Studies Regarding Antimicrobial Properties of Some Microbial Polyketides Derived from Monascus Strains
Abstract
:1. Introduction
- In silico studies regarding the molecular docking of six compounds found in the pigments produced by Monascus, targeting three models of pathogenic microorganisms—S. aureus (G+ model), E. coli (G− model), and C. albicans (fungal model);
- In silico evaluation of the physicochemical and pharmacokinetic parameters of the eight compounds;
- Predictions regarding the bioavailability and toxicity of the six compounds;
- Evaluation of the relative composition of three bioproducts (i.e., red yeast rice RYR) obtained from Monascus purpureus, Monascus ruber, and a highly productive strain of Monascus ruber;
- In vitro studies regarding the activity of bioproducts containing yellow, orange, and red pigments obtained by biosynthesis on a solid substrate with three strains of Monascus. The studies in vitro were conducted on pathogenic microorganisms, including G+ bacteria, G− bacteria, and fungi. The experimental study design is illustrated in Figure 1.
2. Results
2.1. In Silico Predictions
2.2. Analysis of Bioproducts Obtained from Monascus sp.
2.3. Results Validation Through In Vitro Tests
3. Discussions
4. Materials and Method
4.1. In Silico Studies
4.1.1. Docking Predictions
- 2w9s—S. aureus dihydrofolate reductase (saDHFR), reference: trimethoprim (5-(3,4,5-trimethoxybenzyl)pyrimidine-2,4-diamine) [44];
- 7mym—E. coli dihydrofolate reductase (ecDHFR), reference: trimethoprim [45];
- 4hoe—C. albicans dihydrofolate reductase (caDHFR), reference: UCP11E (5-[3-(2,5-dimethoxy-4-phenylphenyl)but-1-yn-1-yl]-6 methyl pyrimidine-2,4-diamine) [45];
- 2w3a—human dihydrofolate reductase (hDHFR), reference: trimethoprim [45];
4.1.2. Prediction of ADMET Properties
4.2. Microorganisms Used
- (a)
- Three Monascus strains were used to obtain RYR: Monascus purpureus DSM 1379, Monascus ruber MUCL 28962, and a highly productive Monascus ruber strain. The last strain was received as a gift from Prof. Octavian Duliu of the Department of Atomic and Nuclear Physics at the University of Bucharest, Romania.
- (b)
- Bacteria: Staphylococcus aureus ATCC 25923, Staphylococcus aureus MRSA ATCC 33592, Serratia marcescens ATCC 14756, Pseudomonas aeruginosa ATCC 13388, and Salmonella enterica ATCC 51741.
- (c)
- Fungi: Candida albicans ATCC 10231, Microsporum canis ATCC 10214, Trichophyton mentagrophytes ATCC 18748, Microsporum gypseum ATCC 24102, and Scopulariopsis brevicaulis ATCC 1102.
4.3. Monascus Bioproducts
4.4. Extracts with Yellow, Orange, and Red Monascus Polyketides
4.5. Analysis of RYR Bioproduct
- (a)
- Obtaining Raw Extracts
- (b)
- Obtaining Extracts Enriched with Yellow, Orange, or Red Polyketides
4.6. In Vitro Validation Tests
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiao, J.; Liu, Z.; Zheng, Y.; Liu, J. A novel application of Monascus purpureus in semi-soft cheese making. J. Food Process. Preserv. 2021, 45, e15209. [Google Scholar] [CrossRef]
- Yang, Y.; Xia, Y.; Li, C.; Wang, G.; Xiong, Z.; Song, X.; Zhang, H.; Wang, M.; Ai, L. Metabolites, flavor profiles and ripening characteristics of Monascus-ripened cheese enhanced by Lactobacillus salivarius AR809 as adjunct culture. Food Chem. 2024, 436, 137759. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, T.; Zhang, Y.; Song, B.; Pang, X.; Lv, J. Effects of Monascus on Proteolysis, Lipolysis, and Volatile Compounds of Camembert-Type Cheese during Ripening. Foods 2022, 11, 1662. [Google Scholar] [CrossRef] [PubMed]
