Bacteriophage Therapy as a Promising Alternative for Antibiotic-Resistant Enterococcus faecium: Advances and Challenges
Abstract
:1. Introduction
2. Diversity of Phages Targeting E. faecium
2.1. Morphological Characteristics of E. faecium Phages
2.2. Host Range Spectrum and Specificity
2.2.1. Broad Host Range
2.2.2. Narrow Host Range
2.3. Genomic Analysis of Phages Infecting E. faecium
3. Phage Efficacy Against E. faecium: In Vitro Studies
3.1. Plaque and Liquid Assays
3.2. Biofilm Disruption
3.3. Synergistic Effects of Phage Cocktails and Antibiotics
4. Ex Vivo Assessment of Phage Activity Against E. faecium
4.1. Overview of Ex Vivo Studies
4.2. Epithelial Cell Colonization Model (3T3)
4.3. Collagen Wound Model (CWM)
4.4. Simulated Endocardial Vegetation (SEV) Model
5. Efficacy of In Vivo Studies on Phage Therapy for E. faecium
5.1. Overview on Key Insights
5.2. Phage Therapy Against VRE in Galleria mellonella
5.3. Phage Cocktail Efficacy in Galleria mellonella
5.4. Survival Benefits of Phage vB_EfaH_163 in Galleria mellonella
5.5. BALB/c Mouse Model for E. faecium Bacteremia
5.6. Hydrogel-Encapsulated Phage Therapy in BALB/c Mice
6. Phage Therapy Against E. faecium in Patients
6.1. Overview of Human Studies
6.2. Bacteriophage Rescue in Pediatric VRE Infection Post-Transplantation
6.3. Phage–Antibiotic Synergy in Recurrent VRE Bacteremia Management
6.4. Phage Therapy in Cardiothoracic Surgery-Associated Infections
7. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Sanderson, H.; Gray, K.L.; Manuele, A.; Maguire, F.; Khan, A.; Liu, C.; Rudrappa, C.N.; Nash, J.H.E.; Robertson, J.; Bessonov, K.; et al. Exploring the Mobilome and Resistome of Enterococcus faecium in a One Health Context across Two Continents. Microb. Genom. 2022, 8, 000880. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk, B.; Wityk, P.; Gałęcka, M.; Michalik, M. The Many Faces of Enterococcus spp.—Commensal, Probiotic and Opportunistic Pathogen. Microorganisms 2021, 9, 1900. [Google Scholar] [CrossRef] [PubMed]
- Hanchi, H.; Mottawea, W.; Sebei, K.; Hammami, R. The Genus Enterococcus: Between Probiotic Potential and Safety Concerns-an Update. Front. Microbiol. 2018, 9, 346489. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Howden, B.P.; Stinear, T.P. Evolution of Virulence in Enterococcus faecium, a Hospital-Adapted Opportunistic Pathogen. Curr. Opin. Microbiol. 2018, 41, 76–82. [Google Scholar] [CrossRef]
- Horner, C.; Mushtaq, S.; Allen, M.; Hope, R.; Gerver, S.; Longshaw, C.; Reynolds, R.; Woodford, N.; Livermore, D.M. Replacement of Enterococcus faecalis by Enterococcus faecium as the Predominant Enterococcus in UK Bacteraemias. JAC-Antimicrob. Resist. 2021, 3, dlab185. [Google Scholar] [CrossRef]
- Zhou, X.; Willems, R.J.L.; Friedrich, A.W.; Rossen, J.W.A.; Bathoorn, E. Enterococcus faecium: From Microbiological Insights to Practical Recommendations for Infection Control and Diagnostics. Antimicrob. Resist. Infect. Control 2020, 9, 130. [Google Scholar] [CrossRef] [PubMed]
- Uda, A.; Shigemura, K.; Kitagawa, K.; Osawa, K.; Onuma, K.; Yan, Y.; Nishioka, T.; Fujisawa, M.; Yano, I.; Miyara, T. Risk Factors for the Acquisition of Enterococcus faecium Infection and Mortality in Patients with Enterococcal Bacteremia: A 5-Year Retrospective Analysis in a Tertiary Care University Hospital. Antibiotics 2021, 10, 64. [Google Scholar] [CrossRef]
- Hornuss, D.; Göpel, S.; Walker, S.V.; Tobys, D.; Häcker, G.; Seifert, H.; Higgins, P.G.; Xanthopoulou, K.; Gladstone, B.P.; Cattaneo, C.; et al. Epidemiological Trends and Susceptibility Patterns of Bloodstream Infections Caused by Enterococcus spp. in Six German University Hospitals: A Prospectively Evaluated Multicentre Cohort Study from 2016 to 2020 of the R-Net Study Group. Infection 2024, 52, 1995–2004. [Google Scholar] [CrossRef]
- Lupia, T.; Roberto, G.; Scaglione, L.; Shbaklo, N.; De benedetto, I.; Scabini, S.; Mornese Pinna, S.; Curtoni, A.; Cavallo, R.; De Rosa, F.G.; et al. Clinical and Microbiological Characteristics of Bloodstream Infections Caused by Enterococcus spp. within Internal Medicine Wards: A Two-Year Single-Centre Experience. Intern. Emerg. Med. 2022, 17, 1129–1137. [Google Scholar] [CrossRef]
- Moemen, D.; Tawfeek, D.; Badawy, W. Healthcare-Associated Vancomycin Resistant Enterococcus faecium Infections in the Mansoura University Hospitals Intensive Care Units, Egypt. Braz. J. Microbiol. 2015, 46, 777–783. [Google Scholar] [CrossRef]
- van Hal, S.J.; Willems, R.J.L.; Gouliouris, T.; Ballard, S.A.; Coque, T.M.; Hammerum, A.M.; Hegstad, K.; Westh, H.T.; Howden, B.P.; Malhotra-Kumar, S.; et al. The Global Dissemination of Hospital Clones of Enterococcus faecium. Genome Med. 2021, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Brinkwirth, S.; Ayobami, O.; Eckmanns, T.; Markwart, R. Hospital-Acquired Infections Caused by Enterococci: A Systematic Review and Meta-Analysis, Who European Region, 1 January 2010 to 4 February 2020. Eurosurveillance 2021, 26, 1. [Google Scholar] [CrossRef] [PubMed]
- Levitus, M.; Rewane, A.; Perera, T.B. Vancomycin-Resistant Enterococci; StatPearls: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Arias, C.A.; Murray, B.E. The Rise of the Enterococcus: Beyond Vancomycin Resistance. Nat. Rev. Microbiol. 2012, 10, 266–278. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and Acquired Resistance Mechanisms in Enterococcus. Virulence 2012, 3, 421–569. [Google Scholar] [CrossRef]
- Cimen, C.; Berends, M.S.; Bathoorn, E.; Lokate, M.; Voss, A.; Friedrich, A.W.; Glasner, C.; Hamprecht, A. Vancomycin-Resistant Enterococci (VRE) in Hospital Settings across European Borders: A Scoping Review Comparing the Epidemiology in the Netherlands and Germany. Antimicrob. Resist. Infect. Control 2023, 12, 78. [Google Scholar] [CrossRef]
