Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antibiofilm Activity of 6-Polyaminosteroid Derivatives
2.2. The Effect of 6-Polyaminosterols on CRPA Pyocyanin Production
2.3. G. mellonella Treatment Assays
2.4. Contributions to the Mechanism of Action of the 4f Derivative
3. Materials and Methods
3.1. The Synthesis of 6-Polaminosteroid Derivatives
3.2. Bacterial Strains and Culture Conditions
3.3. Biofilm Prevention and Eradication Assays
3.4. Pyocyanin Quantification Assays
3.5. Antivirulence Assays
3.6. The Preparation of Protein Extracts and Proteomic Analyses
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018, 16, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Maure, A.; Robino, E.; Van der Henst, C. The intracellular life of Acinetobacter baumannii. Trends Microbiol. 2023, 31, 1238–1250. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, C.C.; Chen, Y.; Goetzmann, H.S.; Hao, Y.; Borchers, M.T.; Hassett, D.J.; Young, L.R.; Mavrodi, D.; Thomashow, L.; Lau, G.W. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis. Am. J. Pathol. 2009, 175, 2473–2488. [Google Scholar] [CrossRef] [PubMed]
- Allen, L.; Dockrell, D.H.; Pattery, T.; Lee, D.G.; Cornelis, P.; Hellewell, P.G.; Whyte, M.K.B. Pyocyanin Production by Pseudomonas aeruginosa Induces Neutrophil Apoptosis and Impairs Neutrophil-Mediated Host Defenses In Vivo. J. Immunol. 2005, 174, 3643–3649. [Google Scholar] [CrossRef] [PubMed]
- Flemming, H.-C.; Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 2010, 8, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Shang, W.; Peng, H.; Rao, Y.; Zhao, X.; Hu, Z.; Yang, Y.; Hu, Q.; Tan, L.; Xiong, K.; et al. Virulence determinants are required for brain abscess formation through staphylococcus aureus infection and are potential targets of antivirulence factor therapy. Front. Microbiol. 2019, 10, 447050. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.A.; Murray, B.E. The rise of the Enterococcus: Beyond vancomycin resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef]
- Tan, C.A.Z.; Antypas, H.; Kline, K.A. Overcoming the challenge of establishing biofilms in vivo: A roadmap for Enterococci. Curr. Opin. Microbiol. 2020, 53, 9–18. [Google Scholar] [CrossRef]
- Lebreton, F.; Manson, A.L.; Saavedra, J.T.; Straub, T.J.; Earl, A.M.; Gilmore, M.S. Tracing the Enterococci from Paleozoic Origins to the Hospital. Cell 2017, 169, 849–861.e13. [Google Scholar] [CrossRef]
- Werner, G.; Coque, T.M.; Hammerum, A.M.; Hope, R.; Hryniewicz, W.; Johnson, A.; Klare, I.; Kristinsson, K.G.; Leclercq, R.; Lester, C.H.; et al. Emergence and spread of vancomycin resistance among enterococci in Europe. Eurosurveillance 2008, 13, 19046. [Google Scholar] [CrossRef] [PubMed]
- Bourguet-Kondracki, M.L.; Brunel, J.M. Promises of the Unprecedented Aminosterol Squalamine. Outst. Mar. Mol. Chem. Biol. Anal. 2014, 12, 265–284. [Google Scholar] [CrossRef]
- Salmi, C.; Loncle, C.; Vidal, N.; Letourneux, Y.; Fantini, J.; Maresca, M.; Taïeb, N.; Pagès, J.-M.; Brunel, J.M. Squalamine: An appropriate strategy against the emergence of multidrug resistant gram-negative bacteria? PLoS ONE 2008, 3, e2765. [Google Scholar] [CrossRef]
- Alhanout, K.; Malesinki, S.; Vidal, N.; Peyrot, V.; Rolain, J.M.; Brunel, J.M. New insights into the antibacterial mechanism of action of squalamine. J. Antimicrob. Chemother. 2010, 65, 1688–1693. [Google Scholar] [CrossRef] [PubMed]