- Lorrungruang, C.; Sinma, K.; Pantagrud, P.; Wannasirisuk, S.; Mahabandha, K.; Khucharoenphaisan, K. Red Cheese Production from Soymilk by Monascus purpureus and Lactobacillus casei. J. Appl. Sci. 2014, 14, 2819–2824. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, X.; Virk, M.S.; Ma, Y.; Chen, F. Effects of Various Rice-Based Raw Materials on Enhancement of Volatile Aromatic Compounds in Monascus Vinegar. Molecules 2021, 26, 687. [Google Scholar] [CrossRef]
- Takeshita, R.; Saigusa, N.; Teramoto, Y. Production and antioxidant activity of alcoholic beverages made from various cereal grains using Monascus purpureus NBRC 5965. J. Inst. Brew. 2016, 122, 350–354. [Google Scholar] [CrossRef]
- Klimek, M.; Wang, S.; Ogunkanmi, A. Safety and efficacy of red yeast rice (Monascus purpureus) as an alternative therapy for hyperlipidemia. Pharm. Ther. 2009, 34, 313–327. [Google Scholar]
- Chen, G.; Chen, W.; Xu, J.; Ma, G.; Hu, X.; Chen, G. The current trend and challenges of developing red yeast rice-based food supplements for hypercholesterolemia. J. Future Foods 2023, 3, 312–329. [Google Scholar] [CrossRef]
- Vitiello, A.; Izzo, L.; Castaldo, L.; d’Angelo, I.; Ungaro, F.; Miro, A.; Ritieni, A.; Quaglia, F. The Questionable Quality Profile of Food Supplements: The Case of Red Yeast Rice Marketed Products. Foods 2023, 12, 2142. [Google Scholar] [CrossRef]
- Fukami, H.; Higa, Y.; Hisano, T.; Asano, K.; Hirata, T.; Nishibe, S. A Review of Red Yeast Rice, a Traditional Fermented Food in Japan and East Asia: Its Characteristic Ingredients and Application in the Maintenance and Improvement of Health in Lipid Metabolism and the Circulatory System. Molecules 2021, 26, 1619. [Google Scholar] [CrossRef]
- Zhu, B.; Qi, F.; Wu, J.; Yin, G.; Hua, J.; Zhang, Q.; Qin, L. Red Yeast Rice: A Systematic Review of the Traditional Uses, Chemistry, Pharmacology, and Quality Control of an Important Chinese Folk Medicine. Front. Pharmacol. 2019, 10, 1449. [Google Scholar] [CrossRef] [PubMed]
- Farkouh, A.; Baumgärtel, C. Mini-review: Medication safety of red yeast rice products. Int. J. Gen. Med. 2019, 12, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Katyal, P.; Panwar, H.; Puniya, A.K.; Poonia, A.K. Evaluating anti-microbial and anti-oxidative potential of red biopigment from Monascus purpureus. Environ. Conserv. J. 2022, 23, 83–93. [Google Scholar] [CrossRef]
- Suraiya, S.; Jang, W.J.; Cho, H.J.; Bin Choi, Y.; Park, H.D.; Kim, J.-M.; Kong, I.-S. Immunomodulatory Effects of Monascus spp.-Fermented Sacccharina japonica Extracts on the Cytokine Gene Expression of THP-1 Cells. Appl. Biochem. Biotechnol. 2019, 188, 498–513. [Google Scholar] [CrossRef]
- Lin, C.S.; Hur, H.F.; Lin, C.C. Antioxidant properties and antibacterial activity of fermented Monascus purpureus extracts. MOJ Food Process. Technol. 2019, 7, 49–54. [Google Scholar] [CrossRef]
- Feng, L.H.; Li, Y.Q.; Sun, G.J.; Zhao, X.Z. Antibacterial effect of orange Monascus pigment against Staphylococcus aureus. Acta Aliment. 2019, 48, 169–176. [Google Scholar] [CrossRef]