- Sugai, M.; Yuasa, A.; Miller, R.L.; Vasilopoulos, V.; Kurosu, H.; Taie, A.; Gordon, J.P.; Matsumoto, T. Correction to: An Economic Evaluation Estimating the Clinical and Economic Burden of Increased Vancomycin-Resistant Enterococcus faecium Infection Incidence in Japan. Infect. Dis. Ther. 2023, 12, 2191–2192. [Google Scholar] [CrossRef]
- Wei, Y.; Palacios Araya, D.; Palmer, K.L. Enterococcus faecium: Evolution, Adaptation, Pathogenesis and Emerging Therapeutics. Nat. Rev. Microbiol. 2024, 22, 705–721. [Google Scholar] [CrossRef]
- Blane, B.; Coll, F.; Raven, K.; Allen, O.; Kappeler, A.R.M.; Pai, S.; Floto, R.A.; Peacock, S.J.; Gouliouris, T. Impact of a New Hospital with Close to 100% Single-Occupancy Rooms on Environmental Contamination and Incidence of Vancomycin-Resistant Enterococcus faecium Colonization or Infection: A Genomic Surveillance Study. J. Hosp. Infect. 2023, 139, 192–200. [Google Scholar] [CrossRef]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal Infection—Treatment and Antibiotic Resistance. In Enterococci from Commensals to Leading Causes of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Sattari-Maraji, A.; Jabalameli, F.; Node Farahani, N.; Beigverdi, R.; Emaneini, M. Antimicrobial Resistance Pattern, Virulence Determinants and Molecular Analysis of Enterococcus Faecium Isolated from Children Infections in Iran. BMC Microbiol. 2019, 19, 156. [Google Scholar] [CrossRef]
- Wei, M.; Wang, P.; Li, T.; Wang, Q.; Su, M.; Gu, L.; Wang, S. Antimicrobial and Antibiofilm Effects of Essential Fatty Acids against Clinically Isolated Vancomycin-Resistant Enterococcus faecium. Front. Cell. Infect. Microbiol. 2023, 13, 1266674. [Google Scholar] [CrossRef]
- Șchiopu, P.; Toc, D.A.; Colosi, I.A.; Costache, C.; Ruospo, G.; Berar, G.; Gălbău, Ș.-G.; Ghilea, A.C.; Botan, A.; Pană, A.G.; et al. An Overview of the Factors Involved in Biofilm Production by the Enterococcus Genus. Int. J. Mol. Sci. 2023, 24, 11577. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Arias, C.A. ESKAPE Pathogens: Antimicrobial Resistance, Epidemiology, Clinical Impact and Therapeutics. Nat. Rev. Microbiol. 2024, 22, 598–616. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage Therapy: An Alternative to Antibiotics in the Age of Multi-Drug Resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.M.; Liau, X.L.; Tang, S.S. Bacteriophages and Their Host Range in Multidrug-Resistant Bacterial Disease Treatment. Pharmaceuticals 2023, 16, 1467. [Google Scholar] [CrossRef]
- Sahu, R.; Singh, A.K.; Kumar, A.; Singh, K.; Kumar, P. Bacteriophages Concept and Applications: A Review on Phage Therapy. Curr. Pharm. Biotechnol. 2023, 24, 1245–1264. [Google Scholar] [CrossRef]
- Sulakvelidze, A.; Alavidze, Z.; Morris, J. Bacteriophage Therapy. Antimicrob. Agents Chemother. 2001, 45, 649. [Google Scholar] [CrossRef]
- Brives, C.; Pourraz, J. Phage Therapy as a Potential Solution in the Fight against AMR: Obstacles and Possible Futures. Palgrave Commun. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Summers, W.C. The Strange History of Phage Therapy. Bacteriophage 2012, 2, 130–133. [Google Scholar] [CrossRef]
- Walter, N.; Mirzaei, M.K.; Deng, L.; Willy, C.; Alt, V.; Rupp, M. The Potential of Bacteriophage Therapy as an Alternative Treatment Approach for Antibiotic-Resistant Infections. Med. Princ. Pract. 2024, 33, 1–9. [Google Scholar] [CrossRef]
- Fortaleza, J.A.G.; Ong, C.J.N.; De Jesus, R. Efficacy and Clinical Potential of Phage Therapy in Treating Methicillin-Resistant Staphylococcus aureus (MRSA) Infections: A Review. Eur. J. Microbiol. Immunol. 2024, 14, 13–25. [Google Scholar] [CrossRef]
- Eskenazi, A.; Lood, C.; Wubbolts, J.; Hites, M.; Balarjishvili, N.; Leshkasheli, L.; Askilashvili, L.; Kvachadze, L.; van Noort, V.; Wagemans, J.; et al. Combination of Pre-Adapted Bacteriophage Therapy and Antibiotics for Treatment of Fracture-Related Infection Due to Pandrug-Resistant Klebsiella pneumoniae. Nat. Commun. 2022, 13, 302. [Google Scholar] [CrossRef] [PubMed]
- Chegini, Z.; Khoshbayan, A.; Taati Moghadam, M.; Farahani, I.; Jazireian, P.; Shariati, A. Bacteriophage Therapy against Pseudomonas aeruginosa Biofilms: A Review. Ann. Clin. Microbiol. Antimicrob. 2020, 19, 45. [Google Scholar] [CrossRef]
- Broncano-Lavado, A.; Santamaría-Corral, G.; Esteban, J.; García-Quintanilla, M. Advances in Bacteriophage Therapy against Relevant Multidrug-Resistant Pathogens. Antibiotics 2021, 10, 672. [Google Scholar] [CrossRef]
- McCallin, S.; Sacher, J.C.; Zheng, J.; Chan, B.K. Current State of Compassionate Phage Therapy. Viruses 2019, 11, 343. [Google Scholar] [CrossRef]
- Biswas, B.; Adhya, S.; Washart, P.; Paul, B.; Trostel, A.N.; Powell, B.; Carlton, R.; Merril, C.R. Bacteriophage Therapy Rescues Mice Bacteremic from a Clinical Isolate of Vancomycin-Resistant Enterococcus faecium. Infect. Immun. 2002, 70, 204–210. [Google Scholar] [CrossRef]
- Zhu, X.; Tang, L.; Wang, Z.; Xie, F.; Zhang, W.; Li, Y. A Comparative Analysis of Phage Classification Methods in Light of the Recent ICTV Taxonomic Revisions. Virology 2024, 594, 110016. [Google Scholar] [CrossRef] [PubMed]
- Turner, D.; Kropinski, A.M.; Adriaenssens, E.M. A Roadmap for Genome-Based Phage Taxonomy. Viruses 2021, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Cheng, M.; Li, X.; Jiang, H.; Yu, C.; Kahaer, N.; Li, J.; Zhang, L.; Xia, F.; Hu, L.; et al. Characterization of Enterococcus faecium Bacteriophage IME-EFm5 and Its Endolysin LysEFm5. Virology 2016, 492, 11–20. [Google Scholar] [CrossRef]
- Rigvava, S.; Kusradze, I.; Tchgkonia, I.; Karumidze, N.; Dvalidze, T.; Goderdzishvili, M. Novel Lytic Bacteriophage VB_GEC_EfS_9 against Enterococcus Faecium. Virus Res. 2022, 307, 198599. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Lv, Y.; Zheng, W.; Mi, Z.; Pei, G.; An, X.; Xu, X.; Han, C.; Liu, J.; et al. Characterization and Complete Genome Sequence Analysis of Novel Bacteriophage IME-EFm1 Infecting Enterococcus faecium. J. Gen. Virol. 2014, 95, 2565–2575. [Google Scholar] [CrossRef]
