Impact of Antibiotic-Loaded PMMA Spacers on the Osteogenic Potential of hMSCs
Abstract
:1. Introduction
2. Results
2.1. DAPI Cell Count
2.2. 99mTc-HDP Labelling
2.3. Calcium in Cell Culture Medium
2.4. Phosphate in Cell Culture Medium
3. Discussion
4. Materials and Methods
4.1. Study Design at a Glance
- Group 1: agarose (2 × 6 dishes osteogenic differentiation, 2 × 6 dishes control)
- Group 2: 0.5 g PMMA bone cement (2 × 6 dishes osteogenic differentiation, 2 × 6 dishes control)
- Group 3: 0.5 g PMMA bone cement containing Gentamicin (2 × 6 dishes osteogenic differentiation, 2 × 6 dishes control)
- Group 4: 0.5 g PMMA bone cement containing Vancomycin (2 × 6 dishes osteogenic differentiation, 2 × 6 dishes control)
- Group 5: 0.5 g PMMA bone cement containing Gentamicin und Clindamycin (2 × 6 dishes osteogenic differentiation, 2 × 6 dishes control)
- Group 6: 0.5 g PMMA bone cement containing Gentamicin und Vancomycin (2 × 6 dishes osteogenic differentiation, 2 × 6 dishes control)
4.2. Harvest of Human Mesenchymal Stem Cells
4.3. hMSC Expansion
4.4. Determination of Bone Cement Mass
4.5. Preparation of Petri Dishes
- Group 1: agarose (Sigma-Aldrich, Darmstadt, Germany)
- Group 2: 0.5 g of PMMA bone cement (Palacos R, Heraeus, Hanau, Germany)
- Group 3: 0.5 g of PMMA bone cement containing Gentamicin (Palacos R + G, Heraeus)
- Group 4: 0.5 g of PMMA bone cement (Heraeus) mixed with 12 mg Vancomycin (Sigma)
- Group 5: 0.5 g of PMMA bone cement containing Gentamicin and Clindamycin (Copal G + C, Heraeus)
- Group 6: 0.5 g of PMMA bone cement containing Gentamicin and Vancomycin (Copal G + V, Heraeus)
4.6. hMSC Differentiation
4.7. DAPI Staining and Cell Count
4.8. 99mTc-HDP Labelling
4.9. Measurements of Calcium and Phosphate in Cell Culture Medium
4.10. Measurements of Calcium and Phosphate in Cell Culture Medium
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helbig, L.; Guehring, T.; Titze, N.; Nurjadi, D.; Sonntag, R.; Armbruster, J.; Wildemann, B.; Schmidmaier, G.; Gruetzner, A.P.; Freischmidt, H. A new sequential animal model for infection-related non-unions with segmental bone defect. BMC Musculoskelet. Disord. 2020, 21, 329. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, A.; Zimmermann, G.; Hammer, K.; Bruckner, T.; Grutzner, P.A.; von Recum, J. Cigarette smoking influences the clinical and occupational outcome of patients with tibial shaft fractures. Injury 2011, 42, 1435–1442. [Google Scholar] [CrossRef] [PubMed]
- Patzakis, M.J.; Wilkins, J. Factors influencing infection rate in open fracture wounds. Clin. Orthop. Relat. Res. 1989, 243, 36–40. [Google Scholar] [CrossRef]
- Boxma, H.; Broekhuizen, T.; Patka, P.; Oosting, H. Randomised controlled trial of single-dose antibiotic prophylaxis in surgical treatment of closed fractures: The Dutch Trauma Trial. Lancet 1996, 347, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Metsemakers, W.J.; Kuehl, R.; Moriarty, T.F.; Richards, R.G.; Verhofstad, M.H.J.; Borens, O.; Kates, S.; Morgenstern, M. Infection after fracture fixation: Current surgical and microbiological concepts. Injury 2018, 49, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Lentino, J.R. Prosthetic joint infections: Bane of orthopedists, challenge for infectious disease specialists. Clin. Infect. Dis. 2003, 36, 1157–1161. [Google Scholar] [CrossRef] [PubMed]