- Kaur, M.; Goel, M.; Mishra, R.C.; Lahane, V.; Yadav, A.K.; Barrow, C.J. Characterization of the Red Biochromes Produced by the Endophytic Fungus Monascus purpureus CPEF02 with Antimicrobial and Antioxidant Activities. Fermentation 2023, 9, 328. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Yang, J.; Cui, K. Antibacterial characteristics of orange pigment extracted from Monascus pigments against Escherichia coli. Czech J. Food Sci. 2016, 34, 197–203. [Google Scholar] [CrossRef]
- Vendruscolo, F.; Tosin, I.; Giachini, A.J.; Schmidell, W.; Ninow, J.L. Antimicrobial Activity of Monascus Pigments. J. Food Process. Preserv. 2014, 38, 1860–1865. [Google Scholar] [CrossRef]
- Gajalakshmi, P.; Raja, A.; Banu, H.M.V. Efficacy of polyketide pigment produced by Monascus purpureus and its biological activity. Nutrafoods 2019, 2, 113–120. [Google Scholar] [CrossRef]
- Bouksir, K.; Kazzaz, M.; Fehri, H.F.; Bouziane, H.; Bouksir, H.; El Haskouri, F. Monascus ruber: A new of onychomycosis in the north of Morocco (Tetouan). J. Mycol. Médicale 2018, 28, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Tu, C.-T.; Chen, Y.-P.; Yu, M.-C.; Hwang, I.-R.; Wu, D.Y.; Liaw, L.-L. Characterization and expression of the antifungal protein from Monascus pilosus and its distribution among various Monascus species. J. Biosci. Bioeng. 2016, 122, 27–33. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, V.; Katyal, P.; Poonia, A.K.; Kaur, J.; Puniya, A.K.; Panwar, H. Natural pigment from Monascus: The production and therapeutic significance. J. Appl. Microbiol. 2022, 33, 18–38. [Google Scholar] [CrossRef] [PubMed]
- Moussa, L.A.; Azeiz, A.Z. Effect of media composition on citrinin and bio-pigments production by Monascus ruber. J. Appl. Biol. Biotechnol. 2017, 5, 104–109. [Google Scholar]
- Egea, M.B.; Dantas, L.A.; Sousa, T.L.D.; Lima, A.G.; Lemes, A.C. The potential, strategies, and challenges of Monascus pigment for food application. Front. Sustain. Food Syst. 2023, 7, 1141644. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Oishi, B.O.; Woiciechowski, A.L.; Pandey, A.; Babitha, S.; Soccol, C.R. Effect of substrates on the production of Monascus biopigments by solid-state fermentation and pigment extraction using different solvents. Indian J. Biotechnol. 2007, 6, 194–199. [Google Scholar]
- Huang, T.; Tan, H.; Chen, G.; Wang, L.; Wu, Z. Rising temperature stimulates the biosynthesis of water-soluble fluorescent yellow pigments and gene expression in Monascus ruber CGMCC10910. AMB Express 2017, 7, 134. [Google Scholar] [CrossRef]
- Chen, S.; Su, D.X.; Gao, M.X.; Zhang, J.-L.; Liu, Y.-B.; Wu, Q.-H.; Yang, H.-L.; Li, L. A facile macroporous resin-based method for separation of yellow and orange Monascus pigments. Food Sci. Biotechnol. 2021, 30, 545–553. [Google Scholar] [CrossRef]
- Yuliana, A.; Rahmawati, L.; Adlina, S. Isolation and Identification of New Pigment from Monascus purpureus. Ad-Dawaa’ J. Pharm. Sci. 2021, 4. [Google Scholar] [CrossRef]
- Liang, J.-X.; Zhang, Q.-Q.; Huang, Y.-F.; Pang, H.Q.; Liu, X.-G.; Gao, W.; Li, P.; Yang, H. Comprehensive chemical profiling of Monascus-fermented rice product and screening of lipid-lowering compounds other than monacolins. J. Ethnopharmacol. 2019, 238, 111879. [Google Scholar] [CrossRef]
