Commercial Day-Old Chicks in Nigeria Are Potential Reservoirs of Colistin- and Tigecycline-Resistant Potentially Pathogenic Escherichia coli
Abstract
:1. Introduction
2. Results
2.1. Occurrence of COL- and TIG-Resistant E. coli in DOCs
2.2. ESBL/AmpC and Carbapenemase Production by the Isolates
2.3. Pathogenic Potentials of COL- and TIG-Resistant E. coli Isolates
3. Material and Methods
3.1. Ethical Approval
3.2. Study Area
3.3. Sample Collection, Bacterial Isolation, and Identification
Molecular Confirmation of E. coli
3.4. Detection of Colistin- and Tigecycline-Unsusceptible E. coli Strains
3.5. Detection of Third-Generation Cephalosporin and Carbapenem Resistance, and Production of Extended-Spectrum β-Lactamase/Ampicillinase C and Carbapenemase by COL- and TIG-Unsusceptible Isolates
3.6. Detection of Pathogenic Potentials
3.6.1. Haemolysis
3.6.2. Gelatin Degradation
3.6.3. Casein Hydrolysis
3.6.4. Lipid and Ester Hydrolysis
3.6.5. Lecithin Hydrolysis
3.6.6. Surface-Layer Expression
3.6.7. Biofilm (Curli Fimbriae and Cellulose) Formation on Organic Surfaces
3.6.8. Pellicle Formation
3.6.9. Cell Surface Hydrophobicity
3.6.10. Haemagglutination
3.7. Data Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okorafor, O.N.; Anyanwu, M.U.; Nwafor, E.O.; Anosa, G.N.; Udegbunam, R.I. Multidrug-Resistant Enterobacteria Colonize Commercial Day-Old Broiler Chicks in Nigeria. Vet. World 2019, 12, 418–423. [Google Scholar] [CrossRef] [PubMed]
- Njoga, E.O.; Ogugua, A.J.; Nwankwo, I.O.; Awoyomi, O.J.; Okoli, C.E.; Buba, D.M.; Oyeleye, F.A.; Ajibo, F.E.; Azor, N.; Ogunniran, T.M. Antimicrobial Drug Usage Pattern in Poultry Farms in Nigeria: Implications for Food Safety, Public Health and Poultry Disease Management. Vet. Ital. 2021, 57, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Wang, C.-L.; Chang, S.-K.; Tsai, Y.-L.; Chou, C.-H. Characterization of Escherichia coli Isolated from Day-Old Chicken Fluff in Taiwanese Hatcheries. Avian Dis. 2019, 63, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Coppola, N.; Cordeiro, N.F.; Trenchi, G.; Esposito, F.; Fuga, B.; Fuentes-Castillo, D.; Lincopan, N.; Iriarte, A.; Bado, I.; Vignoli, R. Imported One-Day-Old Chicks as Trojan Horses for Multidrug-Resistant Priority Pathogens Harboring Mcr-9, RmtG, and Extended-Spectrum β-Lactamase Genes. Appl. Environ. Microbiol. 2022, 88, e0167521. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, O.; Börjesson, S.; Landén, A.; Bengtsson, B. Vertical Transmission of Escherichia coli Carrying Plasmid-Mediated AmpC (PAmpC) through the Broiler Production Pyramid. J. Antimicrob. Chemother. 2014, 69, 1497–1500. [Google Scholar] [CrossRef]
- Poulsen, L.L.; Thøfner, I.; Bisgaard, M.; Christensen, J.P.; Olsen, R.H.; Christensen, H. Longitudinal Study of Transmission of Escherichia coli from Broiler Breeders to Broilers. Vet. Microbiol. 2017, 207, 13–18. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Jaja, I.F.; Okpala, C.O.R.; Njoga, E.O.; Okafor, N.A.; Oguttu, J.W. Mobile Colistin Resistance (Mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics 2023, 12, 1117. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Okpala, C.O.R.; Chah, K.F.; Shoyinka, V.S. Prevalence and Traits of Mobile Colistin Resistance Gene Harbouring Isolates from Different Ecosystems in Africa. BioMed Res. Int. 2021, 2021, 6630379. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Nwobi, O.C.; Okpala, C.O.R.; Ezeonu, I.M. Mobile Tigecycline Resistance: An Emerging Health Catastrophe Requiring Urgent One Health Global Intervention. Front. Microbiol. 2022, 13, 808744. [Google Scholar] [CrossRef]