- Tande, A.J.; Patel, R. Prosthetic joint infection. Clin. Microbiol. Rev. 2014, 27, 302–345. [Google Scholar] [CrossRef]
- Aggarwal, V.K.; Rasouli, M.R.; Parvizi, J. Periprosthetic joint infection: Current concept. Indian J. Orthop. 2013, 47, 10–17. [Google Scholar] [CrossRef]
- Neut, D.; Kluin, O.S.; Thompson, J.; van der Mei, H.C.; Busscher, H.J. Gentamicin release from commercially-available gentamicin-loaded PMMA bone cements in a prosthesis-related interfacial gap model and their antibacterial efficacy. BMC Musculoskelet. Disord. 2010, 11, 258. [Google Scholar] [CrossRef]
- Lotfipour, F.; Abdollahi, S.; Jelvehgari, M.; Valizadeh, H.; Hassan, M.; Milani, M. Study of antimicrobial effects of vancomycin loaded PLGA nanoparticles against enterococcus clinical isolates. Drug Res. 2014, 64, 348–352. [Google Scholar] [CrossRef]
- Martinez-Moreno, J.; Merino, V.; Nacher, A.; Rodrigo, J.L.; Climente, M.; Merino-Sanjuan, M. Antibiotic-loaded Bone Cement as Prophylaxis in Total Joint Replacement. Orthop. Surg. 2017, 9, 331–341. [Google Scholar] [CrossRef] [PubMed]
- Buchholz, H.W.; Elson, R.A.; Engelbrecht, E.; Lodenkamper, H.; Rottger, J.; Siegel, A. Management of deep infection of total hip replacement. J. Bone Jt. Surg. Br. 1981, 63-B, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Borgwardt, L.; Hoiby, N.; Wu, H.; Sorensen, T.S.; Borgwardt, A. Prosthesis infections after orthopedic joint replacement: The possible role of bacterial biofilms. Orthop. Rev. 2013, 5, 65–71. [Google Scholar] [CrossRef]
- Alford, A.I.; Nicolaou, D.; Hake, M.; McBride-Gagyi, S. Masquelet’s induced membrane technique: Review of current concepts and future directions. J. Orthop. Res. 2021, 39, 707–718. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Sinha, S. Infected nonunion of the long bones. Clin. Orthop. Relat. Res. 2005, 431, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Magnan, B.; Bondi, M.; Maluta, T.; Samaila, E.; Schirru, L.; Dall’Oca, C. Acrylic bone cement: Current concept review. Musculoskelet. Surg. 2013, 97, 93–100. [Google Scholar] [CrossRef]
- Moskowitz, J.S.; Blaisse, M.R.; Samuel, R.E.; Hsu, H.P.; Harris, M.B.; Martin, S.D.; Lee, J.C.; Spector, M.; Hammond, P.T. The effectiveness of the controlled release of gentamicin from polyelectrolyte multilayers in the treatment of Staphylococcus aureus infection in a rabbit bone model. Biomaterials 2010, 31, 6019–6030. [Google Scholar] [CrossRef] [PubMed]
- Szabelski, J.; Karpiński, R.; Krakowski, P.; Jojczuk, M.; Jonak, J.; Nogalski, A. Analysis of the Effect of Component Ratio Imbalances on Selected Mechanical Properties of Seasoned, Medium Viscosity Bone Cements. Materials 2022, 15, 5577. [Google Scholar] [CrossRef]
- Rodrigues, D.C.; Gilbert, J.L.; Bader, R.A.; Hasenwinkel, J.M. PMMA brush-containing two-solution bone cement: Preparation, characterization, and influence of composition on cement properties. J. Mater. Sci. Mater. Med. 2014, 25, 79–89. [Google Scholar] [CrossRef]
- Gergely, R.C.; Toohey, K.S.; Jones, M.E.; Small, S.R.; Berend, M.E. Towards the optimization of the preparation procedures of PMMA bone cement. J. Orthop. Res. 2016, 34, 915–923. [Google Scholar] [CrossRef]