- Adin, S.N.; Gupta, I.; Panda, B.P.; Mujeeb, M. Monascin and ankaflavin-Biosynthesis from Monascus purpureus, production methods, pharmacological properties: A review. Biotechnol. Appl. Biochem. 2023, 70, 137–147. [Google Scholar] [CrossRef] [PubMed]
- Srianta, I.; Zubaidah, E.; Estiasih, T.; Yamada, M.H. Comparison of Monascus purpureus growth, pigment production and composition on different cereal substrates with solid-state fermentation. Biocatal. Agric. Biotechnol. 2016, 7, 181–186. [Google Scholar] [CrossRef]
- Koli, S.H.; Suryawanshi, R.K.; Mohite, B.V.; Patil, S.V. Prospective of Monascus Pigments as an Additive to Commercial Sunscreens. Nat. Prod. Commun. 2019, 14, 1–7. [Google Scholar] [CrossRef]
- Majhi, S.; Dhale, M.A.; Honganoor Puttananjaiah, M. Inhibitory effect of Monascus purpureus pigment extracts against fungi and mechanism of action. Front. Sustain. Food Syst. 2023, 7, 1100961. [Google Scholar] [CrossRef]
- Yuliana, A.; Hilman-Fitriaji, S.P.; Mukhaufillah, K.S.; Rizkuloh, L.R. In Silico Study on Testing Antidiabetic Compounds Candidate from Azaphilone Monascus sp. Microbiol. Indones. 2020, 14, 14–52. [Google Scholar] [CrossRef]
- Singgih, M.; Permana, B.; Maulidya, S.A.; Yuliana, A. Studi In Silico Metabolit Sekunder Kapang Monascus sp. sebagai Kandidat Obat Antikolesterol dan Antikanker. ALCHEMY J. Penelit. Kim. 2019, 15, 104–123. [Google Scholar] [CrossRef]
- Rizkuloh, L.R.; Pratita, A.T.; Mediana, M.; Yuliana, A. In silico study in toxicity parameters of Pigment Derivated Compounds of Monascus sp. mold as a cervical anti-cancer drugs candidate. J. Teknol. Lab. 2021, 10, 93–100. [Google Scholar] [CrossRef]
- Zain, D.N.; Yuliana, A. In Silico Study of Monascus sp. Pigment Derivatives as Anticardiovascular Candidate. J. Ilm. Farm. 2023, 19, 1–14. Available online: http://journal.uii.ac.id/index.php/JIF (accessed on 25 September 2024). [CrossRef]
- Wu, L.; Zhou, K.; Yang, Z.; Li, J.; Chen, G.; Wu, Q.; Lv, X.; Hu, W.; Rao, P.; Ai, L.; et al. Monascuspiloin from Monascus-Fermented Red Mold Rice Alleviates Alcoholic Liver Injury and Modulates Intestinal Microbiota. Foods 2022, 11, 3048. [Google Scholar] [CrossRef]
- Hashimoto, T.; Ozaki, A.; Hakariya, H.; Takahashi, K.; Tanimoto, T. The Beni-Koji scandal and Japan’s unique health food system. Lancet 2024, 403, 2287–2288. [Google Scholar] [CrossRef]
- Luță, E.A.; Biță, A.; Moroșan, A.; Mihaiescu, D.E.; Ghica, M.; Mihai, D.P.; Olaru, O.T.; Deculescu-Ioniță, T.; Duțu, L.E.; Popescu, M.L.; et al. The Influence of Phytosociological Cultivation and Fertilization on Polyphenolic Content of Menthae and Melissae folium and Evaluation of Antioxidant Properties through In Vitro and In Silico Methods. Plants 2022, 11, 2398. [Google Scholar] [CrossRef] [PubMed]
- Ungureanu, A.R.; Chițescu, C.L.; Luță, E.A.; Moroșan, A.; Mihaiescu, D.E.; Mihai, D.P.; Costea, L.; Ozon, E.A.; Fița, A.C.; Balaci, T.D.; et al. Outlook on Chronic Venous Disease Treatment: Phytochemical Screening, In Vitro Antioxidant Activity and In Silico Studies for Three Vegetal Extracts. Molecules 2023, 28, 3668. [Google Scholar] [CrossRef] [PubMed]