- Dougnon, P.; Dougnon, V.; Legba, B.; Fabiyi, K.; Soha, A.; Koudokpon, H.; Sintondji, K.; Deguenon, E.; Hounmanou, G.; Quenum, C.; et al. Antibiotic Profiling of Multidrug Resistant Pathogens in One-Day-Old Chicks Imported from Belgium to Benin. BMC Vet. Res. 2023, 19, 17. [Google Scholar] [CrossRef]
- Rashid, M.A.; Chowdhury, K.A.; Mahmud, S.M.S.; Chowdhury, T.; Bhuyan, A.A.M.; Nahar, Z.; Paul, S.K. Escherichia coli from Day Old Chicks of a Selected Breeder Farm in Bangladesh. Vet Scan Online Vet. Med. J. 2012, 7, 125. [Google Scholar]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic Escherichia coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, M.U.; Eze, U.U.; Nnamani, J.C.; Ikenna-Eze, N.H.; Akpa, P.O.; Okorie-Kanu, O.J.; Anene, B.M. Occurrence, Antibiogram, High-Level Vancomycin and Aminoglycoside Resistance and Potential Virulence Factors of Enterococci in Dogs in Nigeria. J. Hell. Vet. Med. Soc. 2022, 73, 4689–4696. [Google Scholar] [CrossRef]
- Shah, C.; Baral, R.; Bartaula, B.; Shrestha, L.B. Virulence Factors of Uropathogenic Escherichia coli (UPEC) and Correlation with Antimicrobial Resistance. BMC Microbiol. 2019, 19, 204. [Google Scholar] [CrossRef] [PubMed]
- Yaghoubi, S.; Zekiy, A.O.; Krutova, M.; Gholami, M.; Kouhsari, E.; Sholeh, M.; Ghafouri, Z.; Maleki, F. Tigecycline Antibacterial Activity, Clinical Effectiveness, and Mechanisms and Epidemiology of Resistance: Narrative Review. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1003–1022. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wen, J.; Wang, Y.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhu, D.; Zhao, X.; Wu, Y.; et al. Dissemination and Prevalence of Plasmid-Mediated High-Level Tigecycline Resistance Gene Tet (X4). Front. Microbiol. 2022, 13, 969769. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Wang, R.; Liu, D.; Walsh, T.R.; Zhang, R.; Lv, Y.; Ke, Y.; Ji, Q.; Wei, R.; Liu, Z.; et al. Emergence of Plasmid-Mediated High-Level Tigecycline Resistance Genes in Animals and Humans. Nat. Microbiol. 2019, 4, 1450–1456. [Google Scholar] [CrossRef]
- Linkevicius, M.; Sandegren, L.; Andersson, D.I. Potential of Tetracycline Resistance Proteins to Evolve Tigecycline Resistance. Antimicrob. Agents Chemother. 2016, 60, 789–796. [Google Scholar] [CrossRef]
- Kempf, I.; Jouy, E.; Chauvin, C. Colistin Use and Colistin Resistance in Bacteria from Animals. Int. J. Antimicrob. Agents 2016, 48, 598–606. [Google Scholar] [CrossRef]
- Zeng, Y.; Lu, J.; Liu, C.; Ling, Z.; Sun, Q.; Wang, H.; Zhou, H.; Hu, Y.; Chen, G.; Zhang, R. A Method for Screening Tigecycline-Resistant Gene Tet(X) from Human Gut. J. Glob. Antimicrob. Resist. 2021, 24, 29–31. [Google Scholar] [CrossRef]
