Antimicrobial Susceptibility and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia
Abstract
:1. Introduction
2. Results
2.1. Study Participants
2.2. Antimicrobial Susceptibility of E. coli Isolates
2.3. Antimicrobial Resistance Patterns of E. coli Isolates
2.4. ESBL-Producing E. coli Isolates
2.5. Whole-Genome Sequencing Analysis of ESBL-Producing E. coli Isolates
3. Discussion
3.1. Antimicrobial Resistance of Studied E. coli Isolates
3.2. MDR and ESBL-Producing E. coli among Studied Isolates
4. Conclusions
5. Materials and Methods
5.1. Study Design and Sample Collection
5.2. Isolation and Identification of E. coli
5.3. Antimicrobial Susceptibility Testing
5.4. DNA Extraction and Whole-Genome Sequencing
5.4.1. Raw Data Pre-Processing
5.4.2. De Novo Assembly and QC
5.4.3. AMR Identification
5.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centers for Disease Control and Prevention. Antibiotic Resistance Threats in The United States 2019; U.S. Department of Health and Human Service: Washington, DC, USA, 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 12 January 2024).
- Urban-Chmiel, R.; Marek, A.; ´n-Py´sniak, D.S.; Wieczorek, K.; Dec, M.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria—A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240062702 (accessed on 9 January 2024).
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Skieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, ARBA-0026-2017. [Google Scholar] [CrossRef]
- World Health Organization. WHO Global Priority Pathogens List of Antibiotic-Resistant Bacteria 2021. Available online: https://www.doherty.edu.au/news-events/news/who-global-priority-pathogens-list-of-antibiotic-resistant-bacteria (accessed on 13 July 2023).
- Tuem, K.B.; Gebre, A.K.; Atey, T.M.; Bitew, H.; Yimer, E.M.; Berhe, D.F. Drug resistance patterns of Escherichia coli in Ethiopia: A Meta-Analysis. Biomed. Res. Int. 2018, 2018, 4536905. [Google Scholar] [CrossRef] [PubMed]
- Berhe, D.F.; Beyene, G.T.; Seyoum, B.; Gebre, M.; Haile, K.; Tsegaye, M.; Boltena, M.T.; Tesema, E.; Kibret, T.C.; Biru, M.; et al. Prevalence of antimicrobial resistance and its clinical implications in Ethiopia: A systematic review. Antimicrob. Resist. Infect. Control 2021, 10, 168. [Google Scholar] [CrossRef] [PubMed]
- Van Hoek, A.H.A.M.; Mevius, D.; Guerra, B.; Mullany, P.; Roberts, A.P.; Aarts, H.J.M. Acquired antibiotic resistance genes: An overview. Front. Microbiol. 2011, 2, 203. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Bradford, P.A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 2020, 33, 10–128. [Google Scholar] [CrossRef] [PubMed]
- Kiros, T.; Workineh, L.; Tiruneh, T.; Eyayu, T.; Damtie, S.; Belete, D. Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in Ethiopia: A systematic review and meta-analysis. Int. J. Microbiol. 2021, 2021, 6669778. [Google Scholar] [CrossRef]
- Poirel, L.; Naas, T.; Nordmann, P. Genetic support of extended-spectrum β-lactamases. Clin. Microbiol. Infect. 2008, 14, 75–81. [Google Scholar] [CrossRef]
- Ndir, A.; Diop, A.; Ka, R.; Faye, P.M.; Dia-badiane, N.M.; Ndoye, B.; Astagneau, P. Infections caused by extended-spectrum beta-lactamases producing Enterobacteriaceae: Clinical and economic impact in patients hospitalized in 2 teaching hospitals in Dakar, Senegal. Antimicrob. Resist. Infect. Control 2016, 5, 13. [Google Scholar] [CrossRef]