- Heaslet, H.; Harris, M.; Fahnoe, K.; Sarver, R.; Putz, H.; Chang, J.; Subramanyam, C.; Barreiro, G.; Miller, J.R. Structural comparison of chromosomal and exogenous dihydrofolate reductase from Staphylococcus aureus in complex with the potent inhibitor trimethoprim. Proteins 2009, 76, 706–717. [Google Scholar] [CrossRef]
- Krucinska, J.; Lombardo, M.N.; Erlandsen, H.; Estrada, A.; Si, D.; Viswanathan, K.; Wright, D.L. Structure-guided functional studies of plasmid-encoded dihydrofolate reductases reveal a common mechanism of trimethoprim resistance in Gram-negative pathogens. Commun. Biol. 2022, 5, 459. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024, 52, W513–W520. [Google Scholar] [CrossRef]
- Burloiu, A.M.; Manda, G.; Lupuliasa, D.; Socoteanu, R.P.; Mihai, D.P.; Neagoe, I.V.; Anghelache, L.-I.; Surcel, M.; Anastasescu, M.; Olariu, L.; et al. Assessment of Some Unsymmetrical Porphyrins as Promising Molecules for Photodynamic Therapy of Cutaneous Disorders. Pharmaceuticals 2024, 17, 62. [Google Scholar] [CrossRef]
- Baker, D.J.; Beddell, C.J.; Champness, J.N.; Goodford, P.J.; Norrington, F.E.A.; Smith, D.R.; Stammers, D.K. The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett. 1981, 126, 49–52. Available online: https://core.ac.uk/download/pdf/82676770.pdf (accessed on 20 September 2024). [CrossRef]
- Ghany, L.M.A.A.; Ryad, N.; Abdel-Aziz, M.S.; El-Lateef, H.M.A.; Zaki, I.; Beshay, B.Y. Design, synthesis, antimicrobial evaluation, and molecular modeling of new sulfamethoxazole and trimethoprim analogs as potential DHPS/DHFR inhibitor. J. Mol. Struct. 2024, 1309, 138170. [Google Scholar] [CrossRef]
- Wróbel, A.; Arciszewska, K.; Maliszewski, D.; Drozdowska, D. Trimethoprim and other nonclassical antifolates an excellent template for searching modifications of dihydrofolate reductase enzyme inhibitors. J. Antibiot. 2020, 73, 5–27. [Google Scholar] [CrossRef]
- Gleckman, R.; Blagg, N.; Joubert, D.W. Trimethoprim: Mechanisms of action, antimicrobial activity, bacterial resistance, pharmacokinetics, adverse reactions, and therapeutic indications. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1981, 1, 14–19. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Model List of Essential Medicines: 22nd List (2021). Available online: https://iris.who.int/handle/10665/345533 (accessed on 20 September 2024).
- Agboyibor, C.; Kong, W.B.; Chen, D.; Zhang, A.-M.; Niu, S.-Q. Monascus pigments production, composition, bioactivity and its application: A review. Biocatal. Agric. Biotechnol. 2018, 16, 433–447. [Google Scholar] [CrossRef]
- Zaharie, M.-G.O.; Radu, N.; Pirvu, L.; Bostan, M.; Voicescu, M.; Begea, M.; Constantin, M.; Voaides, C.; Babeanu, N.; Roman, V. Studies Regarding the Pharmaceutical Potential of Derivative Products from Plantain. Plants 2022, 11, 1827. [Google Scholar] [CrossRef] [PubMed]
- Babeanu, N.; Radu, N.; Enascuta, C.-E.; Alexandrescu, E.; Ganciarov, M.; Mohammed, M.S.O.; Suica-Bunghez, I.R.; Senin, R.; Ursu, M.; Bostan, M. Obtaining and Characterizing Composite Biomaterials of Animal Resources with Potential Applications in Regenerative Medicine. Polymers 2022, 14, 3544. [Google Scholar] [CrossRef] [PubMed]
saDHFR | ecDHFR | caDHFR | hDHFR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Compound | ΔG (kcal/mol) | Kd (μM) | SI | ΔG (kcal/mol) | Kd (μM) | SI | ΔG (kcal/mol) | Kd (μM) | SI | ΔG (kcal/mol) | Kd (μM) |