- Chen, T.; Zhao, M.; Tang, X.; Wang, W.; Zhang, M.; Tang, J.; Wang, W.; Wei, W.; Ma, B.; Zou, Y.; et al. Serious Risk of Tigecycline Resistance in Escherichia coli Isolated from Swine Manure. Microb. Ecol 2023, 86, 947–958. [Google Scholar] [CrossRef] [PubMed]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial Use and Resistance in Food Animal Production: Food Safety and Associated Concerns in Sub-Saharan Africa. Int. Microbiol. 2024, 27, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic Use in Food Animals Worldwide, with a Focus on Africa: Pluses and Minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, M.U.; Marrollo, R.; Paolucci, M.; Brovarone, F.; Nardini, P.; Chah, K.F.; Shoyinka, S.V.O.; Carretto, E. Isolation and Characterisation of Colistin-Resistant Enterobacterales from Chickens in Southeast Nigeria. J. Glob. Antimicrob. Resist. 2021, 26, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Chah, J.M.; Nwankwo, S.C.; Uddin, I.O.; Chah, K.F. Knowledge and Practices Regarding Antibiotic Use among Small-Scale Poultry Farmers in Enugu State, Nigeria. Heliyon 2022, 8, e09342. [Google Scholar] [CrossRef]
- Ayeni, F.A.; Odumosu, B.T.; Oluseyi, A.E.; Ruppitsch, W. Identification and Prevalence of Tetracycline Resistance in Enterococci Isolated from Poultry in Ilishan, Ogun State, Nigeria. J. Pharm. Bioallied Sci. 2016, 8, 69–73. [Google Scholar] [CrossRef]
- Ndahi, M.D.; Hendriksen, R.; Helwigh, B.; Card, R.M.; Fagbamila, I.O.; Abiodun-Adewusi, O.O.; Ekeng, E.; Adetunji, V.; Adebiyi, I.; Andersen, J.K. Determination of Antimicrobial Use in Commercial Poultry Farms in Plateau and Oyo States, Nigeria. Antimicrob. Resist. Infect. Control 2023, 12, 30. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, Y.; Liu, D.; Yang, D.; Liu, Z.; Wang, Y.; Wang, J.; Wang, X.; Xu, X.; Li, X.; et al. Abundance of Tigecycline Resistance Genes and Association with Antibiotic Residues in Chinese Livestock Farms. J. Hazard. Mater. 2021, 409, 124921. [Google Scholar] [CrossRef]
- Ayandiran, T.O.; Falgenhauer, L.; Schmiede, J.; Chakraborty, T.; Ayeni, F.A. High Resistance to Tetracycline and Ciprofloxacin in Bacteria Isolated from Poultry Farms in Ibadan, Nigeria. J. Infect. Dev. Ctries. 2018, 12, 462–470. [Google Scholar] [CrossRef]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Olsen, J.E. Association between Antimicrobial Usage and Resistance in Salmonella from Poultry Farms in Nigeria. BMC Vet. Res. 2021, 17, 234. [Google Scholar] [CrossRef]
- Ngbede, E.O.; Poudel, A.; Kalalah, A.; Yang, Y.; Adekanmbi, F.; Adikwu, A.A.; Adamu, A.M.; Mamfe, L.M.; Daniel, S.T.; Useh, N.M.; et al. Identification of Mobile Colistin Resistance Genes (Mcr-1.1, Mcr-5 and Mcr-8.1) in Enterobacteriaceae and Alcaligenes Faecalis of Human and Animal Origin, Nigeria. Int. J. Antimicrob. Agents 2020, 56, 106108. [Google Scholar] [CrossRef] [PubMed]
