutionary Relationship between the Chromosomally Encoded Beta-Lactamase Gene of Klebsiella Pneumoniae and the TEM Beta-Lactamase Gene Mediated by R Plasmids. FEBS Lett. 1986, 207, 69–74. [Google Scholar] [CrossRef]
- Barthélémy, M.; Peduzzi, J.; Labia, R. Complete Amino Acid Sequence of P453-Plasmid-Mediated PIT-2 Beta-Lactamase (SHV-1). Biochem. J. 1988, 251, 73–79. [Google Scholar] [CrossRef]
- Sutcliffe, J.G. Nucleotide Sequence of the Ampicillin Resistance Gene of Escherichia Coli Plasmid pBR322. Proc. Natl. Acad. Sci. USA 1978, 75, 3737–3741. [Google Scholar] [CrossRef]
- Boissinot, M.; Levesque, R.C. Nucleotide Sequence of the PSE-4 Carbenicillinase Gene and Correlations with the Staphylococcus Aureus PC1 Beta-Lactamase Crystal Structure. J. Biol. Chem. 1990, 265, 1225–1230. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.I.; Scahill, S.; Gibson, T.; Ambler, R.P. The Phototrophic Bacterium Rhodopseudomonas Capsulata Sp108 Encodes an Indigenous Class A Beta-Lactamase. Biochem. J. 1989, 260, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Houba, S.; Willem, S.; Duez, C.; Molitor, C.; Dusart, J.; Frère, J.M.; Ghuysen, J.M. Nucleotide Sequence of the Gene Encoding the Active-Site Serine Beta-Lactamase from Actinomadura R39. FEMS Microbiol. Lett. 1989, 53, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Madgwick, P.J.; Waley, S.G. Beta-Lactamase I from Bacillus Cereus. Structure and Site-Directed Mutagenesis. Biochem. J. 1987, 248, 657–662. [Google Scholar] [CrossRef] [PubMed]
- Madonna, M.J.; Zhu, Y.F.; Lampen, J.O. Nucleotide Sequence of the Beta-Lactamase I Gene of Bacillus Cereus Strains 569/H and 5/B. Nucleic Acids Res. 1987, 15, 1877. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Pastor, F.I.; Lampen, J.O. Cloning and Sequencing of the blaZ Gene Encoding Beta-Lactamase III, a Lipoprotein of Bacillus Cereus 569/H. J. Bacteriol. 1987, 169, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Forsman, M.; Häggström, B.; Lindgren, L.; Jaurin, B. Molecular Analysis of Beta-Lactamases from Four Species of Streptomyces: Comparison of Amino Acid Sequences with Those of Other Beta-Lactamases. J. Gen. Microbiol. 1990, 136, 589–598. [Google Scholar] [CrossRef] [PubMed]
- Lenzini, M.V.; Ishihara, H.; Dusart, J.; Ogawara, H.; Joris, B.; Van Beeumen, J.; Frère, J.-M.; Ghuysen, J.-M. Nucleotide Sequence of the Gene Encoding the Active-Site Serine β-Lactamase from Streptomyces Cacaoi. FEMS Microbiol. Lett. 1988, 49, 371–376. [Google Scholar] [CrossRef]
- Arakawa, Y.; Ohta, M.; Kido, N.; Mori, M.; Ito, H.; Komatsu, T.; Fujii, Y.; Kato, N. Chromosomal Beta-Lactamase of Klebsiella Oxytoca, a New Class A Enzyme That Hydrolyzes Broad-Spectrum Beta-Lactam Antibiotics. Antimicrob. Agents Chemother. 1989, 33, 63–70. [Google Scholar] [CrossRef]
- McLaughlin, J.R.; Murray, C.L.; Rabinowitz, J.C. Unique Features in the Ribosome Binding Site Sequence of the Gram-Positive Staphylococcus Aureus Beta-Lactamase Gene. J. Biol. Chem. 1981, 256, 11283–11291. [Google Scholar] [CrossRef]
- Dehottay, P.; Dusart, J.; De Meester, F.; Joris, B.; Van Beeumen, J.; Erpicum, T.; Frère, J.M.; Ghuysen, J.M. Nucleotide Sequence of the Gene Encoding the Streptomyces Albus G Beta-Lactamase Precursor. Eur. J. Biochem. 1987, 166, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Smith Moland, E.; Hanson, N.D.; Herrera, V.L.; Black, J.A.; Lockhart, T.J.; Hossain, A.; Johnson, J.A.; Goering, R.V.; Thomson, K.S. Plasmid-Mediated, Carbapenem-Hydrolysing Beta-Lactamase, KPC-2, in Klebsiella Pneumoniae Isolates. J. Antimicrob. Chemother. 2003, 51, 711–714. [Google Scholar] [CrossRef] [PubMed]