- Abayneh, M.; Worku, T. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing gram-negative bacilli: A meta-analysis report in Ethiopia. Drug Target Insights 2020, 14, 16–25. [Google Scholar] [CrossRef]
- Abayneh, M.; Zeynudin, A.; Tamrat, R.; Tadesse, M.; Tamirat, A. Drug resistance and extended-spectrum β-lactamase (ESBLs)—producing Enterobacteriaceae, Acinetobacter and Pseudomonas species from the views of one-health approach in Ethiopia: A systematic review and meta-analysis. One Health Outlook 2023, 5, 12. [Google Scholar] [CrossRef]
- Tufa, T.B.; Fuchs, A.; Tufa, T.B.; Stötter, L.; Kaasch, A.J.; Feld, T.; Häussinger, D.; Mackenzie, C.R. High rate of extended-spectrum beta-lactamase-producing gram-negative infections and associated mortality in Ethiopia: A systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2020, 9, 128. [Google Scholar] [CrossRef]
- Salleh, M.Z.; Nik Zuraina, N.M.N.; Hajissa, K.; Ilias, M.I.; Deris, Z.Z. Prevalence of multidrug-resistant diarrheagenic Escherichia coli in Asia: A systematic review and meta-analysis. Antibiotics 2022, 11, 1333. [Google Scholar] [CrossRef] [PubMed]
- Ayukekbong, J.A.; Ntemgwa, M.; Atabe, A.N. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob. Resist. Infect. Control 2017, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Wolde, A.; Deneke, Y.; Sisay, T.; Mathewos, M. Molecular characterization and antimicrobial resistance of pathogenic Escherichia coli strains in children from Wolaita Sodo, Southern Ethiopia. J. Trop. Med. 2022, 2022, 9166209. [Google Scholar] [CrossRef] [PubMed]
- Adenipekun, E.O.; Jackson, C.R.; Ramadan, H.; Iwalokun, B.A.; Kolawole, S.; Frye, J.G.; Barrett, J.B.; Hiott, L.M.; Woodley, T.A.; Oluwadun, A. Prevalence and multidrug resistance of Escherichia coli from community- acquired infections in Lagos, Nigeria. J. Infect. Dev. Ctries 2016, 10, 920–931. [Google Scholar] [CrossRef]
- Mwansa, M.; Mukuma, M.; Mulilo, E.; Kwenda, G.; Mainda, G.; Yamba, K.; Bumbangi, F.N.; Muligisa-Muonga, E.; Phiri, N.; Silwamba, I.; et al. Determination of antimicrobial resistance patterns of Escherichia coli isolates from farm workers in broiler poultry production and assessment of antibiotic resistance awareness levels among poultry farmers in Lusaka, Zambia. Front. Public Health 2023, 10, 998860. [Google Scholar] [CrossRef]
- Kebenei, K.C.; Bett, P.K.; Onyango, P.O.; Onyango, D.M.; Ayieko, C.; Ang’ienda, P.O. Epidemiology of antimicrobial resistance among Escherichia coli strains in Trans-Nzoia County, Kenya. J. Microbiol. Infect. Dis. 2016, 6, 107–112. [Google Scholar]
- Mkuhlu, N.A.; Chuks, I.B.; Chikwelu, O.L. Characterization and antibiotic susceptibility profiles of pathogenic Escherichia coli isolated from diarrhea samples within the Buffalo City Metropolitan Municipality, Eastern Cape, South Africa. Open Microbiol. J. 2020, 14, 321–330. [Google Scholar] [CrossRef]
- Pouwels, K.B.; Muller-Pebody, B.; Smieszek, T.; Hopkins, S.; Robotham, J.V. Selection and co-selection of antibiotic resistances among Escherichia coli by antibiotic use in primary care: An ecological analysis. PLoS ONE 2019, 14, e0218134. [Google Scholar] [CrossRef]
- Pouwels, K.B.; Freeman, R.; Muller-Pebody, B.; Rooney, G.; Henderson, K.L.; Robotham, J.V.; Smieszek, T. Association between use of different antibiotics and trimethoprim resistance: Going beyond the obvious crude association. J. Antimicrob. Chemother. 2018, 73, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Negeri, A.A.; Seyoum, E.T.; Ibrahim, R.; Mamo, H. Antimicrobial resistance profile of Escherichia coli isolates recovered from diarrheic patients at Selam Health Center, Addis Ababa, Ethiopia. Afr. J. Microbiol. Res. 2019, 13, 457–463. [Google Scholar] [CrossRef]