- Goodarzi, F.; Hallajzadeh, M.; Sholeh, M.; Talebi, M.; Pirhajati Mahabadi, V.; Amirmozafari, N. Biological Characteristics and Anti-Biofilm Activity of a Lytic Phage against Vancomycin-Resistant Enterococcus faecium. Iran. J. Microbiol. 2021, 13, 691. [Google Scholar] [CrossRef] [PubMed]
- Canfield, G.S.; Chatterjee, A.; Espinosa, J.; Mangalea, M.R.; Sheriff, E.K.; Keidan, M.; McBride, S.W.; McCollister, B.D.; Hang, H.C.; Duerkop, B.A. Lytic Bacteriophages Facilitate Antibiotic Sensitization of Enterococcus faecium. Antimicrob. Agents Chemother. 2021, 65, 10-1128. [Google Scholar] [CrossRef]
- Lee, D.; Im, J.; Na, H.; Ryu, S.; Yun, C.H.; Han, S.H. The Novel Enterococcus Phage VB_EfaS_HEf13 Has Broad Lytic Activity Against Clinical Isolates of Enterococcus faecalis. Front. Microbiol. 2019, 10, 2877. [Google Scholar] [CrossRef]
- Topka-Bielecka, G.; Nejman-Faleńczyk, B.; Bloch, S.; Dydecka, A.; Necel, A.; Węgrzyn, A.; Węgrzyn, G. Phage–Bacteria Interactions in Potential Applications of Bacteriophage Vb_efas-271 against Enterococcus faecalis. Viruses 2021, 13, 318. [Google Scholar] [CrossRef] [PubMed]
- Tkachev, P.V.; Pchelin, I.M.; Azarov, D.V.; Gorshkov, A.N.; Shamova, O.V.; Dmitriev, A.V.; Goncharov, A.E. Two Novel Lytic Bacteriophages Infecting Enterococcus spp. Are Promising Candidates for Targeted Antibacterial Therapy. Viruses 2022, 14, 831. [Google Scholar] [CrossRef]
- Melo, L.D.R.; Ferreira, R.; Costa, A.R.; Oliveira, H.; Azeredo, J. Efficacy and Safety Assessment of Two Enterococci Phages in an in Vitro Biofilm Wound Model. Sci. Rep. 2019, 9, 6643. [Google Scholar] [CrossRef] [PubMed]
- Nacharov, P.V.; Krivopalov, A.A.; Shustova, T.I. General Characteristics, Results and Prospects for the Clinical Application of Bacteriophage Therapy. Meditsinskiy Sov. = Med. Counc. 2023, 17, 170–175. [Google Scholar] [CrossRef]
- Friedrich, L.; Curran, M.; Chitra, S.; Manley, A.; Bai, S.; Noble, B.; Steenbergen, J.N.; Garrity-Ryan, L.; Tzanis, E. 734. Modeling the Pharmacokinetics and Pharmacodynamics of Intravenous and Oral Omadacycline With and Without a Loading Dose; Oxford University Press: Oxford, UK, 2019; Volume 6. [Google Scholar]
- Wandro, S.; Oliver, A.; Gallagher, T.; Weihe, C.; England, W.; Martiny, J.B.H.; Whiteson, K. Predictable Molecular Adaptation of Coevolving Enterococcus faecium and Lytic Phage EfV12-Phi1. Front. Microbiol. 2019, 10, 3192. [Google Scholar] [CrossRef]
- Jarvis, A.W.; Collins, L.J.; Ackermann, H.W. A Study of Five Bacteriophages of the Myoviridae Family Which Replicate on Different Gram-Positive Bacteria. Arch. Virol. 1993, 133, 75–84. [Google Scholar] [CrossRef]
- El Haddad, L.; Angelidakis, G.; Clark, J.R.; Mendoza, J.F.; Terwilliger, A.L.; Chaftari, C.P.; Duna, M.; Yusuf, S.T.; Harb, C.P.; Stibich, M.; et al. Genomic and Functional Characterization of Vancomycin-Resistant Enterococci-Specific Bacteriophages in the Galleria mellonella Wax Moth Larvae Model. Pharmaceutics 2022, 14, 1591. [Google Scholar] [CrossRef]
- Lossouarn, J.; Beurrier, E.; Bouteau, A.; Moncaut, E.; Sir Silmane, M.; Portalier, H.; Zouari, A.; Cattoir, V.; Serror, P.; Petit, M.-A.A.; et al. The Virtue of Training: Extending Phage Host Spectra against Vancomycin-Resistant Enterococcus Faecium Strains Using the Appelmans Method. Antimicrob. Agents Chemother. 2024, 68, e0143923. [Google Scholar] [CrossRef] [PubMed]
- Buzikov, R.M.; Kazantseva, O.A.; Piligrimova, E.G.; Ryabova, N.A.; Shadrin, A.M. Bacteriolytic Potential of Enterococcus Phage IF6 Isolated from “Sextaphag®” Therapeutic Phage Cocktail and Properties of Its Endolysins, Gp82 and Gp84. Viruses 2023, 15, 767. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Fokine, A.; Guo, X.; Jiang, W.; Rossmann, M.G.; Kuhn, R.J.; Luo, Z.-H.; Klose, T. Structure of Vibrio Phage XM1, a Simple Contractile DNA Injection Machine. Viruses 2023, 15, 1673. [Google Scholar] [CrossRef]
- Khazani Asforooshani, M.; Elikaei, A.; Abed, S.; Shafiei, M.; Barzi, S.M.; Solgi, H.; Badmasti, F.; Sohrabi, A. A Novel Enterococcus faecium Phage EF-M80: Unveiling the Effects of Hydrogel-Encapsulated Phage on Wound Infection Healing. Front. Microbiol. 2024, 15, 1416971. [Google Scholar] [CrossRef]
- Soro, O.; Kigen, C.; Nyerere, A.; Gachoya, M.; Georges, M.; Odoyo, E.; Musila, L. Characterization and Anti-Biofilm Activity of Lytic Enterococcus Phage VB_Efs8_KEN04 against Clinical Isolates of Multidrug-Resistant Enterococcus faecalis in Kenya. Viruses 2024, 16, 1275. [Google Scholar] [CrossRef]
- Baharuddin, A.; Abdelkarim, A.; Marghani, E.; Ahmed, I.A.; Samian, M.R. Revitalizing Phage Therapy in Combating Multi-Drug Resistant Bacteria. Haya Saudi J. Life Sci. 2017, 2, 122–130. [Google Scholar] [CrossRef]
- Thomas, L.V.; Ockhuizen, T.; Suzuki, K. Exploring the Influence of the Gut Microbiota and Probiotics on Health: A Symposium Report. Br. J. Nutr. 2014, 112, S1–S18. [Google Scholar] [CrossRef] [PubMed]
- Górska, A.; Przystupski, D.; Niemczura, M.J.; Kulbacka, J. Probiotic Bacteria: A Promising Tool in Cancer Prevention and Therapy. Curr. Microbiol. 2019, 76, 939–949. [Google Scholar] [CrossRef] [PubMed]
- Federici, S.; Kviatcovsky, D.; Valdés-Mas, R.; Elinav, E. Microbiome-Phage Interactions in Inflammatory Bowel Disease. Clin. Microbiol. Infect. 2023, 29, 682–688. [Google Scholar] [CrossRef]
- Raza, T.; Andleeb, S.; Ullah, S.R.; Jamal, M.; Mehmood, K.; Ali, M. Isolation and Characterization of a Phage to Control Vancomycin Resistant Enterococcus faecium. Open Life Sci. 2018, 13, 553–560. [Google Scholar] [CrossRef]