Position | 6 | 8 | 13 | 18 | 34 | 49 | 62 | 89 | 92 | 93 | 104 | 105 | 120 | 147 | 163 | 164 | 165 | 169 | 170 | 171 | 172 | 179 | 180 | 191 | 202 | 207 | 240 | 241 | 243 | 254 | 264 | 270 | 274 | 292 | 293 | 294 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wildtype | R | V | L | A | A | M | A | G | D | T | P | W | A | G | D | R | W | L | N | S | A | D | T | Q | P | F | V | Y | T | T | Y | K | H | V | N | G | |
KPC-2 | AY034847.1 | ||||||||||||||||||||||||||||||||||||
KPC-3 | AF395881.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-4 | EU447304.1 | R | G | ||||||||||||||||||||||||||||||||||
KPC-5 | EU400222.2 | R | |||||||||||||||||||||||||||||||||||
KPC-6 | EU555534.1 | G | |||||||||||||||||||||||||||||||||||
KPC-7 | EU729727.1 | I | Y | ||||||||||||||||||||||||||||||||||
KPC-8 | FJ234412.1 | G | Y | ||||||||||||||||||||||||||||||||||
KPC-9 | FJ624872.1 | A | Y | ||||||||||||||||||||||||||||||||||
KPC-10 | GQ140348.1 | R | Y | ||||||||||||||||||||||||||||||||||
KPC-11 | HM066995.1 | L | |||||||||||||||||||||||||||||||||||
KPC-12 | HQ641421.1 | M | |||||||||||||||||||||||||||||||||||
KPC-13 | HQ342889.1 | G | Y | ||||||||||||||||||||||||||||||||||
KPC-14 | JX524191.1 | ||||||||||||||||||||||||||||||||||||
KPC-15 | KC433553.1 | R | L | K | G | Y | |||||||||||||||||||||||||||||||
KPC-16 | KC465199.1 | S | L | ||||||||||||||||||||||||||||||||||
KPC-17 | KC465200.1 | L | |||||||||||||||||||||||||||||||||||
KPC-18 | KP681699.1 | I | |||||||||||||||||||||||||||||||||||
KPC-19 | KJ775801.1 | Y | T | ||||||||||||||||||||||||||||||||||
KPC-21 | NG_049254.1 | R | |||||||||||||||||||||||||||||||||||
KPC-22 | KM379100.1 | G | L | ||||||||||||||||||||||||||||||||||
KPC-23 | MH450213.1 | A | Y | ||||||||||||||||||||||||||||||||||
KPC-24 | KR052099.1 | P | |||||||||||||||||||||||||||||||||||
KPC-25 | NG_051167.1 | ||||||||||||||||||||||||||||||||||||
KPC-26 | KX619622.1 | S | |||||||||||||||||||||||||||||||||||
KPC-27 | KX828722.1 | R | Y | ||||||||||||||||||||||||||||||||||
KPC-28 | KY282958.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-29 | KY563764.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-30 | KY646302.1 | H | |||||||||||||||||||||||||||||||||||
KPC-31 | MAPH01000113.1 | Y | Y | ||||||||||||||||||||||||||||||||||
KPC-32 | MAPO01000050.1 | Y | M | Y | |||||||||||||||||||||||||||||||||
KPC-33 | CP025144.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-34 | KU985429.1 | ||||||||||||||||||||||||||||||||||||
KPC-35 | MH404098.1 | P | |||||||||||||||||||||||||||||||||||
KPC-36 | MH593787.1 | E | Y | ||||||||||||||||||||||||||||||||||
KPC-37 | MH718730.1 | R | L | ||||||||||||||||||||||||||||||||||
KPC-38 | MK098861.1 | Y | A | ||||||||||||||||||||||||||||||||||
KPC-39 | MK118771.1 | T | Y | ||||||||||||||||||||||||||||||||||
KPC-40 | QRBR01000058.1 | S | Y | ||||||||||||||||||||||||||||||||||
KPC-41 | MK497255.1 | ? | Y | ||||||||||||||||||||||||||||||||||
KPC-42 | MK467612.1 | A | |||||||||||||||||||||||||||||||||||
KPC-43 | MK628511.1 | R | |||||||||||||||||||||||||||||||||||
KPC-44 | NG_065427.1 | ||||||||||||||||||||||||||||||||||||
KPC-45 | MN104596.1 | K | |||||||||||||||||||||||||||||||||||
KPC-46 | MN267701.1 | P | Y | ||||||||||||||||||||||||||||||||||
KPC-49 | MN619655.1 | S | Y | ||||||||||||||||||||||||||||||||||
KPC-50 | MN654342.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-51 | MN725731.1 | N | H | N | |||||||||||||||||||||||||||||||||
KPC-52 | MN725732.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-54 | MN854706.1 | S | |||||||||||||||||||||||||||||||||||
KPC-55 | MT028409.1 | N | |||||||||||||||||||||||||||||||||||
KPC-56 | MT040751.1 | Y | W | ||||||||||||||||||||||||||||||||||
KPC-57 | MT358626.1 | V | |||||||||||||||||||||||||||||||||||
KPC-58 | NG_070177.1 | ||||||||||||||||||||||||||||||||||||