- Ibrahim, M.E.; Bilal, N.E.; Hamid, M.E. Increased multi-drug resistant Escherichia coli from hospitals in Khartoum state, Sudan. Afr. Health Sci. 2012, 12, 368–375. [Google Scholar] [CrossRef]
- Worku, F.; Tewahido, D. Retrospective assessment of antibiotics prescribing at public primary healthcare facilities in Addis Ababa, Ethiopia. Interdiscip. Perspect. Infect. Dis. 2018, 2018, 4323769. [Google Scholar] [CrossRef] [PubMed]
- Elmahi, O.K.O.; Balla, S.A.; Khalil, H.A. Self-medication with antibiotics and its predictors among the population in Khartoum Locality, Khartoum State, Sudan in 2018. Int. J. Trop. Dis. Health 2020, 41, 17–25. [Google Scholar] [CrossRef]
- Elmahi, O.K.O.; Musa, R.A.E.; Shareef, A.A.H.; Omer, M.E.A.; Elmahi, M.A.M.; Altamih, R.A.A.; Mohamed, R.I.H.; Alsadig, T.F.M. Perception and practice of self-medication with antibiotics among medical students in Sudanese universities: A cross-sectional study. PLoS ONE 2022, 17, 5–8. [Google Scholar] [CrossRef] [PubMed]
- Chastel, C.; Mapanguy, M.; Adedoja, A. High prevalence of antibiotic-resistant Escherichia coli in Congolese students. Int. J. Infect. Dis. 2021, 103, 119–123. [Google Scholar] [CrossRef]
- Sina, H.; Dah-Nouvlessounon, D.; Adjobimey, T.; Boya, B.; Dohoue, G.M.C.; N’tcha, C.; Chidikofan, V.; Baba-Moussa, F.; Abdoulaye, I.; Adjanohoun, A.; et al. Characteristics of Escherichia coli isolated from intestinal microbiota children of 0–5 years old in the Commune of Abomey-Calavi. J. Pathog. 2022, 2022, 6253894. [Google Scholar] [CrossRef]
- Aworh, M.K.; Kwaga, J.K.P.; Hendriksen, R.S.; Okolocha, E.C.; Harrell, E.; Thakur, S. Quinolone-resistant Escherichia coli at the interface between humans, poultry and their shared environment—A potential public health risk. One Health Outlook 2023, 5, 2. [Google Scholar] [CrossRef]
- Adesokan, H.K.; Akanbi, I.O.; Akanbi, I.M.; Obaweda, R.A. Pattern of antimicrobial usage in livestock animals in South-Western Nigeria: The need for alternative plans. Onderstepoort. J. Vet. Res. 2015, 82, 1–6. [Google Scholar] [CrossRef]
- Tan, X.; Kim, H.S.; Baugh, K.; Huang, Y.; Kadiyala, N.; Wences, M.; Singh, N.; Wenzler, E.; Bulman, Z.P. Therapeutic options for metallo-β-lactamase-producing Enterobacterales. Infect. Drug Resist. 2021, 14, 125–142. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab, R.; Yasir, M.; Godfrey, R.E.; Christie, G.S.; Element, S.J.; Saville, F.; Hassan, E.A.; Ahmed, E.H.; Abu-Faddan, N.H.; Daef, E.A.; et al. Antimicrobial resistance and gene regulation in Enteroaggregative Escherichia coli from Egyptian children with diarrhoea: Similarities and differences. Virulence 2021, 12, 57–74. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Critically Important Antimicrobials for Human Medicine: Ranking of Medically Important Antimicrobials for Risk Management of Antimicrobial Resistance Due to Non-Human Use, 6th ed.; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Mitman, S.L.; Amato, H.K.; Saraiva-Garcia, C.; Loayza, F.; Salinas, L.; Kurowski, K.; Marusinec, R.; Paredes, D.; Cárdenas, P.; Trueba, G.; et al. Risk factors for third-generation spectrum β-lactamase-producing Escherichia coli carriage in domestic animals of semirural parishes east of Quito, Ecuador. PLoS Glob. Public Health 2022, 2, 206. [Google Scholar] [CrossRef]