- Aworh, M.K.; Kwaga, J.K.P.; Hendriksen, R.S.; Okolocha, E.C.; Thakur, S. Genetic Relatedness of Multidrug Resistant Escherichia coli Isolated from Humans, Chickens and Poultry Environments. Antimicrob. Resist. Infect. Control 2021, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Jibril, A.H.; Okeke, I.N.; Dalsgaard, A.; Olsen, J.E. Prevalence and Whole Genome Phylogenetic Analysis Reveal Genetic Relatedness between Antibiotic Resistance Salmonella in Hatchlings and Older Chickens from Farms in Nigeria. Poult. Sci. 2023, 102, 102427. [Google Scholar] [CrossRef] [PubMed]
- Anyanwu, M.U.; Anyogu, D.C.; Chah, K.F.; Shoyinka, V.S. Mobile Colistin Resistance (Mcr-1) Gene-Positive Escherichia coli from Chickens in Nigeria Is Potentially Pathogenic and Transfers Colistin Resistance to Other Organisms. Comp. Clin. Path. 2022, 31, 323–332. [Google Scholar] [CrossRef]
- Muhammad, M.; Muhammad, L.U.; Ambali, A.G.; Mani, A.U.; Azard, S.; Barco, L. Prevalence of Salmonella Associated with Chick Mortality at Hatching and Their Susceptibility to Antimicrobial Agents. Vet. Microbiol. 2010, 140, 131–135. [Google Scholar] [CrossRef]
- Das, T.; Islam, M.Z.; Rana, E.A.; Dutta, A.; Ahmed, S.; Barua, H.; Biswas, P.K. Abundance of Mobilized Colistin Resistance Gene (Mcr-1) in Commensal Escherichia coli from Diverse Sources. Microb. Drug Resist. 2021, 27, 1585–1593. [Google Scholar] [CrossRef]
- Ahmed, S.; Das, T.; Islam, M.Z.; Herrero-Fresno, A.; Biswas, P.K.; Olsen, J.E. High Prevalence of Mcr-1-Encoded Colistin Resistance in Commensal Escherichia coli from Broiler Chicken in Bangladesh. Sci. Rep. 2020, 10, 18637. [Google Scholar] [CrossRef]
- Osman, K.M.; Kappell, A.D.; Elhadidy, M.; Elmougy, F.; El-Ghany, W.A.A.; Orabi, A.; Mubarak, A.S.; Dawoud, T.M.; Hemeg, H.A.; Moussa, I.M.I.; et al. Poultry Hatcheries as Potential Reservoirs for Antimicrobial-Resistant Escherichia coli: A Risk to Public Health and Food Safety. Sci. Rep. 2018, 8, 5859. [Google Scholar] [CrossRef]
- Mohsin, M.; Hassan, B.; Martins, W.M.B.S.; Li, R.; Abdullah, S.; Sands, K.; Walsh, T.R. Emergence of Plasmid-Mediated Tigecycline Resistance Tet(X4) Gene in Escherichia coli Isolated from Poultry, Food and the Environment in South Asia. Sci. Total Environ. 2021, 787, 147613. [Google Scholar] [CrossRef]
- Anyanwu, M.U.; Ugwu, I.C.; Okorie-Kanu, O.J.; Ngwu, M.I.; Kwabugge, Y.A.; Aneke, C.I.; Chah, K.F. Sorbitol Non-Fermenting Escherichia coli and E. coli O157: Prevalence and Antimicrobial Resistance Profile of Strains in Slaughtered Food Animals in Southeast Nigeria. Access Microbiol. 2022, 4, 000433. [Google Scholar] [CrossRef]
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing, 33rd ed.; m100ed33; CLSI: Malvern, UK, 2023; ISBN 9781684401703. [Google Scholar]
- Jaja, I.F.; Jaja, C.J.I.; Chigor, N.V.; Anyanwu, M.U.; Maduabuchi, E.K.; Oguttu, J.W.; Green, E. Antimicrobial Resistance Phenotype of Staphylococcus Aureus and Escherichia coli Isolates Obtained from Meat in the Formal and Informal Sectors in South Africa. BioMed Res. Int. 2020, 2020, 3979482. [Google Scholar] [CrossRef] [PubMed]
- European Union Committee on Antimicrobial Susceptibility Testing. (EUCAST) V_14.0_Breakpoint_Tables. Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_14.0_Breakpoint_Tables.pdf&ved=2ahUKEwjngIP-7dCJAxUydvUHHRFgCvwQFnoECB4QAQ&usg=AOvVaw2x-N8AJg8L_hl1XC8F4VjN (accessed on 5 October 2024).