Ankaflavin | −7.920 | 1.565 | 0.111 | −8.499 | 0.589 | 0.296 | −8.062 | 1.232 | 0.142 | −9.220 | 0.174 |
Monascin | −8.082 | 1.191 | 0.133 | −8.162 | 1.040 | 0.152 | −8.346 | 0.763 | 0.207 | −9.278 | 0.158 |
Monascorubramine | −8.969 | 0.266 | 0.928 | −8.537 | 0.552 | 0.448 | −7.948 | 1.493 | 0.166 | −9.013 | 0.247 |
Monascorubrin | −8.302 | 0.821 | 0.753 | −8.424 | 0.669 | 0.925 | −8.037 | 1.285 | 0.482 | −8.470 | 0.619 |
Rubropunctamine | −8.450 | 0.640 | 0.536 | −7.547 | 2.937 | 0.117 | −7.873 | 1.694 | 0.202 | −8.820 | 0.343 |
Rubropunctatin | −7.826 | 1.834 | 0.256 | −8.303 | 0.820 | 0.573 | −8.380 | 0.720 | 0.652 | −8.633 | 0.470 |
Trimethoprim | −8.584 | 0.510 | 1.353 | −8.199 | 0.977 | 0.706 | - | - | - | −8.405 | 0.690 |
UCP11E | - | - | - | - | - | - | −11.116 | 0.007 | - | - | - |
Parameter | Ankaflavin | Monascin | Monascorubramine | Monascorubrin | Rubropunctamine | Rubropunctatin |
---|---|---|---|---|---|---|
Molecular weight (g/mol) | 384.47 | 356.41 | 381.46 | 382.45 | 353.41 | 354.40 |
Rotatable bonds | 8 | 6 | 8 | 8 | 6 | 6 |
H-bond acceptors | 5 | 5 | 5 | 5 | 5 | 5 |
H-bond donors | 0 | 0 | 0 | 0 | 0 | 0 |
Molar refractivity | 107.25 | 97.63 | 109.59 | 106.77 | 99.19 | 97.16 |
TPSA (Å2) | 69.67 | 69.67 | 73.33 | 69.67 | 73.33 | 69.67 |
WlogP | 4.35 | 3.57 | 4.34 | 4.41 | 3.51 | 3.63 |
ESOL Log S | −4.56 | −3.83 | −4.68 | −4.39 | −3.97 | −3.67 |
ESOL Class | Moderately soluble | Soluble | Moderately soluble | Moderately soluble | Soluble | Soluble |
Lipinski violations | 0 | 0 | 0 | 0 | 0 | 0 |
Bioavailability score | 0.85 | 0.85 | 0.55 | 0.85 | 0.55 | 0.85 |
Parameter | Ankaflavin | Monascin | Monascorubramine | Monascorubrin | Rubropunctamine | Rubropunctatin |
---|---|---|---|---|---|---|
GI absorption | High | High | High | High | High | High |
BBB permeant | Yes | Yes | Yes | Yes | Yes | Yes |
Pgp substrate | No | No | No | No | No | No |
CYP1A2 inhibitor | No | No | Yes | Yes | Yes | Yes |
CYP2C19 inhibitor | Yes | Yes | Yes | Yes | Yes | Yes |
CYP2C9 inhibitor | Yes | Yes | Yes | Yes | Yes | Yes |
CYP2D6 inhibitor | Yes | No | Yes | Yes | No | No |
CYP3A4 inhibitor | No | No | Yes | No | No | No |
log Kp (cm/s) | −5.42 | −6.02 | −5.42 | −5.58 | −6.01 | −6.18 |
Ankaflavin | Monascin | Monascorubramine | Monascorubrin | Rubropunctamine | Rubropunctatin | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Class | p | Class | p | Class | p | Class | p | Class | p | Class | p |
Hepatotoxicity | I | 0.84 | I | 0.84 | I | 0.75 | I | 0.84 | I | 0.75 | I | 0.84 |
Neurotoxicity | I | 0.76 | I | 0.76 | I | 0.78 | I | 0.76 | I | 0.78 | I | 0.76 |
Nephrotoxicity | I | 0.54 | I | 0.54 | A | 0.51 | I | 0.54 | A | 0.51 | I | 0.54 |
Respiratory toxicity | A | 0.80 | A | 0.80 | A | 0.79 | A | 0.80 | A | 0.79 | A | 0.80 |
Cardiotoxicity | A | 0.51 | A | 0.51 | I | 0.59 | A | 0.51 | I | 0.59 | A | 0.51 |
Carcinogenicity | A | 0.51 | A | 0.51 | I | 0.50 | A | 0.51 | I | 0.50 | A | 0.51 |
Immunotoxicity | A | 0.97 | A | 0.94 | A | 0.99 | I | 0.94 | A | 0.84 | I | 0.97 |
Mutagenicity | I | 0.80 | I | 0.80 | I | 0.78 | I | 0.80 | I | 0.78 | I | 0.80 |
Cytotoxicity | I | 0.63 | I | 0.63 | I | 0.72 | I | 0.63 | I | 0.72 | I | 0.63 |
BBB toxicity | A | 0.94 | A | 0.94 | A | 0.89 | A | 0.94 | A | 0.89 | A | 0.94 |
Ecotoxicity | I | 0.55 | I | 0.55 | I | 0.51 | I | 0.55 | I | 0.51 | I | 0.55 |