- Falgenhauer, L.; Imirzalioglu, C.; Oppong, K.; Akenten, C.W.; Hogan, B.; Krumkamp, R.; Poppert, S.; Levermann, V.; Schwengers, O.; Sarpong, N.; et al. Detection and characterization of ESBL-producing Escherichia coli from humans and poultry in Ghana. Front. Microbiol. 2019, 9, 3358. [Google Scholar] [CrossRef] [PubMed]
- Beyene, A.M.; Gezachew, M.; Mengesha, D.; Yousef, A.; Gelaw, B. Prevalence and drug resistance patterns of Gram-negative enteric bacterial pathogens from diarrheic patients in Ethiopia: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0265271. [Google Scholar] [CrossRef] [PubMed]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Gemeda, B.A.; Amenu, K.; Magnusson, U.; Dohoo, I.; Hallenberg, G.S.; Alemayehu, G.; Desta, H.; Wieland, B. Antimicrobial use in extensive smallholder livestock farming systems in Ethiopia: Knowledge, attitudes, and practices of livestock keepers. Front. Vet. Sci. 2020, 7, 55. [Google Scholar] [CrossRef]
- Bevan, E.R.; Jones, A.M.; Hawkey, P.M. Global epidemiology of CTX-M β-lactamases: Temporal and geographical shifts in genotype. J. Antimicrob. Chemother. 2017, 72, 2145–2155. [Google Scholar] [CrossRef]
- Blanco, J.; Demarty, R.; Park, Y.; Lavigne, J.; Alonso, M.P.; Canic, M.M.; Park, Y.-J.; Lavigne, J.-P.; Pitout, J.; Johnson, J.R. Intercontinental emergence of Escherichia coli clone O25: H4-ST131 producing CTX-M-15. J. Antimicrob. Chemother. 2008, 61, 273–281. [Google Scholar] [CrossRef]
- Sewunet, T.; Asrat, D.; Woldeamanue, Y.; Ny, S.; Westerlund, F.; Aseffa, A.; Giske, C.G. Polyclonal spread of blaCTX-M-15 through high-risk clones of Escherichia coli at a tertiary hospital in Ethiopia. J. Glob. Antimicrob. Resist. 2022, 29, 405–412. [Google Scholar] [CrossRef]
- Tellevik, M.G.; Blomberg, B.; Kommedal, Ø.; Maselle, S.Y.; Langeland, N.; Moyo, S.J. High prevalence of faecal carriage of esbl-producing Enterobacteriaceae among children in Dar es Salaam, Tanzania. PLoS ONE 2016, 11, e0168024. [Google Scholar] [CrossRef]
- Sangare, S.A.; Rondinaud, E.; Maataoui, N.; Maiga, A.I.; Guindo, I.; Maiga, A.; Camara, N.; Dicko, O.A.; Dao, S.; Diallo, S.; et al. Very high prevalence of extended-spectrum beta-lactamase-producing Enterobacteriaceae in bacteriemic patients hospitalized in teaching hospitals in Bamako, Mali. PLoS ONE 2017, 12, e0172652. [Google Scholar] [CrossRef]
- Rafaï, C.; Frank, T.; Manirakiza, A.; Gaudeuille, A.; Mbecko, J.R.; Nghario, L.; Serdouma, E.; Tekpa, B.; Garin, B.; Breurec, S. Dissemination of IncF-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from surgical-site infections in Bangui, Central African Republic. BMC Microbiol. 2015, 15, 15. [Google Scholar] [CrossRef]
- Zenebe, T.; Eguale, T.; Desalegn, Z.; Beshah, D.; Gebre-Selassie, S.; Mihret, A.; Abebe, T. Distribution of ß-lactamase genes among multidrug-resistant and extended-spectrum ß-lactamase-producing diarrheagenic Escherichia coli from under-five children in Ethiopia. Infect. Drug Resist. 2023, 16, 7041–7054. [Google Scholar] [CrossRef] [PubMed]
- Dela, H.; Egyir, B.; Majekodunmi, A.O.; Behene, E.; Yeboah, C.; Ackah, D.; Bongo, R.N.A.; Bonfoh, B.; Zinsstag, J.; Bimi, L.; et al. Diarrhoeagenic, E. coli occurrence and antimicrobial resistance of extended spectrum beta-lactamases isolated from diarrhoea patients attending health facilities in Accra, Ghana. PLoS ONE 2022, 17, e0268991. [Google Scholar] [CrossRef]