- Kaur, J.; Chopra, S.; Sheevani; Mahajan, G. Modified Double Disc Synergy Test to Detect ESBL Production in Urinary Isolates of Escherichia coli and Klebsiella Pneumoniae. J. Clin. Diagn. Res. 2013, 7, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Schaffarczyk, L.; Noster, J.; Stelzer, Y.; Sattler, J.; Gatermann, S.; Hamprecht, A. Detection of Rare Carbapenemases in Enterobacterales—Comparison of Two Colorimetric and Three CIM-Based Carbapenemase Assays. Microbiol. Spectr. 2024, 12, e0301523. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Beshiru, A. Antimicrobial Resistance, Virulence Determinants, and Biofilm Formation of Enterococcus Species from Ready-to-Eat Seafood. Front. Microbiol. 2019, 10, 728. [Google Scholar] [CrossRef] [PubMed]
- Soujanya, B.R.; Banashankari, G.S. Phenotypic Detection of Virulence Factors of Uropathogenic Enterobacteriaceae. J. Pure Appl. Microbiol. 2023, 17, 931–941. [Google Scholar] [CrossRef]
- Nwobi, O.C.; Anyanwu, M.U.; Jaja, I.F.; Nwankwo, I.O.; Okolo, C.C.; Nwobi, C.A.; Ezenduka, E.V.; Oguttu, J.W. Staphylococcus Aureus in Horses in Nigeria: Occurrence, Antimicrobial, Methicillin and Heavy Metal Resistance and Virulence Potentials. Antibiotics 2023, 12, 242. [Google Scholar] [CrossRef]
- Ramnath, L.; Sithole, B.; Govinden, R. Identification of Lipolytic Enzymes Isolated from Bacteria Indigenous to Eucalyptus Wood Species for Application in the Pulping Industry. Biotechnol. Rep. 2017, 15, 114–124. [Google Scholar] [CrossRef]
- Preda, M.; Mihai, M.M.; Popa, L.I.; Diţu, L.M.; Holban, A.M.; Manolescu, L.S.C.; Popa, G.L.; Muntean, A.A.; Gheorghe, I.; Chifiriuc, C.M.; et al. Phenotypic and Genotypic Virulence Features of Staphylococcal Strains Isolated from Difficult-to-Treat Skin and Soft Tissue Infections. PLoS ONE 2021, 16, e0246478. [Google Scholar] [CrossRef]
- Nesse, L.L.; Mo, S.S.; Ramstad, S.N.; Witsø, I.L.; Sekse, C.; Bruvoll, A.E.E.; Urdahl, A.M.; Vestby, L.K. The Effect of Antimicrobial Resistance Plasmids Carrying BlaCMY-2 on Biofilm Formation by Escherichia coli from the Broiler Production Chain. Microorganisms 2021, 9, 104. [Google Scholar] [CrossRef]
- Dawadi, P.; Khanal, S.; Prasai Joshi, T.; KC, S.; Tuladhar, R.; Maharjan, B.L.; Darai, A.; Joshi, D.R. Antibiotic Resistance, Biofilm Formation and Sub-Inhibitory Hydrogen Peroxide Stimulation in Uropathogenic Escherichia coli. Microbiol. Insights 2022, 15, 11786361221135224. [Google Scholar] [CrossRef]
- Farid, W.; Masud, T.; Sohail, A.; Ahmad, N.; Naqvi, S.M.S.; Khan, S.; Ali, A.; Khalifa, S.A.; Hussain, A.; Ali, S.; et al. Gastrointestinal Transit Tolerance, Cell Surface Hydrophobicity, and Functional Attributes of Lactobacillus Acidophilus Strains Isolated from Indigenous Dahi. Food Sci. Nutr. 2021, 9, 5092–5102. [Google Scholar] [CrossRef] [PubMed]
- Hagos, D.G.; Mezgebo, T.A.; Berhane, S.; Medhanyie, A.A. Biofilm and Hemagglutinin Formation: A Hallmark for Drug Resistant Uropathogenic Escherichia coli. BMC Res. Notes 2019, 12, 358. [Google Scholar] [CrossRef] [PubMed]