- Germovsek, E.; Barker, C.I.; Sharland, M. What do I need to know about aminoglycoside antibiotics? Arch. Dis. Child. Educ. Pract. Ed. 2017, 102, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Trampuz, A.; Zimmerli, W. Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 2006, 37 (Suppl. 2), S59–S66. [Google Scholar] [CrossRef] [PubMed]
- Kirby, A.; Graham, R.; Williams, N.J.; Wootton, M.; Broughton, C.M.; Alanazi, M.; Anson, J.; Neal, T.J.; Parry, C.M. Staphylococcus aureus with reduced glycopeptide susceptibility in Liverpool, UK. J. Antimicrob. Chemother. 2010, 65, 721–724. [Google Scholar] [CrossRef] [PubMed]
- Aljutayli, A.; Marsot, A.; Nekka, F. An Update on Population Pharmacokinetic Analyses of Vancomycin, Part I: In Adults. Clin. Pharmacokinet. 2020, 59, 671–698. [Google Scholar] [CrossRef] [PubMed]
- Widmer, A.F.; Frei, R.; Rajacic, Z.; Zimmerli, W. Correlation between in vivo and in vitro efficacy of antimicrobial agents against foreign body infections. J. Infect. Dis. 1990, 162, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Isefuku, S.; Joyner, C.J.; Simpson, A.H. Gentamicin may have an adverse effect on osteogenesis. J. Orthop. Trauma. 2003, 17, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, J.; Klingele, S.; Haberkorn, U.; Schmidmaier, G.; Grossner, T. Impact of High-Dose Anti-Infective Agents on the Osteogenic Response of Mesenchymal Stem Cells. Antibiotics 2021, 10, 1257. [Google Scholar] [CrossRef] [PubMed]
- Grossner, T.; Gotterbarm, T.; Gerbaudo, V.H.; Haberkorn, U.; Spector, M. (99m)Tc-Methyl-Diphosphonate Binding to Mineral Deposits in Cultures of Marrow-Derived Mesenchymal Stem Cells in Osteogenic Medium. Tissue Eng. Part C Methods 2019, 25, 49–57. [Google Scholar] [CrossRef]
- Grossner, T.L.; Haberkorn, U.; Gotterbarm, T. (99m)Tc-Hydroxydiphosphonate quantification of extracellular matrix mineralization in 3D human mesenchymal stem cell cultures. Bone Jt. Res. 2019, 8, 333–341. [Google Scholar] [CrossRef]
- Grossner, T.; Helbig, L.; Schmidmaier, G.; Haberkorn, U.; Gotterbarm, T. (99m)Tc-polyphosphonate labelling—Enhancement of a novel method for the quantification of osteogenic differentiation of MSCs in vitro. Injury 2020, 53, S34–S39. [Google Scholar] [CrossRef]
- Hofmann, J.; Borcherding, K.; Thiel, K.; Lingner, T.; Sommer, U.; Haberkorn, U.; Bewersdorf, T.N.; Schmidmaier, G.; Grossner, T. (99m)Tc-HDP Labeling—A Non-Destructive Method for Real-Time Surveillance of the Osteogenic Differentiation Potential of hMSC during Ongoing Cell Cultures. Int. J. Mol. Sci. 2022, 23, 15874. [Google Scholar] [CrossRef] [PubMed]
- Rathbone, C.R.; Cross, J.D.; Brown, K.V.; Murray, C.K.; Wenke, J.C. Effect of various concentrations of antibiotics on osteogenic cell viability and activity. J. Orthop. Res. 2011, 29, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Antoci, V., Jr.; Adams, C.S.; Hickok, N.J.; Shapiro, I.M.; Parvizi, J. Antibiotics for local delivery systems cause skeletal cell toxicity in vitro. Clin. Orthop. Relat. Res. 2007, 462, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Dubey, N.; Xu, J.; Zhang, Z.; Nor, J.E.; Bottino, M.C. Comparative Evaluation of the Cytotoxic and Angiogenic Effects of Minocycline and Clindamycin: An In Vitro Study. J. Endod. 2019, 45, 882–889. [Google Scholar] [CrossRef] [PubMed]
