Boosting Expression of a Specifically Targeted Antimicrobial Peptide K in Pichia pastoris by Employing a 2A Self-Cleaving Peptide-Based Expression System
Abstract
:1. Introduction
2. Results
2.1. Construction of P. pastoris Expressing Recombinant Antimicrobial Peptide K
2.2. Expression of Peptide K from Recombinant P. pastoris
2.3. Optimizing the Fermentation Conditions of Recombinant P. pastoris GS115
2.4. The Bioactivity and Actional Mechanism of Recombinant Peptide K
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains, Plasmids, and Reagents
4.2. Plasmid Construction
4.3. Transformation of P. pastoris GS115
4.4. Induced Expression of Recombinant Antimicrobial Peptide K and the Optimization of Fermentation Conditions
4.5. Purification of Recombinant Antimicrobial Peptide K
4.6. Antibacterial Activity of Recombinant Antimicrobial Peptide K
4.7. Hemolytic Activity of Recombinant Antimicrobial Peptide K
4.8. Salt, Serum, Temperature, and pH Tolerance of Recombinant Antimicrobial Peptide K
4.9. Outer Membrane Permeability
4.10. Reactive Oxygen Species Generation
4.11. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abbas, A.; Barkhouse, A.; Hackenberger, D.; Wright, G.D. Antibiotic Resistance: A Key Microbial Survival Mechanism That Threatens Public Health. Cell Host Microbe. 2024, 32, 837–851. [Google Scholar] [CrossRef]
- Xia, J.; Ge, C.; Yao, H. Antimicrobial Peptides: An Alternative to Antibiotic for Mitigating the Risks of Antibiotic Resistance in Aquaculture. Environ. Res. 2024, 251, 118619. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, G.; Saigal, S.; Elongavan, A. Action and Resistance Mechanisms of Antibiotics: A Guide for Clinicians. J. Anaesthesiol. Clinic. Pharmacol. 2017, 33, 300–305. [Google Scholar] [CrossRef] [PubMed]
- Bucataru, C.; Ciobanasu, C. Antimicrobial Peptides: Opportunities and Challenges in Overcoming Resistance. Microbiol. Res. 2024, 286, 127822. [Google Scholar] [CrossRef] [PubMed]
- Medhi, B.; Sarma, P.; Mahendiratta, S.; Prakash, A. Specifically Targeted Antimicrobial Peptides: A New and Promising Avenue in Selective Antimicrobial Therapy. Indian J. Pharmacol. 2018, 50, 1–3. [Google Scholar] [CrossRef]
- Tan, P.; Lai, Z.; Zhu, Y.; Shao, C.; Akhtar, M.U.; Li, W.; Zheng, X.; Shan, A. Multiple Strategy Optimization of Specifically Targeted Antimicrobial Peptide Based on Structure–Activity Relationships to Enhance Bactericidal Efficiency. ACS Biomater. Sci. Eng. 2019, 6, 398–414. [Google Scholar] [CrossRef]
- Deo, S.; Turton, K.L.; Kainth, T.; Kumar, A.; Wieden, H.-J. Strategies for Improving Antimicrobial Peptide Production. Biotechnol. Adv. 2022, 59, 107968. [Google Scholar] [CrossRef]
- Zhao, L.; Ren, X.; Yan, X. Peptides: Molecular Basis, Secondary Structures, and Synthesis Methods. Pept. Self-Assem. Eng. 2024, 1, 5–22. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, L.; Lin, M.; Yu, T. Recombinant Expression of Antimicrobial Peptides in Pichia pastoris: A Strategy to Inhibit the Penicillium Expansum in Pears. Postharvest Biol. Technol. 2021, 171, 111298. [Google Scholar] [CrossRef]
- Pan, Y.; Yang, J.; Wu, J.; Yang, L.; Fang, H. Current Advances of Pichia pastoris as Cell Factories for Production of Recombinant Proteins. Front. Microbiol. 2022, 13, 1059777. [Google Scholar] [CrossRef]