- Blanchet, M.; Borselli, D.; Rodallec, A.; Peiretti, F.; Vidal, N.; Bolla, J.; Digiorgio, C.; Morrison, K.R.; Wuest, W.M.; Brunel, J.M. Claramines: A New Class of Broad-Spectrum Antimicrobial Agents with Bimodal Activity. ChemMedChem 2018, 13, 1018–1027. [Google Scholar] [CrossRef] [PubMed]
- Di Pasquale, E.; Salmi-Smail, C.; Brunel, J.-M.; Sanchez, P.; Fantini, J.; Maresca, M. Biophysical studies of the interaction of squalamine and other cationic amphiphilic molecules with bacterial and eukaryotic membranes: Importance of the distribution coefficient in membrane selectivity. Chem. Phys. Lipids 2010, 163, 131–140. [Google Scholar] [CrossRef]
- Vergoz, D.; Nilly, F.; Desriac, F.; Barreau, M.; Géry, A.; Lepetit, C.; Sichel, F.; Jeannot, K.; Giard, J.-C.; Garon, D.; et al. 6-Polyaminosteroid Squalamine Analogues Display Antibacterial Activity against Resistant Pathogens. Int. J. Mol. Sci. 2023, 24, 8568. [Google Scholar] [CrossRef]
- Dosler, S.; Karaaslan, E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides 2014, 62, 32–37. [Google Scholar] [CrossRef]
- Eze, E.C.; El Zowalaty, M.E.; Pillay, M. Antibiotic resistance and biofilm formation of Acinetobacter baumannii isolated from high-risk effluent water in tertiary hospitals in South Africa. J. Glob. Antimicrob. Resist. 2021, 27, 82–90. [Google Scholar] [CrossRef]
- Robin, B.; Nicol, M.; Le, H.; Tahrioui, A.; Schaumann, A.; Vuillemenot, J.-B.; Vergoz, D.; Lesouhaitier, O.; Jouenne, T.; Hardouin, J.; et al. MacAB-TolC Contributes to the Development of Acinetobacter baumannii Biofilm at the Solid-Liquid Interface. Front. Microbiol. 2022, 12, 785161. [Google Scholar] [CrossRef]
- Brady, A.J.; Laverty, G.; Gilpin, D.F.; Kearney, P.; Tunney, M. Antibiotic susceptibility of planktonic-and biofilm-grown staphylococci isolated from implant-associated infections: Should MBEC and nature of biofilm formation replace MIC? J. Med. Microbiol. 2017, 66, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, A.; Rasmussen, M. Antibiotic regimens with rifampicin for treatment of Enterococcus faecium in biofilms. Int. J. Antimicrob. Agents 2014, 44, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, M.L.; Campilongo, R.; Casalino, M.; Micheli, G.; Colonna, B.; Prosseda, G. Polyamines: Emerging players in bacteria–host interactions. Int. J. Med. Microbiol. 2013, 303, 484–491. [Google Scholar] [CrossRef] [PubMed]
- Michael, A.J. Polyamine function in archaea and bacteria. J. Biol. Chem. 2018, 293, 18693–18701. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Swiatlo, E. A multifaceted role for polyamines in bacterial pathogens. Mol. Microbiol. 2008, 68, 4–16. [Google Scholar] [CrossRef] [PubMed]
- Nakada, Y.; Itoh, Y. Identification of the putrescine biosynthetic genes in Pseudomonas aeruginosa and characterization of agmatine deiminase and N-carbamoylputrescine amidohydrolase of the arginine decarboxylase pathway. Microbiology 2003, 149 Pt 3, 707–714. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Maezato, Y.; Kim, S.H.; Kurihara, S.; Liang, J.; Michael, A.J. Polyamine-independent growth and biofilm formation, and functional spermidine/spermine N-acetyltransferases in Staphylococcus aureus and Enterococcus faecalis. Mol. Microbiol. 2019, 111, 159–175. [Google Scholar] [CrossRef]
- Thongbhubate, K.; Irie, K.; Sakai, Y.; Itoh, A.; Suzuki, H. Improvement of putrescine production through the arginine decarboxylase pathway in Escherichia coli K-12. AMB Express 2021, 11, 168. [Google Scholar] [CrossRef]