- Kemmett, K.; Williams, N.J.; Chaloner, G.; Humphrey, S.; Wigley, P.; Humphrey, T. The Contribution of Systemic Escherichia coli Infection to the Early Mortalities of Commercial Broiler Chickens. Avian Pathol. 2014, 43, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.; Jouy, E.; Larvor, E.; Eono, F.; Bougeard, S.; Kempf, I. Impact of Third-Generation-Cephalosporin Administration in Hatcheries on Fecal Escherichia coli Antimicrobial Resistance in Broilers and Layers. Antimicrob. Agents Chemother. 2014, 58, 5428–5434. [Google Scholar] [CrossRef] [PubMed]
- Njoga, E.O.; Onunkwo, J.I.; Okoli, C.E.; Ugwuoke, W.I.; Nwanta, J.A.; Chah, K.F. Assessment of Antimicrobial Drug Administration and Antimicrobial Residues in Food Animals in Enugu State, Nigeria. Trop. Anim. Health Prod. 2018, 50, 897–902. [Google Scholar] [CrossRef]
- Miguela-Villoldo, P.; Moreno, M.A.; Rebollada-Merino, A.; Rodríguez-Bertos, A.; Hernández, M.; Rodríguez-Lázaro, D.; Gallardo, A.; Quesada, A.; Goyache, J.; Domínguez, L.; et al. Colistin Selection of the Mcr-1 Gene in Broiler Chicken Intestinal Microbiota. Antibiotics 2021, 10, 677. [Google Scholar] [CrossRef]
- Jerab, J.G.; Chantziaras, I.; Van Limbergen, T.; Van Erum, J.; Boel, F.; Hoeven, E.; Dewulf, J. Antimicrobial Use in On-Farm Hatching Systems vs. Traditional Hatching Systems: A Case Study. Animals 2023, 13, 3270. [Google Scholar] [CrossRef]
- Ugah, U.I.; Udeani, T.K. High Prevalence of Phenotypic Resistance to Colistin, Tigecycline and Netilmicin in a Region with No History of Colistin Administration in Nigeria. Clin. Lab. 2021, 67, 85–97. [Google Scholar] [CrossRef]
- Ezeibe, M.C.O.; Udom, A.E.; Onyeachonam, O.F.; Ogbonna, I.J.; Akpan, C.A.; Okoroafor, O.N. Prevalence and Characerizaion of Salmonella pullorum from Day Old Chicks Distributed to Farms in Akwa Ibom State, Nigeria. Health 2019, 11, 1573–1580. [Google Scholar] [CrossRef]
- Nhung, N.T.; Yen, N.T.P.; Thien, N.V.K.; Cuong, N.V.; Kiet, B.T.; Campbell, J.; Thwaites, G.; Baker, S.; Geskus, R.B.; Carrique-Masa, J. Method for Measuring Phenotypic Colistin Resistance in Escherichia coli Populations from Chicken Flocks. Appl. Environ. Microbiol. 2021, 87, e02597-20. [Google Scholar] [CrossRef]
- Soliman, A.M.; Ramadan, H.; Zarad, H.; Sugawara, Y.; Yu, L.; Sugai, M.; Shimamoto, T.; Hiott, L.M.; Frye, J.G.; Jackson, C.R.; et al. Coproduction of Tet(X7) Conferring High-Level Tigecycline Resistance, Fosfomycin FosA4, and Colistin Mcr-1.1 in Escherichia coli Strains from Chickens in Egypt. Antimicrob. Agents Chemother. 2021, 65, e02084-20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wen, J.; Wang, Y.; Zhong, Z.; Wang, M.; Jia, R.; Chen, S.; Liu, M.; Zhu, D.; Zhao, X.; et al. Decoding the Enigma: Unveiling the Molecular Transmission of Avian-Associated Tet(X4)-Positive E. coli in Sichuan Province, China. Poult. Sci. 2023, 102, 103142. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Cui, M.; Zhang, S.; Wang, H.; Song, L.; Zhang, C.; Zhao, Q.; Liu, D.; Wang, Y.; Shen, J.; et al. Plasmid-Mediated Tigecycline-Resistant Gene Tet(X4) in Escherichia coli from Food-Producing Animals, China, 2008–2018. Emerg. Microbes Infect. 2019, 8, 1524–1527. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Lu, X.; Munir, A.; Abdullah, S.; Liu, Y.; Xiao, X.; Wang, Z.; Mohsin, M. Widespread Prevalence and Molecular Epidemiology of Tet(X4) and Mcr-1 Harboring Escherichia coli Isolated from Chickens in Pakistan. Sci. Total Environ. 2022, 806, 150689. [Google Scholar] [CrossRef]