- Mastropietro, G.; Aw, R.; Polizzi, K.M. Expression of Proteins in Pichia pastoris. Eukaryot. Hosts. 2021, 660, 53–80. [Google Scholar] [CrossRef]
- Spitz, F.; Furlong, E.E.M. Transcription Factors: From Enhancer Binding to Developmental Control. Nat. Rev. Genetics. 2012, 13, 613–626. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, F.; Wang, R.; Zhao, P.; Xia, Q. 2a Self-Cleaving Peptide-Based Multi-Gene Expression System in the Silkworm Bombyx Mori. Sci. Rep. 2015, 5, 16273. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Chen, O.; Wall, J.B.J.; Zheng, M.; Zhou, Y.; Wang, L.; Ruth Vaseghi, H.; Qian, L.; Liu, J. Systematic Comparison of 2a Peptides for Cloning Multi-Genes in a Polycistronic Vector. Sci. Rep. 2017, 7, 2193. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Ehrlich, I.; Wolff, S.B.E.; Michalski, A.M.; Wolfl, S.; Hasan, M.T.; Luthi, A.; Sprengel, R. Faithful Expression of Multiple Proteins Via 2a-Peptide Self-Processing: A Versatile and Reliable Method for Manipulating Brain Circuits. J. Neurosci. 2009, 29, 8621–8629. [Google Scholar] [CrossRef] [PubMed]
- Zou, C.; Lu, L.; Wang, S.; Zhang, C.; Chen, X.; Lin, Y.; Huang, Y. The A-Mating Factor Secretion Signals and Endogenous Signal Peptides for Recombinant Protein Secretion in Komagataella phaffii. Biotechnol. Biofuels Bioprod. 2022, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Cai, H.; Liu, J.; Zeng, M.; Chen, J.; Cheng, Q.; Zhang, L. Controlling Aox1 Promoter Strength in Pichia pastoris by Manipulating Poly (Da:Dt) Tracts. Sci. Rep. 2018, 8, 1401. [Google Scholar] [CrossRef]
- Zhan, N.; Zhang, L.; Yang, H.; Zheng, Y.; Wei, X.; Wang, J.; Shan, A. Design and Heterologous Expression of a Novel Dimeric Ll37 Variant in Pichia pastoris. Microb. Cell Factories 2021, 20, 143. [Google Scholar] [CrossRef]
- Zhao, L.; Li, L.; Xu, Y.; Hu, M.; Fang, Y.; Dong, N. Heterologous Expression and Activity of A-Helical Antimicrobial Peptide Sw in Bacillus Subtilis. Biochem. Eng. J. 2024, 203, 109224. [Google Scholar] [CrossRef]
- Zhao, L.; Li, L.; Hu, M.; Fang, Y.; Dong, N.; Shan, A. Heterologous Expression of the Novel Dimeric Antimicrobial Peptide Lig in Pichia pastoris. J. Biotechnol. 2024, 381, 19–26. [Google Scholar] [CrossRef]
- Rima, M.; Rima, M.; Fajloun, Z.; Sabatier, J.-M.; Bechinger, B.; Naas, T. Antimicrobial Peptides: A Potent Alternative to Antibiotics. Antibiotics. 2021, 10, 1095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-X.; Nong, F.-T.; Wang, Y.-Z.; Yan, C.-X.; Gu, Y.; Song, P.; Sun, X.-M. Strategies for Efficient Production of Recombinant Proteins in Escherichia Coli: Alleviating the Host Burden and Enhancing Protein Activity. Microb. Cell Factories 2022, 21, 191. [Google Scholar] [CrossRef] [PubMed]
- Niemirowicz, G.T.; Carlevaro, G.; Campetella, O.; Bouvier, L.A.; Mucci, J. A Versatile 2a Peptide-Based Strategy for Ectopic Expression and Endogenous Gene Tagging in Trypanosoma cruzi. Heliyon 2024, 10, e24595. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Wang, H.; Xu, Q.; Jain, N.; Toxavidis, V.; Tigges, J.; Yang, H.; Yue, G.; Gao, W. Signal Sequence Is Still Required in Genes Downstream of “Autocleaving” 2a Peptide for Secretary or Membrane-Anchored Expression. Anal. Biochem. 2010, 399, 144–146. [Google Scholar] [CrossRef]