- Rodríguez, I.; Thomas, K.; Van Essen, A.; Schink, A.K.; Day, M.; Chattaway, M.; Wu, G.; Mevius, D.; Helmuth, R.; Guerra, B. Chromosomal location of blaCTX-M genes in clinical isolates of Escherichia coli from Germany, the Netherlands and the UK. Int. J. Antimicrob. Agents 2014, 43, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.D.; Gregson, D.B.; Campbell, L.; Laupland, K.B. Molecular characteristics of extended-spectrum-β-lactamase-producing Escherichia coli isolates causing bacteremia in the calgary health region from 2000 to 2007: Emergence of clone ST131 as a cause of community-acquired infections. Antimicrob. Agents Chemother. 2009, 53, 2846–2851. [Google Scholar] [CrossRef]
- Park, S.H.; Byun, J.; Choi, S.; Lee, D.; Kim, S.; Kwon, J.; Park, C.; Choi, J.-H.; Yoo, J.-H. Molecular epidemiology of extended-spectrum β -lactamase-producing Escherichia coli in the community and hospital in Korea: Emergence of ST131 producing CTX-M-15. BMC Infect. Dis. 2012, 12, 1. [Google Scholar] [CrossRef]
- Ouedraogo, A.S.; Sanou, M.; Kissou, A.; Sanou, S.; Solaré, H.; Kaboré, F.; Poda, A.; Aberkane, S.; Bouzinbi, N.; Sano, I.; et al. High prevalence of extended-spectrum ß-lactamase producing Enterobacteriaceae among clinical isolates in Burkina Faso. BMC Infect. Dis. 2016, 16, 326. [Google Scholar] [CrossRef]
- Lonchel, C.M.; Meex, C.; Gangoué-Piéboji, J.; Boreux, R.; Assoumou, M.C.O.; Melin, P.; De Mol, P. Proportion of extended-spectrum ß-lactamase-producing Enterobacteriaceae in community setting in Ngaoundere, Cameroon. BMC Infect. Dis. 2012, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- Abrar, S.; Ain, N.U.; Liaqat, H.; Hussain, S.; Rasheed, F.; Riaz, S. Distribution of blaCTX-M, blaTEM, blaSHV and blaOXA genes in extended-spectrum-β-lactamase-producing clinical isolates: A three-year multi-center study from Lahore, Pakistan. Antimicrob. Resist. Infect. Control 2019, 8, 80. [Google Scholar] [CrossRef]
- Beyene, A.; Hailu, T.; Faris, K.; Kloos, H. Current state and trends of access to sanitation in Ethiopia and the need to revise indicators to monitor progress in the Post-2015 era Global health. BMC Public Health 2015, 15, 451. [Google Scholar] [CrossRef] [PubMed]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST disk diffusion antimicrobial susceptibility testing method and its implementation in routine microbiology laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef] [PubMed]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters; Version 13.0; The European Committee on Antimicrobial Susceptibility Testing: Växjö, Sweden, 2023. [Google Scholar]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Giske, C.G.; Martinez-, L.; Martinez Cantón, R.; Stefani, S.; Skov, R.; Glupczynski, Y.; Nordmann, P.; Wootton, M.; Miriagou, V.; Simonsen, G.S.; et al. EUCAST Guidelines for Detection of Resistance Mechanisms and Specific Resistances of Clinical and/or Epidemiological Importance. 2017. Available online: http://www.eucast.org/resistance_mechanisms/ (accessed on 26 November 2023).
- QIAGEN. Blood Mini Handbook QIAGEN Sample and Assay Technologies, 5th ed.; QIAGEN: Hilden, Germany, 2016. [Google Scholar]
- Seegene. STARMag 96 × 4 Universal Cartridge Kit User Manual; Seegene: Seoul, Republic of Korea, 2020. [Google Scholar]