KPC-59 | NG_070178.1 | D | |||||||||||||||||||||||||||||||||||
KPC-60 | NG_070179.1 | T | |||||||||||||||||||||||||||||||||||
KPC-61 | NG_070180.1 | P | Y | ||||||||||||||||||||||||||||||||||
KPC-62 | NG_073465.1 | Q | Y | ||||||||||||||||||||||||||||||||||
KPC-63 | NG_073466.1 | S | Y | ||||||||||||||||||||||||||||||||||
KPC-64 | NG_073467.1 | S | A | H | Y | ||||||||||||||||||||||||||||||||
KPC-65 | NG_073468.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-66 | NG_070739.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-71 | NG_070895.1 | S | |||||||||||||||||||||||||||||||||||
KPC-72 | NG_070740.1 | D | |||||||||||||||||||||||||||||||||||
KPC-73 | NG_070741.1 | ||||||||||||||||||||||||||||||||||||
KPC-74 | NG_070742.1 | ||||||||||||||||||||||||||||||||||||
KPC-75 | NG_070743.1 | F | |||||||||||||||||||||||||||||||||||
KPC-76 | NG_070896.1 | Y | |||||||||||||||||||||||||||||||||||
KPC-77 | NG_070897.1 | P | |||||||||||||||||||||||||||||||||||
KPC-78 | NG_071204.1 | A | |||||||||||||||||||||||||||||||||||
KPC-79 | NG_071205.1 | ||||||||||||||||||||||||||||||||||||
KPC-80 | NG_073469.1 | ||||||||||||||||||||||||||||||||||||
KPC-81 | NG_073470.1 | ||||||||||||||||||||||||||||||||||||
KPC-82 | NG_073471.1 | ||||||||||||||||||||||||||||||||||||
KPC-83 | MW581775.1 | T | |||||||||||||||||||||||||||||||||||
KPC-86 | MZ067229.1 | G | |||||||||||||||||||||||||||||||||||
KPC-87 | MZ067230.1 | A | |||||||||||||||||||||||||||||||||||
KPC-90 | MZ570431.1 | ||||||||||||||||||||||||||||||||||||
KPC-93 | MZ569034.1 | ||||||||||||||||||||||||||||||||||||
KPC-94 | MZ646140.1 | H | Y | ||||||||||||||||||||||||||||||||||
KPC-95 | MZ646141.1 | T | Y | Y | |||||||||||||||||||||||||||||||||
KPC-123 | ON012820.1 | A | |||||||||||||||||||||||||||||||||||
MrBayes | 5 | 3 | 2 | 2 | 4 | 3 | 6 | 5 | 1 | 4 | 2 | 27 | |||||||||||||||||||||||||
Parisomony1 | 3 | 3 | 2 | 2 | 4 | 3 | 7 | 4 | 2 | 4 | 2 | 10 | |||||||||||||||||||||||||
Parisomony2 | 4 | 3 | 2 | 2 | 4 | 3 | 4 | 4 | 2 | 4 | 2 | 12 |
Species/Gene | Accession | Citation |
---|---|---|
Klebsiella pneumoniae | NG049268.1 | [49] |
PIT-2 (SHV-1) | P0AD63.1 | [50] |
R-TEM | J01749.1 | [51] |
PSE-4 | J05162 | [52] |
Rhodopseudomas capulate (ampR gene) | X1579.1 | [53] |
Actinomadura | NG_047541.1 | [54] |
Bacillus cereus 569H | NG_047482.1 | [55] |
Bacillus cereus 5/B | M12607.1 | [56] |
Bacillus cereus III | M15195 | [57] |
Bacillus licheniformis penicillinase | V00093.1 | [58] |
Streptomyces badius | M34178.1 | [58] |
Streptomyces cacaoi Ulg | BAA14224.1 | [59] |
Klebsiella oxytoca | M27459.1 | [60] |
Staphylococcus aureus | X04121 | [61] |
Streptomyces albus | NG047481.1 | [62] |
Streptomyces lavendulae | M34180.1 | [58] |
Streptomyces fradiae | M34179.1 | [58] |
KPC-2 | NG_049253 | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garsevanyan, S.; Barlow, M. The Klebsiella pneumoniae carbapenemase (KPC) β-Lactamase Has Evolved in Response to Ceftazidime Avibactam. Antibiotics 2024, 13, 40. https://doi.org/10.3390/antibiotics13010040
Garsevanyan S, Barlow M. The Klebsiella pneumoniae carbapenemase (KPC) β-Lactamase Has Evolved in Response to Ceftazidime Avibactam. Antibiotics. 2024; 13(1):40. https://doi.org/10.3390/antibiotics13010040
Chicago/Turabian StyleGarsevanyan, Sona, and Miriam Barlow. 2024. "The Klebsiella pneumoniae carbapenemase (KPC) β-Lactamase Has Evolved in Response to Ceftazidime Avibactam" Antibiotics 13, no. 1: 40. https://doi.org/10.3390/antibiotics13010040
APA StyleGarsevanyan, S., & Barlow, M. (2024). The Klebsiella pneumoniae carbapenemase (KPC) β-Lactamase Has Evolved in Response to Ceftazidime Avibactam. Antibiotics, 13(1), 40. https://doi.org/10.3390/antibiotics13010040