- Naal, F.D.; Salzmann, G.M.; von Knoch, F.; Tuebel, J.; Diehl, P.; Gradinger, R.; Schauwecker, J. The effects of clindamycin on human osteoblasts in vitro. Arch. Orthop. Trauma Surg. 2008, 128, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.J.; Gonzalez, D.; Goldman, J.L.; Yogev, R.; Sullivan, J.E.; Reed, M.D.; Anand, R.; Martz, K.; Berezny, K.; Benjamin, D.K., Jr.; et al. Pharmacokinetics of Clindamycin in Obese and Nonobese Children. Antimicrob. Agents Chemother. 2017, 61, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Thabit, A.K.; Fatani, D.F.; Bamakhrama, M.S.; Barnawi, O.A.; Basudan, L.O.; Alhejaili, S.F. Antibiotic penetration into bone and joints: An updated review. Int. J. Infect. Dis. 2019, 81, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, A.; Bershad, S. Topical acne drugs: Review of clinical properties, systemic exposure, and safety. Am. J. Clin. Dermatol. 2003, 4, 473–492. [Google Scholar] [CrossRef]
- Stein Gold, L.; Baldwin, H.; Kircik, L.H.; Weiss, J.S.; Pariser, D.M.; Callender, V.; Lain, E.; Gold, M.; Beer, K.; Draelos, Z.; et al. Efficacy and Safety of a Fixed-Dose Clindamycin Phosphate 1.2%, Benzoyl Peroxide 3.1%, and Adapalene 0.15% Gel for Moderate-to-Severe Acne: A Randomized Phase II Study of the First Triple-Combination Drug. Am. J. Clin. Dermatol. 2022, 23, 93–104. [Google Scholar] [CrossRef]
- Komatsu, K.; Hamajima, K.; Ozawa, R.; Kitajima, H.; Matsuura, T.; Ogawa, T. Novel Tuning of PMMA Orthopedic Bone Cement Using TBB Initiator: Effect of Bone Cement Extracts on Bioactivity of Osteoblasts and Osteoclasts. Cells 2022, 11, 3999. [Google Scholar] [CrossRef]
- PALACOS R + G Instructions for Use. Heraeus Medical GmbH. 2020, p. 2. Available online: https://www.heraeus-medical.com/en/healthcare-professionals/products/palacos-rg/ (accessed on 15 November 2023).
- Barraza-Vergara, L.F.; Carmona-Sarabia, L.; Torres-Garcia, W.; Domenech-Garcia, M.; Mendez-Vega, J.; Torres-Lugo, M. In vitro assessment of inflammatory skin potential of poly(methyl methacrylate) at non-cytotoxic concentrations. J. Biomed. Mater. Res. A 2023, 111, 1822–1832. [Google Scholar] [CrossRef]
- Tanikake, Y.; Akahane, M.; Furukawa, A.; Tohma, Y.; Inagaki, Y.; Kira, T.; Tanaka, Y. Calcium Concentration in Culture Medium as a Nondestructive and Rapid Marker of Osteogenesis. Cell Transplant. 2017, 26, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Karpiński, R.; Szabelski, J.; Krakowski, P.; Jojczuk, M.; Jonak, J.; Nogalski, A. Evaluation of the Effect of Selected Physiological Fluid Contaminants on the Mechanical Properties of Selected Medium-Viscosity PMMA Bone Cements. Materials 2022, 15, 2197. [Google Scholar] [CrossRef] [PubMed]
- Anagnostakos, K.; Meyer, C. Antibiotic Elution from Hip and Knee Acrylic Bone Cement Spacers: A Systematic Review. Biomed. Res. Int. 2017, 2017, 4657874. [Google Scholar] [CrossRef] [PubMed]
- Colding-Rasmussen, T.; Horstmann, P.; Petersen, M.M.; Hettwer, W. Antibiotic Elution Characteristics and Pharmacokinetics of Gentamicin and Vancomycin from a Mineral Antibiotic Carrier: An in vivo Evaluation of 32 Clinical Cases. J. Bone Jt. Infect. 2018, 3, 234–240. [Google Scholar] [CrossRef]
- PALACOS R Instructions for Use. Heraeus Medical GmbH. 2019, p. 5. Available online: https://www.heraeus-medical.com/en/healthcare-professionals/products/palacos-r/ (accessed on 26 December 2023).