LD50 (mg/kg) | 250 | 250 | 416 | 130 | 2000 | 130 | ||||||
Toxicity class | 3 | 3 | 4 | 3 | 4 | 3 |
ESI-MS Analysis of Alcoholic Extract from Monascus purpureus | ||||
---|---|---|---|---|
Peak Number | m/z | Abund % | Species/Compound | References |
1 | 2 | 3 | 4 | 5 |
4 | 171.7083 | 5.22 | Rubropunctatin | [30] |
Monaphilone B | ||||
8 | 181.0159 | 9.41 | Monascodilone | |
14 | 199.0884 | 6.09 | Monascusic acid F; Monacolin J; Monacolin M; Monacolin X hydroxy acid; Dehydromonacolin K hydroxy acid; Monacolin analogue; Monacolin L hydroxy acid; Monacolin X; Monascusic acid B; Monascusic acid A; Dehydromonacolin L | |
16 | 215.6276 | 7 | Monacolin J hydroxy acid | [30] |
Ankaflavin | ||||
Monasfluore B | ||||
18 | 227.312 | 6.04 | Daidzein; Dehydromonacolin L hydroxy acid; Dihydrocompactin; Dihydromonacolin L | [30] |
21 | 242.378 | 5.89 | Glycitein | [30] |
22 | 245.5612 | 7.95 | Monacolin L; Dihydrocompactin | [30] |
24 | 255.0143 | 5.96 | Daidzin; Daidzein | [30] |
27 | 261.8811 | 5.22 | Monascin | [30] |
Rubropunctatin | ||||
28 | 265.0347 | 5.02 | Monacolin analogue | [30] |
29 | 265.1284 | 6.92 | Monacolin analogue | [30] |
33 | 295.1662 | 6.98 | Monapurfluore A Monapurfluore B | [30] |
36 | 305.7171 | 5.62 | Dihydromonacolin K hydroxy acid Dihydromonacolin K | [30] |
40 | 319.889 | 5.76 | Hydroxy-monacolin K hydroxy acid Hydroxy-monacolin K hydroxy acid isomer | [30] |
Rubropunctamine | ||||
44 | 327.8556 | 6.63 | Monascorubrin | [30] |
61 | 380.2135 | 6.89 | Probably Monascorubramine | [29,30] |
ESI-MS analysis of alcoholic extract from Monascus ruber | ||||
Peak Number | m/z | Abund % | Species/Compound | References |
1 | 170.4554 | 100 | Tirozine; (±) Acid monascumic | [30] |
3 | 181.0092 | 7.8 | Monascodilone | [30] |
4 | 184.6152 | 5.78 | Citidine | [30] |
5 | 184.6738 | 7.4 | Citidine | [30] |
6 | 187.3668 | 6.04 | Citrinine | [30] |
New red pigment | ||||
7 | 187.4972 | 10.79 | Citrinine | [30] |
New red pigment | ||||
12 | 201.9213 | 5.37 | 3α-hydroxy-3,5-dihyo-ML-236C; Dihydromonacolin L hydroxy acid; Monaphilone B; Monascusic acid B; Heptaketide; Dihydrocompactin; | [30] |
16 | 211.0116 | 5.5 | ML-236A; ML-236C | [30] |
17 | 211.1204 | 7.34 | ML-236A; ML-236C | [30] |
18 | 216.7364 | 6.8 | New red pigment | [30] |
19 | 225.372 | 6.31 | Monacolin J hydroxy acid; Monacolin J Monacolin M; Monacolin X hydroxy acid Dehydromonacolin K hydroxy acid Monacolin analogue; Monacolin X Dehydromonacolin L; Dehydromonacolin K | [30] |
22 | 237.1678 | 6.54 | Daidzein | [30] |
26 | 249.4918 | 5.25 | Ethyl ester of monacolin K Dehydromonacolin K | [30] |
27 | 255.5845 | 6.46 | Daidzin; Daidzein | [30] |
29 | 261.8997 | 5.64 | Monascin | [30] |
Rubropunctatin | ||||
30 | 265.0534 | 5.02 | Monacolin analogue | [30] |
31 | 271.1478 | 6.91 | Genistin; Genistein; Compactin acid | [30] |
New yellow pigment | ||||
32 | 271.3223 | 7.54 | Genistin; Genistein; Compactin acid | [30] |
New yellow pigment | ||||
34 | 277.8281 | 5.17 | Monapurfluore A; Monapurfluore B | [30] |
35 | 277.9049 | 7.47 | Monapurfluore A; Monapurfluore B | [30] |
36 | 287.6625 | 6.24 | 3α-hydroxy-3,5-dihydromonacolin L; Dihydromonacolin J hydroxy acid; Dehydromonacolin L hydroxy acid; Monacolin L; Dihydromonacolin K hydroxy acid Dihydromonacolin K; Monaphilone A α,β-dehydrodihydromonacolin K | [30] |