- Illumina. Illumina DNA Prep Reference Guide; Illumina: San Diego, CA, USA, 2020. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Babraham Bioinformatics. FastQC a Quality Control Tool for High Throughput Sequence Data n.d. Available online: https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed on 11 October 2023).
- Prjibelski, A.; Antipov, D.; Meleshko, D.; Lapidus, A.; Korobeynikov, A. Using SPAdes de novo assembler. Curr. Protoc. Bioinform. 2020, 70, 1–29. [Google Scholar] [CrossRef]
- Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018, 34, i142–i150. [Google Scholar] [CrossRef]
- Florensa, A.F.; Kaas, R.S.; Clausen, P.T.L.C.; Aytan-Aktug, D.; Aarestrup, F.M. ResFinder—An open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom. 2022, 8, 748. [Google Scholar] [CrossRef]
Characteristics | Response Category | Number (%) |
---|---|---|
Location of the health facilities | ||
Addis Ababa | 147 (56.5) | |
Hossana | 113 (43.5) | |
Sex | ||
Female | 110 (42.3) | |
Male | 150 (57.7) | |
Age group | ||
0–4 years | 27 (10.4) | |
5–9 years | 43 (16.5) | |
10–14 years | 31 (11.9) | |
15–19 years | 21 (8.1) | |
20–45 years | 121 (46.5) | |
46–65 years | 16 (6.2) | |
>65 year | 1 (0.4) | |
Marital status | ||
Single | 164 (63.1) | |
Married | 95 (36.5) | |
Divorced | 1 (0.4) |
Antibiotic | Antibiotic Class | S (Susceptible, Standard Dosing Regimen) | I (Susceptible, Increased Exposure) | R (Resistant) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Total Isolates (n = 260) | Addis Ababa Strains (n = 147) | Hossana Strains (n = 113) | Total Strains (n = 260) | Addis Ababa Strains (n = 147) | Hossana Strains (n = 113) | Total Strains (n = 260) | Addis Ababa Strains (n = 147) | Hossana Strains (n =113) | ||
n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | n (%) | ||
AM | Penicillin | 123 (47.3) | 73 (49.7) | 50 (44.2) | 0 | 0 | 0 | 137 (52.7) | 74 (50.3) | 63 (54.3) |
AMC | β-lactam + inhibitors | 223 (85.8) | 123 (83.7) | 100 (88.5) | 0 | 0 | 0 | 37 (14.2) | 24 (16.3) | 13 (11.5) |
TZP | Antipseudomonal penicillin + β-lactam inhibitors | 257 (98.8) | 145 (98.6) | 112 (99.1) | 0 | 0 | 0 | 3 (1.2) | 2 (1.4) | 1 (0.9) |
CXMp | Non-extended spectrum cephalosporins | 0 | 0 | 0 | 226 (86.9) | 133 (90.5) | 93 (82.3) | 34 (13.1) | 14 (9.5) | 20 (17.7) |
CTX | Extended spectrum cephalosporins | 226 (86.9) | 133 (90.5) | 93 (82.3) | 1 (0.4) | 1 (0.7) | 0 | 33 (12.7) | 13 (8.8) | 20 (17.7) * |
CRO | 226 (86.9) | 133 (90.5) | 93 (82.3) | 0 | 0 | 0 | 34 (13.1) | 14 (9.5) | 20 (17.7) | |
CAZ | 232 (89.2) | 137 (93.2) | 95 (84.1) | 6 (2.3) | 1 (0.7) | 5 (4.4) | 22 (8.5) | 9 (6.1) | 13 (11.5) | |
FEP | 234 (90.0) | 138 (93.9) | 96 (85.0) | 8 (3.1) | 3 (2.0) | 5 (4.4) | 18 (6.9) | 6 (4.1) | 12 (10.6) * | |
ETP | Carbapenems | 260 (100) | 147 (100) | 113 (100) | 0 | 0 | 0 | 0 | 0 | 0 |
IPM | 260 (100) | 147 (100) | 113 (100) | 0 | 0 | 0 | 0 | 0 | 0 | |
MEM | 260 (100) | 147 (100) | 113 (100) | 0 | 0 | 0 | 0 | 0 | 0 | |
ATM | Monobactams | 227 (87.3) | 133 (90.5) | 94 (83.2) | 13 (5.0) | 7 (4.8) | 6 (5.3) | 20 (7.7) | 7 (4.8) | 13 (11.5) * |
AN | Aminoglycosides | 260 (100) | 147 (100) | 113 (100) | 0 | 0 | 0 | 0 | 0 | 0 |
GM | 255 (98.1) | 146 (99.3) | 109 (96.5) | 0 | 0 | 0 | 5 (1.9) | 1 (0.7) | 4 (3.5) | |
NN | 257 (98.8) | 147 (100) | 110 (97.3) | 0 | 0 | 0 | 3 (1.2) | 0 | 3 (2.7) | |