- Qu, Q.; Chen, T.; He, P.; Geng, H.; Zeng, P.; Luan, G. Isolation and Characterization of a Novel Lytic Bacteriophage VB_Efm_LG62 Infecting Enterococcus faecium. Virus Genes 2023, 59, 763–774. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-Rebenaque, L.; Casto-Rebollo, C.; Diretto, G.; Frusciante, S.; Rodríguez, J.C.; Ventero, M.-P.; Molina-Pardines, C.; Vega, S.; Marin, C.; Marco-Jiménez, F. Examining the Effects of Salmonella Phage on the Caecal Microbiota and Metabolome Features in Salmonella-Free Broilers. Front. Genet. 2022, 13, 1060713. [Google Scholar] [CrossRef] [PubMed]
- Fernández, L.; Gutiérrez, D.; García, P.; Rodríguez, A. The Perfect Bacteriophage for Therapeutic Applications—A Quick Guide. Antibiotics 2019, 8, 126. [Google Scholar] [CrossRef] [PubMed]
- Abedon, S.T. Size Does Matter—Distinguishing Bacteriophages by Genome Length (and ‘Breadth’). Microbiol. Aust. 2011, 32, 95. [Google Scholar] [CrossRef]
- Li, J.; Shi, H.; Zhao, C.; Hao, Y.; He, Y.; Sun, Y. Complete Genome Sequence of the Siphoviral Bacteriophage Ec-ZZ2, Which Is Capable of Lysing Enterococcus faecium. Genome Announc. 2016, 4, e01167-16. [Google Scholar] [CrossRef]
- Soro, O.; Kigen, C.; Nyerere, A.; Gachoya, M.; Wachira, J.; Onyonyi, V.; Georges, M.; Wataka, A.; Ondolo, S.; Cherono, K.; et al. Complete Genome Sequences of Four Lytic Bacteriophages against Multidrug-Resistant Enterococcus faecium. Microbiol. Resour. Announc. 2024, 13, e0068824. [Google Scholar] [CrossRef]
- Altamirano, F.L.G.; Barr, J.J. Screening for Lysogen Activity in Therapeutically Relevant Bacteriophages. Bio-Protocol 2021, 11, e3997. [Google Scholar] [CrossRef]
- Beamud, B.; Benz, F.; Bikard, D. Going Viral: The Role of Mobile Genetic Elements in Bacterial Immunity. Cell Host Microbe 2024, 32, 804–819. [Google Scholar] [CrossRef]
- Mayo-Muñoz, D.; Pinilla-Redondo, R.; Camara-Wilpert, S.; Birkholz, N.; Fineran, P.C. Inhibitors of Bacterial Immune Systems: Discovery, Mechanisms and Applications. Nat. Rev. Genet. 2024, 25, 237–254. [Google Scholar] [CrossRef]
- Pradal, I.; Casado, A.; del Rio, B.; Rodriguez-Lucas, C.; Fernandez, M.; Alvarez, M.A.; Ladero, V. Enterococcus Faecium Bacteriophage VB_EfaH_163, a New Member of the Herelleviridae Family, Reduces the Mortality Associated with an E. faecium VanR Clinical Isolate in a Galleria mellonella Animal Model. Viruses 2023, 15, 179. [Google Scholar] [CrossRef]
- Lev, K.; Coyne, A.J.K.; Kebriaei, R.; Morrisette, T.; Stamper, K.; Holger, D.J.; Canfield, G.S.; Duerkop, B.A.; Arias, C.A.; Rybak, M.J. Evaluation of Bacteriophage-Antibiotic Combination Therapy for Biofilm-Embedded MDR Enterococcus Faecium. Antibiotics 2022, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Coyne, A.J.K.; Stamper, K.; Kebriaei, R.; Holger, D.J.; El Ghali, A.; Morrisette, T.; Biswas, B.; Wilson, M.; Deschenes, M.V.; Canfield, G.S.; et al. Phage Cocktails with Daptomycin and Ampicillin Eradicates Biofilm-Embedded Multidrug-Resistant Enterococcus faecium with Preserved Phage Susceptibility. Antibiotics 2022, 11, 1175. [Google Scholar] [CrossRef] [PubMed]
- Kunz Coyne, A.J.; Eshaya, M.; Bleick, C.; Vader, S.; Biswas, B.; Wilson, M.; Deschenes, M.V.; Alexander, J.; Lehman, S.M.; Rybak, M.J. Exploring Synergistic and Antagonistic Interactions in Phage-Antibiotic Combinations against ESKAPE Pathogens. Microbiol. Spectr. 2024, 12, e0042724. [Google Scholar] [CrossRef] [PubMed]
- Morrisette, T.; Lev, K.L.; Kebriaei, R.; Abdul-Mutakabbir, J.C.; Stamper, K.C.; Morales, S.; Lehman, S.M.; Canfield, G.S.; Duerkop, B.A.; Arias, C.A.; et al. Bacteriophage-Antibiotic Combinations for Enterococcus faecium with Varying Bacteriophage and Daptomycin Susceptibilities. Antimicrob. Agents Chemother. 2020, 64, 10-1128. [Google Scholar] [CrossRef]
- Morrisette, T.; Lev, K.L.; Canfield, G.S.; Duerkop, B.A.; Kebriaei, R.; Stamper, K.C.; Holger, D.; Lehman, S.M.; Willcox, S.; Arias, C.A.; et al. Evaluation of Bacteriophage Cocktails Alone and in Combination with Daptomycin against Daptomycin-Nonsusceptible Enterococcus faecium. Antimicrob. Agents Chemother. 2022, 66, e01623-21. [Google Scholar] [CrossRef]
- Wandro, S.; Ghatbale, P.; Attai, H.; Hendrickson, C.; Samillano, C.; Suh, J.; Dunham, S.J.B.; Pride, D.T.; Whiteson, K. Phage Cocktails Constrain the Growth of Enterococcus. mSystems 2022, 7, e0001922. [Google Scholar] [CrossRef]
- Yoong, P.; Schuch, R.; Nelson, D.; Fischetti, V.A. Identification of a Broadly Active Phage Lytic Enzyme with Lethal Activity against Antibiotic-Resistant Enterococcus faecalis and Enterococcus faecium. J. Bacteriol. 2004, 186, 4808–4812. [Google Scholar] [CrossRef]
- Gu Liu, C.; Green, S.I.; Min, L.; Clark, J.R.; Salazar, K.C.; Terwilliger, A.L.; Kaplan, H.B.; Trautner, B.W.; Ramig, R.F.; Maresso, A.W. Phage-Antibiotic Synergy Is Driven by a Unique Combination of Antibacterial Mechanism of Action and Stoichiometry. mBio 2020, 11, e01462-20. [Google Scholar] [CrossRef] [PubMed]
- Fungo, G.B.N.; Uy, J.C.W.; Porciuncula, K.L.J.; Candelario, C.M.A.; Chua, D.P.S.; Gutierrez, T.A.D.; Clokie, M.R.J.; Papa, D.M.D. “Two Is Better Than One”: The Multifactorial Nature of Phage-Antibiotic Combinatorial Treatments Against ESKAPE-Induced Infections. PHAGE 2023, 4, 55–67. [Google Scholar] [CrossRef]
- Łusiak-Szelachowska, M.; Międzybrodzki, R.; Drulis-Kawa, Z.; Cater, K.; Knežević, P.; Winogradow, C.; Amaro, K.; Jończyk-Matysiak, E.; Weber-Dąbrowska, B.; Rękas, J.; et al. Bacteriophages and Antibiotic Interactions in Clinical Practice: What We Have Learned so Far. J. Biomed. Sci. 2022, 29, 23. [Google Scholar] [CrossRef]
- Gurney, J.; Brown, S.P.; Kaltz, O.; Hochberg, M.E. Steering Phages to Combat Bacterial Pathogens. Trends Microbiol. 2020, 28, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Kunz Coyne, A.J.; Stamper, K.; El Ghali, A.; Kebriaei, R.; Biswas, B.; Wilson, M.; Deschenes, M.V.; Tran, T.T.; Arias, C.A.; Rybak, M.J. Phage-Antibiotic Cocktail Rescues Daptomycin and Phage Susceptibility against Daptomycin-Nonsusceptible Enterococcus faecium in a Simulated Endocardial Vegetation Ex Vivo Model. Microbiol. Spectr. 2023, 11, e0034023. [Google Scholar] [CrossRef] [PubMed]