- Lin-Cereghino, G.P.; Stark, C.M.; Kim, D.; Chang, J.; Shaheen, N.; Poerwanto, H.; Agari, K.; Moua, P.; Low, L.K.; Tran, N.; et al. The Effect of A-Mating Factor Secretion Signal Mutations on Recombinant Protein Expression in Pichia pastoris. Gene 2013, 519, 311–317. [Google Scholar] [CrossRef]
- Yang, L.; Dong, W.; He, J.; Ren, X.; Yan, W. Expression and Purification of Natural N-Terminal Recombinant Bovine Pancreatic Trypsin Inhibitor from Pichia pastoris. Bio. Pharm. Bulletin. 2008, 31, 1680–1685. [Google Scholar] [CrossRef]
- Idiris, A.; Tohda, H.; Kumagai, H.; Takegawa, K. Engineering of Protein Secretion in Yeast: Strategies and Impact on Protein Production. Appl. Microbiol. Biotechnol. 2010, 86, 403–417. [Google Scholar] [CrossRef]
- Looser, V.; Bruhlmann, B.; Bumbak, F.; Stenger, C.; Costa, M.; Camattari, A.; Fotiadis, D.; Kovar, K. Cultivation Strategies to Enhance Productivity of Pichia pastoris: A Review. Biotechnol. Adv. 2015, 33, 1177–1193. [Google Scholar] [CrossRef]
Items | Amino Acid Sequence |
---|---|
K | WKKIWKPGIKKWIKGGGQKRPRVRLSA |
2A | EGRGSLLTCGDVEENPGP |
α mating factor | MRFPSIFTAVLFAASSALAAPVNTTTEDETAQIPAEAVIGYSDLEGDFDVAVLPFSNSTNNGLLFINTTIASIAAKEEGVSLEKREAEA |
Item | Total, mg/L | Target, mg/L |
---|---|---|
pPIC9K-K | 37.15 | 3.43 |
pPIC9K-KTK | 92.99 | 18.31 |
pPIC9K-KTAK | 55.38 | 2.92 |
Bacteria | MIC, μg/mL | |
---|---|---|
Gram-negative bacteria | E. coli 25922 | 25 |
E. coli UB1005 | 6.25 | |
E. coli K88 | 12.5 | |
E. coli K99 | 6.25 | |
E. coli 078 | 25 | |
E. coli 987p | 12.5 | |
P. aeruginosa 27853 | >400 | |
S. typhimurium 7731 | >400 | |
Gram-positive bacteria | S. aureus 29213 | >400 |
S. aureus 25923 | >400 | |
S.epidermidis 12228 | >400 | |
Probiotics | L. plantarum 8014 | >400 |
L. rhamnosus 7469 | >400 |
Salt 1 | ||||
NaCl | KCl | NH4Cl | MgCl2 | |
MIC, μg/mL | >400 | 50 | 50 | 200 |
CaCl2 | ZnCl2 | FeCl3 | ||
MIC, μg/mL | 50 | 50 | 50 | |
pH | ||||
2 | 4 | 10 | 12 | |
MIC, μg/mL | 50 | 25 | 12.5 | 12.5 |
Temperature, °C | ||||
100 | ||||
MIC, μg/mL | 12.5 | |||
Serum, % | ||||
12.5 | 25 | 50 | ||
MIC, μg/mL | 100 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Y.; Li, Y.; Fang, Y.; Hu, M.; Zhao, L.; Sui, M.; Dong, N. Boosting Expression of a Specifically Targeted Antimicrobial Peptide K in Pichia pastoris by Employing a 2A Self-Cleaving Peptide-Based Expression System. Antibiotics 2024, 13, 986. https://doi.org/10.3390/antibiotics13100986
Zhu Y, Li Y, Fang Y, Hu M, Zhao L, Sui M, Dong N. Boosting Expression of a Specifically Targeted Antimicrobial Peptide K in Pichia pastoris by Employing a 2A Self-Cleaving Peptide-Based Expression System. Antibiotics. 2024; 13(10):986. https://doi.org/10.3390/antibiotics13100986
Chicago/Turabian StyleZhu, Yunhui, Yuwen Li, Yuxin Fang, Mingyang Hu, Lu Zhao, Mingrui Sui, and Na Dong. 2024. "Boosting Expression of a Specifically Targeted Antimicrobial Peptide K in Pichia pastoris by Employing a 2A Self-Cleaving Peptide-Based Expression System" Antibiotics 13, no. 10: 986. https://doi.org/10.3390/antibiotics13100986
APA StyleZhu, Y., Li, Y., Fang, Y., Hu, M., Zhao, L., Sui, M., & Dong, N. (2024). Boosting Expression of a Specifically Targeted Antimicrobial Peptide K in Pichia pastoris by Employing a 2A Self-Cleaving Peptide-Based Expression System. Antibiotics, 13(10), 986. https://doi.org/10.3390/antibiotics13100986