- Joshi, G.S.; Spontak, J.S.; Klapper, D.G.; Richardson, A.R. Arginine catabolic mobile element encoded speG abrogates the unique hypersensitivity of Staphylococcus aureus to exogenous polyamines. Mol. Microbiol. 2011, 82, 9–20. [Google Scholar] [CrossRef]
- Böttcher, T.; Kolodkin-Gal, I.; Kolter, R.; Losick, R.; Clardy, J. Synthesis and activity of biomimetic biofilm disruptors. J. Am. Chem. Soc. 2013, 135, 2927–2930. [Google Scholar] [CrossRef]
- Ladero, V.; Fernández, M.; Calles-Enríquez, M.; Sánchez-Llana, E.; Cañedo, E.; Martín, M.C.; Alvarez, M.A. Is the production of the biogenic amines tyramine and putrescine a species-level trait in enterococci? Food Microbiol. 2012, 30, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Lin, Q.; Wang, H.; Huang, J.; Liu, Z.; Chen, Q.; Yu, G.; Xu, Z.; Cheng, P.; Liang, Z.; Zhang, L.-H. Spermidine Is an Intercellular Signal Modulating T3SS Expression in Pseudomonas aeruginosa. Microbiol. Spectr. 2022, 10, e00644-22. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Hossain, S.S.; Moreira, Z.M.; Haney, C.H. Putrescine and Its Metabolic Precursor Arginine Promote Biofilm and c-di-GMP Synthesis in Pseudomonas aeruginosa. J. Bacteriol. 2022, 204, e00297-21. [Google Scholar] [CrossRef] [PubMed]
- Qu, L.; She, P.; Wang, Y.; Liu, F.; Zhang, D.; Chen, L.; Luo, Z.; Xu, H.; Qi, Y.; Wu, Y. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication. Microbiologyopen 2016, 5, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Armalytė, J.; Čepauskas, A.; Šakalytė, G.; Martinkus, J.; Skerniškytė, J.; Martens, C.; Sužiedėlienė, E.; Garcia-Pino, A.; Jurėnas, D. A polyamine acetyltransferase regulates the motility and biofilm formation of Acinetobacter baumannii. Nat. Commun. 2023, 14, 3531. [Google Scholar] [CrossRef] [PubMed]
- Winter, S.V.; Zychlinsky, A. The bacterial pigment pyocyanin inhibits the NLRP3 inflammasome through intracellular reactive oxygen and nitrogen species. J. Biol. Chem. 2018, 293, 4893–4900. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Brunel, J.-M.; Preusse, M.; Mozaheb, N.; Willger, S.D.; Larrouy-Maumus, G.; Baatsen, P.; Häussler, S.; Bolla, J.-M.; Van Bambeke, F. The membrane-active polyaminoisoprenyl compound NV716 re-sensitizes Pseudomonas aeruginosa to antibiotics and reduces bacterial virulence. Commun. Biol. 2022, 5, 871. [Google Scholar] [CrossRef] [PubMed]
- Martini, C.; Michaux, C.; Bugli, F.; Arcovito, A.; Iavarone, F.; Cacaci, M.; Sterbini, F.P.; Hartke, A.; Sauvageot, N.; Sanguinetti, M.; et al. The polyamine N-acetyltransferase-like enzyme PmvE plays a role in the virulence of Enterococcus faecalis. Infect. Immun. 2015, 83, 364–371. [Google Scholar] [CrossRef]
- Thurlow, L.R.; Joshi, G.S.; Clark, J.R.; Spontak, J.S.; Neely, C.J.; Maile, R.; Richardson, A.R. Functional modularity of the arginine catabolic mobile element contributes to the success of USA300 methicillin-resistant Staphylococcus aureus. Cell Host Microbe 2013, 13, 100–107. [Google Scholar] [CrossRef]
- Ware, D.; Watt, J.; Swiatlo, E. Utilization of Putrescine by Streptococcus pneumoniae During Growth in Choline-limited Medium. J. Microbiol. 2005, 43, 398–405. [Google Scholar]