- El Haddad, L.; Harb, C.P.; Stibich, M.; Chemaly, R.F.; Chemaly, R.F. 735. Bacteriophage Therapy Improves Survival of Galleria mellonella Larvae Injected with Vancomycin-Resistant Enterococcus faecium. Open Forum Infect. Dis. 2019, 6, S329. [Google Scholar] [CrossRef]
- Loh, J.M.; Adenwalla, N.; Wiles, S.; Proft, T. Galleria mellonella Larvae as an Infection Model for Group A Streptococcus. Virulence 2013, 4, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Desbois, A.P.; Coote, P.J. Utility of Greater Wax Moth Larva (Galleria mellonella) for Evaluating the Toxicity and Efficacy of New Antimicrobial Agents. Adv. Appl. Microbiol. 2012, 78, 25–53. [Google Scholar] [PubMed]
- Champion, O.L.; Wagley, S.; Titball, R.W. Galleria mellonella as a Model Host for Microbiological and Toxin Research. Virulence 2016, 7, 840–845. [Google Scholar] [CrossRef]
- Geier, M.R.; Trigg, M.E.; Merril, C.R. Fate of Bacteriophage Lambda in Non-Immune Germ-Free Mice. Nature 1973, 246, 221–223. [Google Scholar] [CrossRef]
- Paul, K.; Merabishvili, M.; Hazan, R.; Christner, M.; Herden, U.; Gelman, D.; Khalifa, L.; Yerushalmy, O.; Coppenhagen-Glazer, S.; Harbauer, T.; et al. Bacteriophage Rescue Therapy of a Vancomycin-Resistant Enterococcus faecium Infection in a One-Year-Old Child Following a Third Liver Transplantation. Viruses 2021, 13, 1785. [Google Scholar] [CrossRef]
- Stellfox, M.E.; Fernandes, C.; Shields, R.K.; Haidar, G.; Kramer, K.H.; Dembinski, E.; Mangalea, M.R.; Arya, G.; Canfield, G.S.; Duerkop, B.A.; et al. Bacteriophage and Antibiotic Combination Therapy for Recurrent Enterococcus faecium Bacteremia. mBio 2024, 15, e0339623. [Google Scholar] [CrossRef]
- Rubalskii, E.; Ruemke, S.; Salmoukas, C.; Boyle, E.C.; Warnecke, G.; Tudorache, I.; Shrestha, M.; Schmitto, J.D.; Martens, A.; Rojas, S.V.; et al. Bacteriophage Therapy for Critical Infections Related to Cardiothoracic Surgery. Antibiotics 2020, 9, 232. [Google Scholar] [CrossRef]
- Pirnay, J.P.; Djebara, S.; Steurs, G.; Griselain, J.; Cochez, C.; De Soir, S.; Glonti, T.; Spiessens, A.; Vanden Berghe, E.; Green, S.; et al. Personalized Bacteriophage Therapy Outcomes for 100 Consecutive Cases: A Multicentre, Multinational, Retrospective Observational Study. Nat. Microbiol. 2024, 9, 1434–1453. [Google Scholar] [CrossRef] [PubMed]
- Pires, D.P.; Costa, A.R.; Pinto, G.; Meneses, L.; Azeredo, J. Current Challenges and Future Opportunities of Phage Therapy. FEMS Microbiol. Rev. 2020, 44, 684–700. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.K.; Sistrom, M.; Wertz, J.E.; Kortright, K.E.; Narayan, D.; Turner, P.E. Phage Selection Restores Antibiotic Sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 2016, 6, 26717. [Google Scholar] [CrossRef] [PubMed]
- Suh, G.A.; Lodise, T.P.; Tamma, P.D.; Knisely, J.M.; Alexander, J.; Aslam, S.; Barton, K.D.; Bizzell, E.; Totten, K.M.C.; Campbell, J.L.; et al. Considerations for the Use of Phage Therapy in Clinical Practice. Antimicrob. Agents Chemother. 2022, 66. [Google Scholar] [CrossRef]
- Luong, T.; Salabarria, A.-C.; Roach, D.R. Phage Therapy in the Resistance Era: Where Do We Stand and Where Are We Going? Clin. Ther. 2020, 42, 1659–1680. [Google Scholar] [CrossRef]
No. | Phage | Bacteria Strain | Assay Type | Outcome | Synergistic Effects (Cocktails/Antibiotics) | Conclusion | Ref. |
---|---|---|---|---|---|---|---|
1 | IME-EFm5 | 4P-SA (VRE clinical strain) | Plate assay | Clear plaque formation | Not evaluated. | Lytic phage specific to 4P-SA. Narrow host range. Purified endolysin LysEFm5 is promising. | [40] |
2 | 113 | ATCC 19950-B1, R497 (VRE, DAP-R), HOU503 (VRE, DAP-SDD) | Modified plate assay, TKA, phage resistance assay | Synergy and bactericidal activity with phage-DAP-AMP, phage-DAP-CPT, and phage-DAP-ERT combinations. | Phage + β-lactam combinations effective against biofilms and resistance prevention. | Effective against biofilm infections, prevents resistance. | [74] |
3 | 113 | R497 (VRE, DAP-R), VRE, DAP-SDD HOU503, others | Modified checkerboard, TKA, biofilm eradication | Medium susceptibility in 6/8 strains; high in R497, low in HOU503. | DAP + phage cocktail showed synergy. Prevented resistance in HOU503. | DAP + AMP with phage cocktails eradicated MDR biofilm. | [75] |
4 | NV-497 | R497, HOU503, others | Modified checkerboard, TKA, biofilm eradication | Medium susceptibility in 4/8 strains. High in 3/8 strains and low in 5938. | Synergy with DAP + AMP in cocktails. | Phage cocktail with DAP + AMP eradicated MDR biofilm. | [75] |
5 | NV-503-01 | R497, HOU503, others | Modified checkerboard, TKA, biofilm eradication | Medium susceptibility in 4/8 strains. High in 3/8 strains and low in strain 5938. | Synergy with DAP + AMP in cocktails. | Phage cocktail with DAP + AMP eliminated MDR biofilms. | [75] |
6 | NV-503-02 | R497, HOU503, others | Modified checkerboard, TKA, biofilm eradication | Medium susceptibility in 4/8 strains. Low in 3/8 strains and High in SF12047. | Synergy with DAP + AMP in cocktails. | Phage cocktail with DAP + AMP eradicated MDR biofilms. | [75] |
7 | NV-S447-01 | R497, HOU503, others | Modified checkerboard, TKA | No susceptibility in 4/8 strains. Medium in 3/8 and high in S447. | Not evaluated. | Not tested further due to low efficacy. | [75] |
8 | NV-S447-02 | R497, HOU503, others | Modified checkerboard, TKA | No susceptibility in 4/8 strains. Medium in 3/8 and high in S447. | Not evaluated. | Not tested further due to low efficacy. | [75] |