- Yue, C.; Bai, Y.; Li, T.; Deng, H.; Lu, L.; Lin, W.; Cui, X.; Lv, L.; Gao, G.; Liu, J.H.; et al. Emergence of Tet(X4)-Positive Enterobacterales in Retail Eggs and the Widespread of IncFIA(HI1)-HI1A-HI1B(R27) Plasmids Carrying Tet(X4). Int. J. Food Microbiol. 2024, 414, 110574. [Google Scholar] [CrossRef]
- Aworh, M.K.; Kwaga, J.; Okolocha, E.; Harden, L.; Hull, D.; Hendriksen, R.S.; Thakur, S. Extended-Spectrum ß-Lactamase-Producing Escherichia coli among Humans, Chickens and Poultry Environments in Abuja, Nigeria. One Health Outlook 2020, 2, 8. [Google Scholar] [CrossRef]
- Dierikx, C.M.; Van Der Goot, J.A.; Smith, H.E.; Kant, A.; Mevius, D.J. Presence of ESBL/AmpC -Producing Escherichia coli in the Broiler Production Pyramid: A Descriptive Study. PLoS ONE 2013, 8, e79005. [Google Scholar] [CrossRef]
- Laube, H.; Friese, A.; von Salviati, C.; Guerra, B.; Käsbohrer, A.; Kreienbrock, L.; Roeslera, U. Longitudinal Monitoring of Extended-Spectrum-Beta-Lactamase/AmpC-Producing Escherichia coli at German Broiler Chicken Fattening Farms. Appl. Environ. Microbiol. 2013, 79, 4815–4820. [Google Scholar] [CrossRef]
- AbdelRahman, M.A.A.; Roshdy, H.; Samir, A.H.; Hamed, E.A. Antibiotic Resistance and Extended-Spectrum β-Lactamase in Escherichia coli Isolates from Imported 1-Day-Old Chicks, Ducklings, and Turkey Poults. Vet. World 2020, 13, 1037–1044. [Google Scholar] [CrossRef]
- Alhaji, N.B.; Haruna, A.E.; Muhammad, B.; Lawan, M.K.; Isola, T.O. Antimicrobials Usage Assessments in Commercial Poultry and Local Birds in North-Central Nigeria: Associated Pathways and Factors for Resistance Emergence and Spread. Prev. Vet. Med. 2018, 154, 139–147. [Google Scholar] [CrossRef]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Anandkumar, H.; Nigudgi, A.; Hajare, V.; Biradar, S. Evaluation of Cell Surface Hydrophobicity and Biofilm Formation as Pathogenic Determinants among ESBL Producing Uropathogenic Escherichia coli. Indian J. Microbiol. Res. 2021, 8, 263–267. [Google Scholar] [CrossRef]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-Ploskonska, G.; Choroszy-Krol, I. Virulence Factors, Prevalence and Potential Transmission of Extraintestinal Pathogenic Escherichia coli Isolated from Different Sources: Recent Reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [PubMed]
- Hogan, J.S.; Todhunter, D.A.; Smith, K.L.; Schoenberger, P.S. Hemagglutination and Hemolysis by Escherichia coli Isolated from Bovine Intramammary Infections. J. Dairy Sci. 1990, 73, 3126–3131. [Google Scholar] [CrossRef]
- Cocchi, M.; Di Giusto, T.; Toson, M.; Deotto, S.; Ustulin, M.; Conedera, G.; Vio, D. Biofilm Formation, Production of Cellulose and Curli Fimbriae in Escherichia coli Strains Isolated during Edema Disease of Swine. Large Anim. Rev. 2017, 23, 55–58. [Google Scholar]
- Giles, S.K.; Stroeher, U.H.; Eijkelkamp, B.A.; Brown, M.H. Identification of Genes Essential for Pellicle Formation in Acinetobacter Baumannii ’Microbial Biochemistry, Physiology and Metabolism. BMC Microbiol. 2015, 15, 116. [Google Scholar] [CrossRef]
- Kandi, V.; Vaish, R.; Pradeep, M.; Setty, C. Evaluation of Virulence Factors and Antibiotic Sensitivity Pattern of Escherichia coli Isolated from Extraintestinal Infections. Cureus 2016, 8, e604. [Google Scholar] [CrossRef]