- Boll, J.M.; Tucker, A.T.; Klein, D.R.; Beltran, A.M.; Brodbelt, J.S.; Davies, B.W.; Trent, M.S. Reinforcing lipid a acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. mBio 2015, 6, e00478-15. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Short, F.L.; Hassan, K.A.; Naidu, V.; Pokhrel, A.; Nagy, S.S.; Prity, F.T.; Shah, B.S.; Afrin, N.; Baker, S.; et al. Systematic analyses identify modes of action of ten clinically relevant biocides and antibiotic antagonism in Acinetobacter baumannii. Nat. Microbiol. 2023, 8, 1995–2005. [Google Scholar] [CrossRef] [PubMed]
- Baharoglu, Z.; Mazel, D. SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol. Rev. 2014, 38, 1126–1145. [Google Scholar] [CrossRef] [PubMed]
- Esterházy, D.; King, M.S.; Yakovlev, G.; Hirst, J. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry 2008, 47, 3964–3971. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Dwyer, D.J.; Hayete, B.; Lawrence, C.A.; Collins, J.J. A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell 2007, 130, 797–810. [Google Scholar] [CrossRef] [PubMed]
- Gicquel, G.; Bouffartigues, E.; Bains, M.; Oxaran, V.; Rosay, T.; Lesouhaitier, O.; Connil, N.; Bazire, A.; Maillot, O.; Bénard, M.; et al. The Extra-Cytoplasmic Function Sigma Factor SigX Modulates Biofilm and Virulence-Related Properties in Pseudomonas aeruginosa. PLoS ONE 2013, 8, e80407. [Google Scholar] [CrossRef]
- Fléchard, M.; Duchesne, R.; Tahrioui, A.; Bouffartigues, E.; Depayras, S.; Hardouin, J.; Lagy, C.; Maillot, O.; Tortuel, D.; Azuama, C.O.; et al. The absence of SigX results in impaired carbon metabolism and membrane fluidity in Pseudomonas aeruginosa. Sci. Rep. 2018, 8, 17212. [Google Scholar] [CrossRef]
- Chevalier, S.; Bouffartigues, E.; Bazire, A.; Tahrioui, A.; Duchesne, R.; Tortuel, D.; Maillot, O.; Clamens, T.; Orange, N.; Feuilloley, M.G.; et al. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa. Biochim. Biophys. Acta BBA—Gene Regul. Mech. 2019, 1862, 706–721. [Google Scholar] [CrossRef]
- Chevalier, S.; Bouffartigues, E.; Tortuel, D.; David, A.; Tahrioui, A.; Labbé, C.; Barreau, M.; Tareau, A.-S.; Louis, M.; Lesouhaitier, O.; et al. Cell Envelope Stress Response in Pseudomonas aeruginosa. Adv. Exp. Med. Biol. 2022, 1386, 147–184. [Google Scholar] [CrossRef]
- Coleman, S.R.; Blimkie, T.; Falsafi, R.; Hancock, R.E.W. Multidrug adaptive resistance of Pseudomonas aeruginosa swarming cells. Antimicrob. Agents Chemother. 2020, 64, e01999-19. [Google Scholar] [CrossRef]
- Petrou, V.I.; Herrera, C.M.; Schultz, K.M.; Clarke, O.B.; Vendome, J.; Tomasek, D.; Banerjee, S.; Rajashankar, K.R.; Dufrisne, M.B.; Kloss, B.; et al. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science 2016, 351, 608–612. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Jenssen, H.; Bains, M.; Wiegand, I.; Gooderham, W.J.; Hancock, R.E.W. The two-component system CprRS senses cationic peptides and triggers adaptive resistance in Pseudomonas aeruginosa independently of ParRS. Antimicrob. Agents Chemother. 2012, 56, 6212–6222. [Google Scholar] [CrossRef] [PubMed]
- Pichereau, V.; Bourot, S.; Flahaut, S.; Blanco, C.; Auffray, Y.; Bernard, T. The osmoprotectant glycine betaine inhibits salt-induced cross-tolerance towards lethal treatment in Enterococcus faecalis. Microbiology 1999, 145, 427–435. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, J.; Komatsuzawa, H.; Yamada, S.; Nishida, T.; Labischinski, H.; Fujiwara, T.; Ohara, M.; Yamagishi, J.-I.; Sugai, M. Molecular Characterization of an atl Null Mutant of Staphylococcus aureus. Microbiol. Immunol. 2002, 46, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Szweda, P.; Schielmann, M.; Kotlowski, R.; Gorczyca, G.; Zalewska, M.; Milewski, S. Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl. Microbiol. Biotechnol. 2012, 96, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Takeuchi, F.; Kuroda, M.; Yuzawa, H.; Aoki, K.-I.; Oguchi, A.; Nagai, Y.; Iwama, N.; Asano, K.; Naimi, T.; et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet 2002, 359, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Lam, M.M.C.; Seemann, T.; Bulach, D.M.; Gladman, S.L.; Chen, H.; Haring, V.; Moore, R.J.; Ballard, S.; Grayson, M.L.; Johnson, P.D.R.; et al. Comparative analysis of the first complete Enterococcus faecium genome. J. Bacteriol. 2012, 194, 2334–2341. [Google Scholar] [CrossRef]
- Rolain, J.-M.; Diene, S.M.; Kempf, M.; Gimenez, G.; Robert, C.; Raoult, D. Real-Time Sequencing to Decipher the Molecular Mechanism of Resistance of a Clinical Pan-Drug-Resistant Acinetobacter baumannii Isolate from Marseille, France. Antimicrob. Agents Chemother. 2013, 57, 592. [Google Scholar] [CrossRef]
- O’Toole, G.A. Microtiter Dish Biofilm Formation Assay. J. Vis. Exp. 2011, 47, e2437. [Google Scholar] [CrossRef]
- Abad, L.; Josse, J.; Tasse, J.; Lustig, S.; Ferry, T.; Diot, A.; Laurent, F.; Valour, F. Antibiofilm and intraosteoblastic activities of rifamycins against Staphylococcus aureus: Promising in vitro profile of rifabutin. J. Antimicrob. Chemother. 2020, 75, 1466–1473. [Google Scholar] [CrossRef]
- Macia, M.D.; Rojo-Molinero, E.; Oliver, A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin. Microbiol. Infect. 2014, 20, 981–990. [Google Scholar] [CrossRef] [PubMed]
- Tahrioui, A.; Ortiz, S.; Azuama, O.C.; Bouffartigues, E.; Benalia, N.; Tortuel, D.; Maillot, O.; Chemat, S.; Kritsanida, M.; Feuilloley, M.; et al. Membrane-Interactive Compounds from Pistacia lentiscus L. Thwart Pseudomonas aeruginosa Virulence. Front. Microbiol. 2020, 11, 543891. [Google Scholar] [CrossRef] [PubMed]
- Azuama, O.C.; Ortiz, S.; Quirós-Guerrero, L.; Bouffartigues, E.; Tortuel, D.; Maillot, O.; Feuilloley, M.; Cornelis, P.; Lesouhaitier, O.; Grougnet, R.; et al. Tackling Pseudomonas aeruginosa Virulence by Mulinane-Like Diterpenoids from Azorella atacamensis. Biomolecules 2020, 10, 1626. [Google Scholar] [CrossRef] [PubMed]
- Khader, R.; Tharmalingam, N.; Mishra, B.; Felix, L.; Ausubel, F.M.; Kelso, M.J.; Mylonakis, E. Characterization of Five Novel Anti-MRSA Compounds Identified Using a Whole-Animal Caenorhabditis elegans/Galleria mellonella Sequential-Screening Approach. Antibiotics 2020, 9, 449. [Google Scholar] [CrossRef] [PubMed]
- Sauvage, S.; Gaviard, C.; Tahrioui, A.; Coquet, L.; Le, H.; Alexandre, S.; Ben Abdelkrim, A.; Bouffartigues, E.; Lesouhaitier, O.; Chevalier, S.; et al. Impact of Carbon Source Supplementations on Pseudomonas aeruginosa Physiology. J. Proteome Res. 2022, 21, 1392–1407. [Google Scholar] [CrossRef] [PubMed]
- Fischer, R.; Kessler, B.M. Gel-aided sample preparation (GASP)—A simplified method for gel-assisted proteomic sample generation from protein extracts and intact cells. Proteomics 2015, 15, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Pintacuda, G.; Lassen, F.H.; Hsu, Y.-H.H.; Kim, A.; Martín, J.M.; Malolepsza, E.; Lim, J.K.; Fornelos, N.; Eggan, K.C.; Lage, K. Genoppi is an open-source software for robust and standardized integration of proteomic and genetic data. Nat. Commun. 2021, 12, 2580. [Google Scholar] [CrossRef]