9 | 9181 | R497, HOU503, others | Phage sensitivity assay | No susceptibility in 6/8 strains. Low in R497 and 5938. | Not evaluated. | Not tested further due to low efficacy. | [75] |
10 | 9183 | R497, HOU503, others | Phage sensitivity assay | No susceptibility in 6/8 strains. High in R497, low in 5938. | Not evaluated. | Not tested further due to low efficacy. | [75] |
11 | 9184 | R497, HOU503, others | Phage sensitivity assay | No susceptibility in 6/8 strains. High in R497 and 5938. | Not evaluated. | Not tested further due to low efficacy. | [75] |
12 | EfV12-phi1 | TX1330 | Experimental coevolution | Initial bacterial density reduction, resistance developed after 6–7 transfers. | Not evaluated. | Phage–host coevolution led to an evolutionary arms race, increasing bacterial resistance. | [51] |
13 | vB-EfmS-S2 (S2) | 34 clinical VRE isolates | Plaque assay, biofilm inhibition | Lysed 82.3% of isolates. Stable at 37 °C, pH 7–9. Biofilm reduction. | Not evaluated. | Promising for biofilm prevention. | [43] |
14 | vB_GEC_EfS_9 | 70 clinical strains, 23 VRE strains | Spot titration, phage adsorption, pH, and temperature stability | Lysed 84% of strains. Stable at 45 °C and pH 3–12. | Not evaluated. | Broad host range with high stability, potential therapeutic candidate. | [41] |
15 | NV-497 | R497, HOU503 | Checkerboard assay, TKA | Synergy with DAP and CPT (FIC 0.5). Antagonism with LNZ and MIN. | The addition of LNZ significantly decreased the burst size of NV-497. | Phage–antibiotic antagonism observed with protein synthesis inhibitors. | [76] |
16 | NV-503-01 | R497, HOU503 | Checkerboard assay, TKA | Synergy with DAP and CPT (FIC 0.5). Antagonism with LNZ and MIN. | MIN inhibited NV-503-01 phage burst size and antibacterial activity. | Phage–antibiotic antagonism observed with protein synthesis inhibitors. | [76] |
17 | Athos | 14 clinical VRE isolates | Plaque assay, AST | Strong lytic activity on isolation strain. Reduced teicoplanin MIC in resistant mutants. | Mutations in epa increase susceptibility to certain antibiotics. | Athos belongs to a new genus of virulent phages. | [54] |
18 | Porthos | 14 clinical VRE isolates, other enterococci | Plaque assay, resistant mutant analysis | Strong lysis in related strains. Receptor remains unidentified. | Not evaluated. | Porthos is a new lytic phage with broad range and unknown receptor. | [54] |
19 | Aramis | 14 clinical VRE isolates | Plaque assay, AST | Strong activity on two VRE strains. Reduced teicoplanin and DAP MIC in mutants. | Mutations in epa increase antibiotic susceptibility. | Represents a new phage genus with potential synergy in phage–antibiotic therapy. | [54] |
20 | D’Artagnan | 14 clinical VRE isolates | Plaque assay | Lysis on two strains, including its isolation strain. | Not evaluated. | Part of a new phage genus with Aramis. | [54] |
21 | Planchet | 14 clinical VRE isolates | Plaque assay | Strong lytic activity in two VRE strains. Host range includes three STs. | Not evaluated. | Planchet is a new species in the Denvervirus genus. | [54] |
22 | ATCC 19950-B1 (113) | R496, HOU503, R497 | TKA | Synergy and bactericidal effects with DAP-AMP-phage and DAP-CPT-phage. | Strain-specific phage prevented resistance development. | Synergistic with antibiotics, prevented phage resistance. | [77] |
23 | ATCC 19950-B1 (113) | ATCC 19950, Com12, 1.141.733 | TKA | Phage alone did not eradicate bacteria. DAP + phage reduced 3.0–3.5 log10 CFU/mL. | Synergy with DAP and prevention of phage 9184 resistance. | Phage 113 and DAP showed bactericidal activity and prevented resistance. | [78] |
24 | 9184 | ATCC 19950, Com12, 1.141.733 | TKA | 2-log10 CFU/mL reduction with phage 9184 in cocktail. Synergy with DAP. | DAP prevented phage 9184 resistance. | DAP with phage 9184 prevented resistance. | [78] |
25 | vB_Efm_LG62 (LG62) | 16 Enterococci strains (12 E. faecium and 4 E. faecalis), including MDR, VAN-sensitive. | Plaque assay, biofilm inhibition | Lysed E. faecium 21112362. Inhibited biofilm formation by 30%. | Not evaluated. | LG62 has a narrow spectrum but promising biofilm inhibition. | [64] |
26 | iF6 | E. faecium FS86, other strains | Plaque assay, exponential/stationary phase assays | Inhibited growth in both phases. | Not evaluated. | iF6 is a lytic phage with excellent adsorption kinetics but limited pH stability. | [55] |
27 | vB_Efs8_KEN04 | 26 MDR E. faecalis, 11 E. faecium isolates | Plaque assay, biofilm formation/disruption | Lytic against all E. faecalis and one E. faecium isolate. Biofilm disruption. | Not evaluated. | Broad range, effective biofilm disruption in E. faecalis. | [58] |
28 | STH1 | E. faecium 1969 (VRE and TEI-R) | Plaque assay, bacterial reduction | Plaque formation, significant turbidity reduction. Latency 18 min, burst size 334 virions/cell. | Not evaluated. | Effective lytic phage with good activity and short latency. | [63] |
29 | Ben | E. faecium, E. faecalis (VRE and VSE) | Plaque assay, experimental coevolution | Lysis in most strains. Synergistic in cocktails. | Synergy in cocktails, suppressing growth for 72 h. | Ben shows broad range and improved efficacy in cocktails. | [79] |
30 | Bop | E. faecium, E. faecalis (VRE and VSE) | Plaque assay, experimental coevolution | Lysis in a wide range of strains. Synergistic in cocktails for 72 h. | Synergy in cocktails with resistance linked to Epa mutations. | Bop is effective in cocktails, with resistance through exopolysaccharide mutations. | [79] |
31 | V12 | E. faecium, E. faecalis (VRE and VSE) | Drop assay, coevolution | Lysis in most strains. Synergy in cocktails for 72 h. | Synergy in cocktails. | Broad host range, effective in cocktails. | [79] |
32 | Bill | E. faecium TX1330 | Coevolution, genome sequencing | Mutations in Yqw locus. | Not evaluated. | Induces mutations in exopolysaccharide synthesis, potential resistance mechanism. | [79] |