CIP | Fluoroquinolones | 238 (91.5) | 140 (95.2) | 98 (86.7) | 3 (1.2) | 1 (0.7) | 2 (1.8) | 19 (7.3) | 6 (4.1) | 13 (11.5) * |
LVX | 240 (92.3) | 140 (95.2) | 100 (88.5) | 2 (0.8) | 2 (1.4) | 0 | 18 (6.9) | 5 (3.4) | 13 (11.5) * | |
SXT | Folate pathway inhibitors | 183 (70.4) | 109 (74.1) | 74 (65.5) | 0 | 0 | 0 | 77 (29.6) | 38 (25.9) | 39 (34.5) |
Antimicrobial Resistance Pattern | Resistant Isolates (n = 141) Addis Ababa (n = 77); Hossana (n = 64) | ESBL-Producing Isolates (n = 22) Addis Ababa (n = 9); Hossana (n = 13) | |||||
---|---|---|---|---|---|---|---|
No. of Antimicrobial Groups in Resistance Pattern | No. of Isolates with This Resistance Pattern n (%) | No. of Isolates with This Resistance Pattern from Addis Ababa n (%) | No. of Isolates with This Resistance Pattern from Hossana n (%) | No. of ESBL-Producing Isolates with This Resistance Pattern n (%) | No. of ESBL Isolates with This Resistance Pattern from Addis Ababa n (%) | No. of ESBL Isolates with This Resistance Pattern from Hossana n (%) | |
AM | 1 | 30 (21.3) | 16 (20.8) | 14 (21.9) | 0 | 0 | 0 |
SXT | 1 | 4 (2.8) | 2 (2.6) | 2 (3.1) | 0 | 0 | 0 |
AM, SXT | 2 | 37 (26.2) | 22 (28.6) | 15 (23.4) | 0 | 0 | 0 |
AM, AMC | 2 | 20 (14.2) | 17 (22.1) | 3 (4.7) | 0 | 0 | 0 |
AM, AMC, TZP | 3 | 1 (0.7) | 1 (1.3) | 0 | 0 | 0 | 0 |
AM, AMC, SXT | 3 | 7 (5.0) | 3 (3.9) | 4 (6.3) | 0 | 0 | 0 |
AM, CIP, LVX, SXT | 3 | 5 (3.5) | 1 (1.3) | 4 (6.3) | 0 | 0 | 0 |
AM, SXT, CXMp, CRO | 4 | 1 (0.7) | 1 (1.3) | 0 | 1 (4.5) | 1 (11.1) | 0 |
AM, AMC, GM, SXT | 4 | 1 (0.7) | 0 | 1 (1.6) | 0 | 0 | 0 |
AM, ATM, SXT, CAZ | 4 | 1 (0.7) | 1 (1.3) | 0 | 0 | 0 | 0 |
AM, GM, CXMp, CTX, CRO | 4 | 1 (0.7) | 0 | 1 (1.6) | 1 (4.5) | 0 | 1 (7.7) |
AM, SXT, CXMp, CTX, CRO | 4 | 4 (2.8) | 2 (2.6) | 2 (3.1) | 2 (9.1) | 1 (11.1) | 1 (7.7) |
AM, CIP, GM, LVX, NN | 3 | 1 (0.7) | 0 | 1 (1.6) | 0 | 0 | 0 |
AM, CXMp, CTX, CRO, FEP | 3 | 1 (0.7) | 0 | 1 (1.6) | 1 (4.5) | 0 | 1 (7.7) |
AM, SXT, GM, CTX, CXMp, CRO | 5 | 1 (0.7) | 1 (1.3) | 0 | 1 (4.5) | 1 (11.1) | 0 |
AM, AMC, CXMp, CTX, CRO, FEP | 4 | 2 (1.4) | 1 (1.3) | 1 (1.6) | 2 (9.1) | 1 (11.1) | 1 (7.7) |
AM, ATM, CXMp, CTX, CRO, CAZ | 4 | 2 (1.4) | 1 (1.3) | 1 (1.6) | 0 | 0 | 0 |
AM, SXT, CXMp, CTX, CRO, CAZ | 4 | 2 (1.4) | 1 (1.3) | 1 (1.6) | 1 (4.5) | 0 | 1 (7.7) |
AM, CIP, LVX, CXMp, CTX, CRO | 4 | 1 (0.7) | 1 (1.3) | 0 | 1 (4.5) | 1 (11.1) | 0 |
AM, SXT, CXMp, CTX, CRO, CAZ, FEP | 4 | 1 (0.7) | 1 (1.3) | 0 | 0 | 0 | 0 |
AM, ATM, SXT, CXMp, CTX, CRO, CAZ | 5 | 2 (1.4) | 0 | 2 (3.2) | 2 (9.1) | 0 | 2 (15.4) |
AM, ATM, CXMp, CTX, CRO, CAZ, FEP | 4 | 1 (0.7) | 0 | 1 (1.6) | 1 (4.5) | 0 | 1 (7.7) |
AM, ATM, SXT, CXMp, CTX, CRO, CAZ, FEP | 5 | 3 (2.1) | 1 (1.3) | 2 (3.2) | 2 (9.1) | 1 (11.1) | 1 (7.7) |
AM, ATM, CIP, LVX, CXMp, CTX, CRO, FEP | 5 | 1 (0.7) | 0 | 1 (1.6) | 1 (4.5) | 0 | 1 (7.7) |
AM, AMC, SXT, CIP, LVX, CXMp, CTX, CRO | 6 | 1 (0.7) | 0 | 1 (1.6) | 0 | 0 | 0 |
AM, ATM, CIP, LVX, CXMp, CTX, CRO, CAZ, FEP | 5 | 1 (0.7) | 0 | 1 (1.6) | 0 | 0 | 0 |
AM, AMC, TZP, ATM, CXMp, CTX, CRO, CAZ, FEP | 6 | 1 (0.7) | 1 (1.3) | 0 | 1 (4.5) | 1 (11.1) | 0 |
AM, AMC, ATM, CIP, LVX, CXMp, CTX, CRO, CAZ, FEP | 6 | 1 (0.7) | 0 | 1 (1.6) | 0 | 0 | 0 |
AM, ATM, SXT, CIP, LVX, CXMp, CTX, CRO, CAZ, FEP | 6 | 3 (2.1) | 2 (2.6) | 1 (1.6) | 3 (13.6) | 2 (22.2) | 1 (7.7) |
AM, AMC, ATM, SXT, CIP, LVX, CXMp, CTX, CRO, CAZ | 7 | 1 (0.7) | 1 (1.3) | 0 | 0 | 0 | 0 |
AM, AMC, TZP, ATM, SXT, CIP, LVX, CXMp, CTX, CRO, CAZ, FEP | 8 | 1 (0.7) | 0 | 1 (1.6) | 1 (4.5) | 0 | 1 (7.7) |