- Hibbert, T.M.; Whiteley, M.; Renshaw, S.A.; Neill, D.R.; Fothergill, J.L. Emerging strategies to target virulence in Pseudomonas aeruginosa respiratory infections. Crit. Rev. Microbiol. 2023, 10, 1–16. [Google Scholar] [CrossRef]
- Hotinger, J.A.; Morris, S.T.; May, A.E. The Case against Antibiotics and for Anti-Virulence Therapeutics. Microorganisms 2021, 9, 2049. [Google Scholar] [CrossRef]
A. baumannii CRAB | P. aeruginosa CRPA | E. faecium VRE | S. aureus MRSA | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IC50 | MIC | BPC | MBEC | MIC | BPC | MBEC | MIC | BPC | MBEC | MIC | BPC | MBEC | |
4a | 52 | >64 | >128 | ND | >64 | >128 | ND | 8 | 16 | >256 | 32 | 16 | >256 |
4b | 25 | >64 | >128 | ND | >64 | >128 | ND | 16 | 16 | >256 | 16 | 8 | 128 |
4c | 28 | 64 | 128 | ND | 64 | 128 | ND | 8 | >32 | ND | 32 | 32 | ND |
4d | 33 | 64 | 128 | ND | >64 | >128 | ND | 4 | 16 | >256 | 16 | 8 | 128 |
4e | 72 | 16 | 64 | 32 | 64 | 128 | >256 | 8 | 16 | 64 | 16 | 16 | 32 |
4f | 38 | 32 | 32 | 256 | 16 | 32 | 256 | 16 | 32 | 64 | 16 | 16 | 64 |
4g | 27 | 32 | 128 | ND | >64 | 128 | ND | 8 | 16 | >256 | 16 | 32 | ND |
4h | 45 | >64 | >128 | ND | >64 | >128 | ND | 8 | 16 | >256 | 16 | 16 | >256 |
4i | 12 | >64 | 128 | ND | >64 | >128 | ND | 8 | 16 | >256 | 32 | 32 | ND |
4j | 29 | >64 | 128 | ND | >64 | >128 | ND | 4 | 8 | >256 | 16 | 8 | >256 |
4k | 17 | 8 | 16 | >256 | 64 | 128 | ND | 4 | 8 | >256 | 8 | 8 | >256 |
4l | 41 | 16 | 32 | >256 | 64 | 128 | ND | 16 | 16 | >256 | 32 | 16 | >256 |
4m | 33 | 64 | 64 | ND | >64 | >128 | ND | 8 | 16 | >256 | 16 | 16 | >256 |
4n | 46 | >64 | >128 | ND | >64 | >128 | ND | 16 | 16 | >256 | 32 | 32 | >256 |
4o | 28 | 64 | 128 | ND | >64 | >128 | ND | 2 | 32 | >256 | 8 | 16 | >256 |
4p | 15 | 64 | 128 | ND | >64 | >128 | ND | 8 | 16 | >256 | 16 | 16 | ND |
4q | 89 | 16 | 32 | >256 | 64 | 64 | >256 | 8 | 16 | >256 | 8 | 16 | >256 |
4r | 38 | 32 | 64 | 128 | 64 | 128 | ND | 8 | 32 | >256 | 8 | 32 | >256 |
SQ | 66 | 4 | 8 | 32 | 16 | 32 | >256 | 8 | 32 | >256 | 2 | 32 | >256 |
Inhibition > 70% | Inhibition > 40% | |
---|---|---|
4a | 32 | 4 |
4f | - | 4 |
4g | 32 | 4 |
4i | 32 | 16 |
4j | 16 | 4 |
4k | 32 | 16 |
4l | 32 | 8 |
4m | 32 | 8 |
4o | 32 | 16 |
4r | 32 | 16 |
4s | 32 | 16 |
SQ | - | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergoz, D.; Le, H.; Bernay, B.; Schaumann, A.; Barreau, M.; Nilly, F.; Desriac, F.; Tahrioui, A.; Giard, J.-C.; Lesouhaitier, O.; et al. Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria. Antibiotics 2024, 13, 8. https://doi.org/10.3390/antibiotics13010008
Vergoz D, Le H, Bernay B, Schaumann A, Barreau M, Nilly F, Desriac F, Tahrioui A, Giard J-C, Lesouhaitier O, et al. Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria. Antibiotics. 2024; 13(1):8. https://doi.org/10.3390/antibiotics13010008
Chicago/Turabian StyleVergoz, Delphine, Hung Le, Benoit Bernay, Annick Schaumann, Magalie Barreau, Flore Nilly, Florie Desriac, Ali Tahrioui, Jean-Christophe Giard, Olivier Lesouhaitier, and et al. 2024. "Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria" Antibiotics 13, no. 1: 8. https://doi.org/10.3390/antibiotics13010008
APA StyleVergoz, D., Le, H., Bernay, B., Schaumann, A., Barreau, M., Nilly, F., Desriac, F., Tahrioui, A., Giard, J. -C., Lesouhaitier, O., Chevalier, S., Brunel, J. M., Muller, C., & Dé, E. (2024). Antibiofilm and Antivirulence Properties of 6-Polyaminosteroid Derivatives against Antibiotic-Resistant Bacteria. Antibiotics, 13(1), 8. https://doi.org/10.3390/antibiotics13010008