- COPAL G + V Instructions for Use. Heraeus Medical GmbH. 2019, p. 6. Available online: https://www.heraeus-medical.com/de/healthcare-professionals/products/copal-gv/ (accessed on 26 December 2023).
- COPAL G + C Instructions for Use. Heraeus Medical GmbH. 2019, p. 5. Available online: https://www.heraeus-medical.com/de/healthcare-professionals/products/copal-gc/ (accessed on 26 December 2023).
- Jaiswal, N.; Haynesworth, S.E.; Caplan, A.I.; Bruder, S.P. Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem. 1997, 64, 295–312. [Google Scholar] [CrossRef]
Bone Cement Name | Powder Ingredients | Liquid Ingredients |
---|---|---|
Palacos R | Poly(methylacrylate, methyl methacrylate) (PMMA), zirconium dioxide, benzoyl peroxide (BPO), colorant E141 | Methyl methacrylate, N,N-dimethyl-p-toluidine, hydroquinone, colorant E141 |
Palacos R + G | 82% PMMA copolymer, 15% zirconium dioxide, 1% BPO, 2% Gentamicin sulfate, colorant E141 | 98% Methyl methacrylate, 2% N,N-dimethyl-p-toluidine, hydroquinone, colorant E141 |
Copal G + C | PMMA copolymer, zirconium dioxide, BPO, 2% Gentamicin sulfate, 2% Clindamycin hydrochloride, colorant E141 | Methyl methacrylate, N,N-dimethyl-p-toluidine, hydroquinone, colorant E141 |
Copal G + V | 78% PMMA copolymer, 14% zirconium dioxide, 1% BPO, 2% Gentamicin sulfate, 5% Vancomycin hydrochloride, colorant E141 | 98% Methyl methacrylate, 2% N,N-dimethyl-p-toluidine, hydroquinone, colorant E141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hofmann, J.; Bewersdorf, T.N.; Sommer, U.; Lingner, T.; Findeisen, S.; Schamberger, C.; Schmidmaier, G.; Großner, T. Impact of Antibiotic-Loaded PMMA Spacers on the Osteogenic Potential of hMSCs. Antibiotics 2024, 13, 44. https://doi.org/10.3390/antibiotics13010044
Hofmann J, Bewersdorf TN, Sommer U, Lingner T, Findeisen S, Schamberger C, Schmidmaier G, Großner T. Impact of Antibiotic-Loaded PMMA Spacers on the Osteogenic Potential of hMSCs. Antibiotics. 2024; 13(1):44. https://doi.org/10.3390/antibiotics13010044
Chicago/Turabian StyleHofmann, Jakob, Tim Niklas Bewersdorf, Ulrike Sommer, Thomas Lingner, Sebastian Findeisen, Christian Schamberger, Gerhard Schmidmaier, and Tobias Großner. 2024. "Impact of Antibiotic-Loaded PMMA Spacers on the Osteogenic Potential of hMSCs" Antibiotics 13, no. 1: 44. https://doi.org/10.3390/antibiotics13010044