41 | 305.0892 | 5.55 | Dihydromonacolin K hydroxy acid; Dihydromonacolin K | [30] |
44 | 312.1581 | 9.4 | New red pigment | [30] |
45 | 315.7683 | 5.31 | New yellow pigment | [30] |
Monaphilone A | ||||
46 | 319.22 | 7.37 | Hydroxy-monacolin K hydroxy acid Hydroxy-monacolin K hydroxy acid isomer | [30] |
Rubropunctamine | ||||
51 | 337.0342 | 5.98 | Monapurfluore A | [30] |
Rubropunctamine | ||||
53 | 347.6858 | 5.52 | Red pigment | [30] |
54 | 347.7932 | 8.95 | Red pigment | [30] |
61 | 381.4657 | 7.77 | Monascorubramine | [29,30] |
81 | 475.0018 | 7.24 | Unknown | [30] |
ESI-MS analysis of total alcoholic extract from highly productive Monascus ruber | ||||
Peak Number | m/z | Abund % | Compounds | References |
4 | 181.007 | 8.53 | Monascodilonely | [30] |
6 | 184.0531 | 6.83 | Citidina | |
9 | 198.0307 | 5.17 | (±) Acid monascumic Monascodilone | |
10 | 201.1082 | 5.88 | Ankaflavin | [30] |
Monascin | ||||
3α-hydroxy-3,5-dihyo-ML-236C Dihydromonacolin L hydroxy acid | ||||
12 | 245.3446 | 5.53 | Monacolin L; Dihydrocompactin | [30] |
15 | 261.6577 | 6.35 | Rubropunctatin | [30] |
Monascin | ||||
20 | 295.9722 | 5.21 | Monapurfluore A; Monapurfluore B | [30] |
22 | 313.3179 | 5.37 | Monascin | [30] |
Ethyl ester of monacolin K; Monasfluore B | ||||
25 | 331.4616 | 5.59 | Monascin | [30] |
Red pigment | [30] | |||
28 | 354.2698 | 5.65 | Rubropunctamine | [17] |
29 | 358.1362 | 6.04 | Ankaflavine | [30] |
33 | 382.1032 | 8.28 | Monascorubramine | [29,30] |
Sample | Extract Type | Monascus Strain | Crude Extract Concentration, mg/L |
---|---|---|---|
MR-red | Crude extract with red polyketides | M. ruber | 110.208 |
MM-red | High productive M. ruber | 1075 | |
MP-red | M. purpureus | 425.10 | |
MR-orange | Crude extract with orange polyketides | M. ruber | 400 |
MM-orange | High productive M. ruber | 4800 | |
MP-orange | M. purpureus | 1600 | |
MR-yellow | Crude extract with yellow polyketides | M. ruber | 32.59 |
MM-yellow | High productive M. ruber | 695.25 | |
MP-yellow | M. purpureus | 125.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albisoru, D.; Radu, N.; Pirvu, L.C.; Stefaniu, A.; Băbeanu, N.; Stoica, R.; Mihai, D.P. Studies Regarding Antimicrobial Properties of Some Microbial Polyketides Derived from Monascus Strains. Antibiotics 2024, 13, 1092. https://doi.org/10.3390/antibiotics13111092
Albisoru D, Radu N, Pirvu LC, Stefaniu A, Băbeanu N, Stoica R, Mihai DP. Studies Regarding Antimicrobial Properties of Some Microbial Polyketides Derived from Monascus Strains. Antibiotics. 2024; 13(11):1092. https://doi.org/10.3390/antibiotics13111092
Chicago/Turabian StyleAlbisoru, Daniela, Nicoleta Radu, Lucia Camelia Pirvu, Amalia Stefaniu, Narcisa Băbeanu, Rusandica Stoica, and Dragos Paul Mihai. 2024. "Studies Regarding Antimicrobial Properties of Some Microbial Polyketides Derived from Monascus Strains" Antibiotics 13, no. 11: 1092. https://doi.org/10.3390/antibiotics13111092
APA StyleAlbisoru, D., Radu, N., Pirvu, L. C., Stefaniu, A., Băbeanu, N., Stoica, R., & Mihai, D. P. (2024). Studies Regarding Antimicrobial Properties of Some Microbial Polyketides Derived from Monascus Strains. Antibiotics, 13(11), 1092. https://doi.org/10.3390/antibiotics13111092