AM, AMC, ATM, SXT, CIP, LVX, NN, CXMp, CTX, CRO, CAZ, FEP | 8 | 1 (0.7) | 0 | 1 (1.6) | 1 (4.5) | 0 | 1 (7.7) |
AM, AMC, ATM, SXT, CIP, LVX, GM, NN, CXMp, CTX, CRO, CAZ, FEP | 8 | 1 (0.7) | 0 | 1 (1.6) | 0 | 0 | 0 |
Strain Designation | Pattern of ESBL Phenotype | Type of β-Lactamase Genes Detected | Origin of Isolate |
---|---|---|---|
13 | AM, ATM, SXT, CXMp, CTX, CRO, CAZ, FEP | blaTEM-1B, blaCTX-M-15 | Hossana |
39 | AM, SXT, CXMp, CRO | blaCTX-M-15 | Addis Ababa |
63 | AM, SXT, CXMp, CTX, CRO | blaCTX-M-15 | Addis Ababa |
69 | AM, CIP, LVX, CXMp, CTX, CRO | blaCTX-M-15 | Addis Ababa |
75 | AM, AMC, TZP, ATM, SXT, CIP, LVX, CXMp, CTX, CRO, CAZ, FEP | blaTEM-1B, blaCTX-M-15, blaTEM-169 | Hossana |
85 | AM, AMC, CXMp, CTX, CRO, FEP | blaCTX-M-3 | Addis Ababa |
86 | AM, ATM, SXT, CIP, LVX, CXMp CTX, CRO, CAZ, FEP | blaCTX-M-15 | Addis Ababa |
92 | AM, SXT, CXMp, CTX, CRO, CAZ | blaTEM-1B, blaCTX-M-15 | Addis Ababa |
197 | AM, ATM, SXT, CXMp, CTX, CRO, CAZ | # | Hossana |
200 | AM, AMC, TZP, ATM, CXMp CTX, CRO, CAZ, FEP | # | Addis Ababa |
205 | AM, ATM, SXT, CIP, LVX, CXMp CTX, CRO, CAZ, FEP | blaTEM-1B, blaCTX-M-15 | Addis Ababa |
232 | AM, GM, CXMp, CTX, CRO | blaTEM-1B, blaCTX-M-15 | Hossana |
244 | AM, ATM, SXT, CXMp, CTX, CRO, CAZ | blaTEM-1B | Hossana |
260 | AM, ATM, SXT, CXMp, CTX, CRO, CAZ, FEP | blaTEM-1B, blaCTX-M-15 | Hossana |
268 | AM, ATM, SXT, CIP, LVX, CXMp, CTX, CRO, CAZ, FEP | # | Hossana |
289 | AM, GM, SXT, CXMp, CTX, CRO | blaTEM-1B, blaCTX-M-15 | Addis Ababa |
302 | AM, SXT, CXMp, CTX, CRO | blaTEM-1B, blaCTX-M-15 | Hossana |
303 | AM, ATM, CXMp, CTX, CRO, CAZ, FEP | blaTEM-1B, blaCTX-M-15 | Hossana |
306 | AM, AMC, ATM, SXT, CIP, LVX, NN, CXMp, CTX, CRO, CAZ, FEP | blaOXA-1, blaTEM-1B, blaCTX-M-15 | Hossana |
316 | AM, ATM, CIP, LVX, CXMp, CTX, CRO, FEP | blaTEM-169, blaCTX-M-15 | Hossana |
324 | AM, AMC, CXMp, CTX, CRO, FEP | blaCTX-M-3 | Hossana |
340 | AM, CXMp, CTX, CRO, FEP | blaCTX-M-3 | Hossana |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wolde, D.; Eguale, T.; Alemayehu, H.; Medhin, G.; Haile, A.F.; Pirs, M.; Strašek Smrdel, K.; Avberšek, J.; Kušar, D.; Cerar Kišek, T.; et al. Antimicrobial Susceptibility and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia. Antibiotics 2024, 13, 93. https://doi.org/10.3390/antibiotics13010093
Wolde D, Eguale T, Alemayehu H, Medhin G, Haile AF, Pirs M, Strašek Smrdel K, Avberšek J, Kušar D, Cerar Kišek T, et al. Antimicrobial Susceptibility and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia. Antibiotics. 2024; 13(1):93. https://doi.org/10.3390/antibiotics13010093
Chicago/Turabian StyleWolde, Deneke, Tadesse Eguale, Haile Alemayehu, Girmay Medhin, Aklilu Feleke Haile, Mateja Pirs, Katja Strašek Smrdel, Jana Avberšek, Darja Kušar, Tjaša Cerar Kišek, and et al. 2024. "Antimicrobial Susceptibility and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia" Antibiotics 13, no. 1: 93. https://doi.org/10.3390/antibiotics13010093
APA StyleWolde, D., Eguale, T., Alemayehu, H., Medhin, G., Haile, A. F., Pirs, M., Strašek Smrdel, K., Avberšek, J., Kušar, D., Cerar Kišek, T., Janko, T., Steyer, A., & Starčič Erjavec, M. (2024). Antimicrobial Susceptibility and Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated from Stools of Primary Healthcare Patients in Ethiopia. Antibiotics, 13(1), 93. https://doi.org/10.3390/antibiotics13010093