- Mazumder, R.; Hussain, A.; Phelan, J.E.; Campino, S.; Haider, S.M.A.; Mahmud, A.; Ahmed, D.; Asadulghani, M.; Clark, T.G.; Mondal, D. Non-Lactose Fermenting Escherichia coli: Following in the Footsteps of Lactose Fermenting E. coli High-Risk Clones. Front. Microbiol. 2022, 13, 1027494. [Google Scholar] [CrossRef]
Hatchery ID | Number of Birds Sampled | Number (%) of Birds Harbouring Escherichia coli Unsusceptible to Antibiotic (N = 250) | |
---|---|---|---|
Colistin | Tigecycline | ||
A | 68 | 31 (45.6) | 33 (48.5) |
B | 88 | 19 (21.6) | 21 (24) |
C | 30 | 12 (40) | 2 (6.7) |
D | 25 | 5 (20) | 6 (24) |
E | 25 | 15 (60) | 0 (0) |
F | 14 | 13 (93) | 0 (0) |
Total | 250 | 95 (38) | 62 (24.8) |
S/N | Virulence Pattern | Number (% Frequency) of Isolates | |
---|---|---|---|
Tigecycline-Unsusceptible (n = 56) | Colistin-Unsusceptible (n = 72) | ||
1 | Hgl | 1 (1.8) | 2 (2.8) |
2 | Sfl | 2 (3.6) | 10 (13.8) |
3 | Glt | 2 (3.6) | 3 (4.2) |
4 | Csh | 3 (5.3) | 22 (30.5) |
5 | Bfm | 5 (8.9) | 11 (15.2) |
6 | Bfm-Sfl | 5 (8.9) | 3 (4.2) |
7 | Gel-Bfm | 4 (7.1) | 4 (5.6) |
8 | Bfm-Csh | 2 (3.6) | 2 (2.8) |
9 | Glt-Sfl | 1 (1.8) | 1 (1.4) |
10 | Hgl-Glt-Csh | 1 (1.8) | 3 (4.2) |
11 | Hgl-Glt-Bfm | 2 (3.6) | 3 (4.2) |
12 | Hgl-Bfm-Sfl | 5 (8.9) | 0 (0.0) |
13 | Glt-Bfm-Sfl | 8 (14.3) | 3 (4.2) |
14 | Glt-Bfm-Csh | 2 (3.6) | 0 (0.0) |
15 | Bfm-Sfl-Csh | 6 (10.7) | 5 (6.9) |
16 | Gel-Bfm-Sfl-Csh | 4 (7.1) | 0 (0.0) |
17 | Hgl-Bfm-Sfl-Csh | 2 (3.6) | 0 (0.0) |
19 | Hgl-Glt-Bfm-Sfl-Csh | 1 (1.8) | 0 (0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anyanwu, M.U.; Ikenna-Ezeh, N.H.; Okafor, S.C.; Ezemuoka, C.F.; Nwobi, O.C.; Ogunniran, T.M.; Obodoechi, L.O.; Okorie-Kanu, O.J.; Mgbeahuruike, A.C.; Okosi, I.R.; et al. Commercial Day-Old Chicks in Nigeria Are Potential Reservoirs of Colistin- and Tigecycline-Resistant Potentially Pathogenic Escherichia coli. Antibiotics 2024, 13, 1067. https://doi.org/10.3390/antibiotics13111067
Anyanwu MU, Ikenna-Ezeh NH, Okafor SC, Ezemuoka CF, Nwobi OC, Ogunniran TM, Obodoechi LO, Okorie-Kanu OJ, Mgbeahuruike AC, Okosi IR, et al. Commercial Day-Old Chicks in Nigeria Are Potential Reservoirs of Colistin- and Tigecycline-Resistant Potentially Pathogenic Escherichia coli. Antibiotics. 2024; 13(11):1067. https://doi.org/10.3390/antibiotics13111067
Chicago/Turabian StyleAnyanwu, Madubuike Umunna, Nkechi Harriet Ikenna-Ezeh, Simeon Chibuko Okafor, Chinaza Francisca Ezemuoka, Obichukwu Chisom Nwobi, Temitope Mofoluso Ogunniran, Lynda Onyinyechi Obodoechi, Onyinye Josephine Okorie-Kanu, Anthony Christian Mgbeahuruike, Ifeyinwa Riona Okosi, and et al. 2024. "Commercial Day-Old Chicks in Nigeria Are Potential Reservoirs of Colistin- and Tigecycline-Resistant Potentially Pathogenic Escherichia coli" Antibiotics 13, no. 11: 1067. https://doi.org/10.3390/antibiotics13111067
APA StyleAnyanwu, M. U., Ikenna-Ezeh, N. H., Okafor, S. C., Ezemuoka, C. F., Nwobi, O. C., Ogunniran, T. M., Obodoechi, L. O., Okorie-Kanu, O. J., Mgbeahuruike, A. C., Okosi, I. R., & Jaja, I. F. (2024). Commercial Day-Old Chicks in Nigeria Are Potential Reservoirs of Colistin- and Tigecycline-Resistant Potentially Pathogenic Escherichia coli. Antibiotics, 13(11), 1067. https://doi.org/10.3390/antibiotics13111067