33 | Bob | E. faecium TX1330 | Coevolution, genome sequencing | Mutations in Yqw locus. | Not evaluated. | May exert selective pressure leading to mutations in exopolysaccharide synthesis. | [79] |
34 | Carl | E. faecium TX1330 | Coevolution, liquid culture in cocktails | Mutations in Yqw locus. Lower abundance in cocktails. | Synergy in cocktails. | Inhibits growth in cocktails but shows lower abundance. | [79] |
35 | Φ1/PlyV12 | E. faecalis, E. faecium, S. pyogenes, S. aureus | OD assay, viability assay | 4-log reduction in E. faecalis V12 in 15 min. Maximum activity at pH 6.0. | Not evaluated. | Lytic enzyme from phage Φ1 with broad activity, including vancomycin-resistant strains. | [80] |
36 | IME-EFm1 | 22 clinical isolates (2 VRE) | Host range test, growth curve | Lysed 17/22 isolates (77.3%). Latency 30 min, burst size 116 PFU/cell. | Not evaluated. | Promising, but metallo-β-lactamase gene requires further study before clinical use. | [42] |
37 | vB-EfmS-S2 | 34 clinical isolates of VRE and E. faecalis. | Plaque formation, biofilm inhibition | Lysed 82.3% of E. faecium. Stable at 30–45 °C, pH 5–11. Inhibits and disrupts biofilms. | Not evaluated. | Potential therapeutic agent for vancomycin-resistant E. faecium infections, including biofilms. | [43] |
38 | 9181 | 10 laboratory isolates, 11 MDR clinical isolates of E. faecium | Phage susceptibility, synergy assay | Narrow host range. Mutations in sagA increased susceptibility to AMP and CTX. | Synergy with AMP and CTX. | Narrow host range, synergizes with AMP and CTX. | [44] |
39 | 9183 | 10 laboratory isolates, 11 MDR clinical isolates of E. faecium | Phage susceptibility, synergy assay | Narrow host range. epaR and epaX mutations increase susceptibility to AMP, CTX, and DAP. | Synergy with AMP, CTX, and DAP. | Synergizes with antibiotics, especially CTX. | [44] |
40 | 9184 | 10 laboratory isolates, 11 MDR clinical isolates of E. faecium, 1 strain of E. faecalis | Phage susceptibility assay | Broader host range. Resistance from capsule biosynthesis mutations. | Not evaluated. | Broader host range than 9181 and 9183. Resistance arises from capsule biosynthesis mutations. | [44] |
41 | vB_EfaH_163 | 77 E. faecium and 11 E. faecalis isolates, including clinical, animal, and environmental strains | Plaque assay, genome sequencing, stability, TKA | Broad host range. Significant reduction in E. faecium VR-13 during the first 7 h post-infection. | Not evaluated. | Broad host range with no genes related to pathogenicity, AMR, or lysogeny. Efficacy needs further studying. | [73] |
No. | Phage(s) | Ex Vivo Model | Objective | Key Findings | Safety Assessment | Observed Limitations | Ref. |
---|---|---|---|---|---|---|---|
1 | Max | 3T3 | Evaluate the lytic efficacy of the phage against E. faecalis on epithelial cells. | 3 log CFU/mL reduction at 6 h of treatment. 1 log CFU/mL increase in 3T3 cell viability at 6 h. | No cytotoxicity observed at 107 and 108 PFU/mL. | No specific limitations reported in sources. | [48] |
2 | Zip | 3T3 | Evaluate the lytic efficacy of the phage against E. faecium on epithelial cells. | 3 log CFU/mL reduction at 6 h of treatment. Increased 3T3 cell viability at 6 h. | Cytotoxicity observed at 108 PFU/mL in lysate but not in PEG purified phage. | No specific limitations reported in sources. | [48] |
3 | Max | CWM | Assess the lytic efficacy of the phage against E. faecalis biofilms in a wound-simulating model. | 2 log CFU/mL reduction at 3 h of treatment. Resistance observed after 24 h. | Not evaluated. | Closed system, lacking immune cells and physiological factors (hypoxia, exudate). | [48] |
4 | Zip | CWM | Assess the lytic efficacy of the phage against E. faecium biofilms in a wound-simulating model. | 1.5 log CFU/mL reduction between 3 h and 6 h of treatment. Resistance observed after 24 h. | Not evaluated. | Closed system, lacking immune cells and physiological factors (hypoxia, exudate). | [48] |
5 | Max and Zip (Cocktail) | CWM | Assess the lytic efficacy of the phage cocktail against multispecies biofilms (E. faecalis and E. faecium) in a wound-simulating model. | 2.5 log CFU/mL reduction at 3 h of treatment. Resistance observed after 24 h. | Not evaluated. | Closed system, lacking immune cells and physiological factors (hypoxia, exudate). | [48] |
6 | NV-497 | SEV | Evaluate the efficacy of the phage in combination with antibiotics against E. faecium in a simulated endocardial vegetation model. | Bactericidal activity in combination with DAP, CPT, and NV-497-NV-503-01 cocktail. | Not evaluated. | Model duration of 96 h may not reflect the prolonged treatment needed for infectious endocarditis. | [85] |
7 | NV-503-01 | SEV | Evaluate the efficacy of the phage in combination with antibiotics against E. faecium in a simulated endocardial vegetation model. | Bactericidal activity in combination with DAP, CPT, and NV-497-NV-503-01 cocktail. | Not evaluated. | Model duration of 96 h may not reflect the prolonged treatment needed for infectious endocarditis. | [85] |
8 | NV-497 and NV-503-01 (Cocktail) | SEV | Evaluate the efficacy of the phage cocktail in combination with antibiotics against E. faecium in a simulated endocardial vegetation model. | 5.77 log CFU/g reduction in combination with DAP and CPT. Re-sensitization to DAP. Prevention of phage resistance in presence of DAP-CPT. | Not evaluated. | Model duration of 96 h; only a single E. faecium strain tested, and no whole genome sequencing performed. | [69] |
No. | Phage(s) | In Vivo Model | Objective | Experimental Procedure | Key Findings | Observed Limitations | Ref. |
---|---|---|---|---|---|---|---|
1 | MDA1 | G. mellonella | Evaluate individual phage efficacy and safety against VRE. | Larvae were injected with VRE isolated from a patient. Then, 106 PFU of phage MDA1 was injected 1 h before (preventive) or 1 h after infection (treatment). Survival and health scored at 8 h, 37 °C. | Phage MDA1 significantly increased survival in VRE-infected larvae (80% survival with phage vs. 32% without). | G. mellonella immune complexity is limited compared to mammals. | [86] |
2 | MDA1, MDA2, MDA3, MDA4 (cocktail) | G. mellonella | Evaluate the enhanced efficacy and safety of a phage cocktail against VRE. | Larvae injected with VRE isolate followed by 106 PFU of MDA1-MDA4 cocktail at 1 h pre- or post-infection. Health scores and survival tracked at 8 h, 37 °C. | Cocktail improved survival rate to 82%, higher than single DA1 phage (66%); injection with phages alone showed no adverse effects, with control-level survival. | Immune response in G. mellonella does not fully represent mammalian systems. | [86] |
3 | MDA1 and MDA2 (cocktail) | G. mellonella | Evaluate the efficacy and safety of a phage cocktail against VRE. | Larvae were injected with VRE, followed by a phage cocktail injection (MDA1 and MDA2) either 1 h pre- or post-infection. Survival monitored over 48 h. | Phage cocktail significantly increased larval survival, and bacterial abundance decreased in treated larvae. | Galleria model lacks mammalian immune system complexity. | [53] |
4 | vB_EfaH_163 | G. mellonella | Evaluate phage ability to control VRE E. faecium in vivo. | Larvae injected with 106 CFU E. faecium VR-13, followed by vB_EfaH_163 phage (MOI 0.1) or control (water) 1 h later. Survival monitored over 5 days. | Phage treatment increased survival by 20% compared to control, though not statistically significant. | Small sample size (N = 10) may have affected statistical power. | [73] |
5 | C33 | Mouse (bacteremia) | Demonstrate that lytic activity in vitro is essential for phage rescue in bacteremia. | Bacteremia induced with 3 × 109 CFU E. faecalis CRMEN 19. After 90 min, 9 × 109 PFU of either non-lytic ENB6 or lytic C33 were administered i.p., and survival monitored over 20 days. | C33 (lytic) rescued 100% of mice, while non-lytic ENB6 showed no efficacy, underscoring the necessity of lytic activity. | Only two phages and one strain were tested, limiting broader conclusions. | [37] |
6 | ENB6 | Mouse (bacteremia) | Evaluate phage efficacy in rescuing VRE bacteremia mice. | Bacteremia induced by i.p. injection of 109 CFU E. faecium CRMEN 44. Then, 45 min post-infection, various doses of ENB6 phage (3 × 109 to 3 × 104 PFU) were administered i.p., and health was monitored over 20 days. | Dose-dependent survival observed; 100% survival at highest doses (MOI 0.3 and 3). Phage treatment reduced blood bacterial load by ~200-fold vs. control. | Focus on one phage and specific strain limits broader applicability. | [37] |
7 | EF-M80 | Mouse (skin wound infection) | Assess hydrogel-encapsulated phage effectiveness in E. faecium biofilm-induced wound infections. | Wounds were infected with E. faecium, then treated with hydrogel-encapsulated phage 24 h post-infection. Wound healing was monitored for 14 days. | Ph-hyd treatment led to full wound closure by day 14, with initial healing by day 3. Ph-hyd showed faster healing, lower neutrophils, and higher fibroblast density vs. controls. | Limited to a single phage concentration, treatment timing, and mouse model. | [57] |
Nº | Phage(s) | Infection | Administration Route | Treatment Dosage and Duration | Antibiotics Used | Outcome | Ref. |
---|---|---|---|---|---|---|---|
1 | EFgrKN, EFgrNG (cocktail) | VRE in pediatric transplant patient with refractory infection. | Intravenous. | 2 mL/kg BW, 8.1 × 107 PFU/mL for 10 days, then 5.2 × 108 PFU/mL for 10 days (20 days total), twice daily. | CIP, ERT, CTV, DAP, TIG, CTX, PIT, VAN, LIN, and MER. | Clinical improvement after phage therapy. Treatment was not associated with any adverse events. | [91,94] |
2 | Φ9184, ΦHi3 (cocktail) | Recurrent VRE and VSE bacteremia in a 57-year-old woman. | Intravenous, oral. | Φ9184 at 1 × 109 PFU/dose, added ΦHi3 at 2 × 109 PFU/dose; 121 days with Φ9184, 95 days with both phages (216 days total). | DAP, VAN, CTL, ORI, TIG, TED, and DOX. | Fewer hospitalizations, improved quality of life; patient passed away from pneumonia 7.5 months post-treatment. | [92] |
3 | Enf1 | Prosthetic infection after aortic arch replacement in 52-year-old patient. | Local application via drainage, intraoperatively, and orally. | 1 × 108 PFU/mL for 2 days. | CEP, DAP, LIN, and TOB. | E. faecium eradicated; patient died 2 months after phage therapy due to infection by other bacteria. | [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribes-Martínez, L.; Muñoz-Egea, M.-C.; Yuste, J.; Esteban, J.; García-Quintanilla, M. Bacteriophage Therapy as a Promising Alternative for Antibiotic-Resistant Enterococcus faecium: Advances and Challenges. Antibiotics 2024, 13, 1120. https://doi.org/10.3390/antibiotics13121120
Ribes-Martínez L, Muñoz-Egea M-C, Yuste J, Esteban J, García-Quintanilla M. Bacteriophage Therapy as a Promising Alternative for Antibiotic-Resistant Enterococcus faecium: Advances and Challenges. Antibiotics. 2024; 13(12):1120. https://doi.org/10.3390/antibiotics13121120
Chicago/Turabian StyleRibes-Martínez, Laura, Maria-Carmen Muñoz-Egea, Jose Yuste, Jaime Esteban, and Meritxell García-Quintanilla. 2024. "Bacteriophage Therapy as a Promising Alternative for Antibiotic-Resistant Enterococcus faecium: Advances and Challenges" Antibiotics 13, no. 12: 1120. https://doi.org/10.3390/antibiotics13121120
APA StyleRibes-Martínez, L., Muñoz-Egea, M. -C., Yuste, J., Esteban, J., & García-Quintanilla, M. (2024). Bacteriophage Therapy as a Promising Alternative for Antibiotic-Resistant Enterococcus faecium: Advances and Challenges. Antibiotics, 13(12), 1120. https://doi.org/10.3390/antibiotics13121120