Impact of Antipseudomonal Antibiotics in Patients with Bronchiectasis Who Experienced Exacerbation or Developed Pneumonia: A Nationwide Study in Japan
Abstract
:1. Introduction
2. Results
2.1. Patients’ Characteristics
2.2. Propensity Score Matching (PSM)
2.3. Outcomes
3. Discussion
4. Methods
4.1. Data Source
4.2. Study Population
4.3. Data Collection and Outcomes
4.4. PSM
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Donnell, A.E. Bronchiectasis—A Clinical Review. N. Engl. J. Med. 2022, 387, 533–545. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.H.; Guan, W.J.; Liu, S.X.; Wang, L.; Cui, J.J.; Chen, R.C.; Zhang, G.J. Aetiology of bronchiectasis in adults: A systematic literature review. Respirology 2016, 21, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekaran, R.; Mac Aogáin, M.; Chalmers, J.D.; Elborn, S.J.; Chotirmall, S.H. Geographic variation in the aetiology, epidemiology and microbiology of bronchiectasis. BMC Pulm. Med. 2018, 18, 83. [Google Scholar] [CrossRef]
- Chalmers, J.D.; Polverino, E.; Crichton, M.L.; Ringshausen, F.C.; De Soyza, A.; Vendrell, M.; Burgel, P.R.; Haworth, C.S.; Loebinger, M.R.; Dimakou, K.; et al. Bronchiectasis in Europe: Data on disease characteristics from the European Bronchiectasis registry (EMBARC). Lancet Respir. Med. 2023, 11, 637–649. [Google Scholar] [CrossRef]
- Lee, H.; Choi, H.; Chalmers, J.D.; Dhar, R.; Nguyen, T.Q.; Visser, S.K.; Morgan, L.C.; Oh, Y.M. Characteristics of bronchiectasis in Korea: First data from the Korean Multicentre Bronchiectasis Audit and Research Collaboration registry and comparison with other international registries. Respirology 2021, 26, 619–621. [Google Scholar] [CrossRef]
- Aksamit, T.R.; Locantore, N.; Addrizzo-Harris, D.; Ali, J.; Barker, A.; Basavaraj, A.; Behrman, M.; Brunton, A.E.; Chalmers, S.; Choate, R.; et al. Five-Year Outcomes among U.S. Bronchiectasis and NTM Research Registry Patients. Am. J. Respir. Crit. Care Med. 2024, 210, 108–118. [Google Scholar] [CrossRef]
- Asakura, T.; Morimoto, K.; Ito, A.; Suzuki, S.; Morino, E.; Oshitani, Y.; Nakagawa, T.; Yagi, K.; Kadowaki, T.; Saito, F.; et al. Etiology and health-related quality of life in non-cystic fibrosis bronchiectasis and nontuberculous mycobacterial pulmonary disease: The first analysis of the Japanese Nontuberculous Mycobacteriosis-Bronchiectasis Registry. Am. J. Respir. Crit. Care Med. 2020, 201, A4370. [Google Scholar]
- Quint, J.K.; Millett, E.R.; Joshi, M.; Navaratnam, V.; Thomas, S.L.; Hurst, J.R.; Smeeth, L.; Brown, J.S. Changes in the incidence, prevalence and mortality of bronchiectasis in the UK from 2004 to 2013: A population-based cohort study. Eur. Respir. J. 2016, 47, 186–193. [Google Scholar] [CrossRef]
- Lin, J.L.; Xu, J.F.; Qu, J.M. Bronchiectasis in China. Ann. Am. Thorac. Soc. 2016, 13, 609–616. [Google Scholar] [CrossRef]
- Seitz, A.E.; Olivier, K.N.; Steiner, C.A.; Montes de Oca, R.; Holland, S.M.; Prevots, D.R. Trends and burden of bronchiectasis-associated hospitalizations in the United States, 1993–2006. Chest 2010, 138, 944–949. [Google Scholar] [CrossRef]
- Ringshausen, F.C.; de Roux, A.; Diel, R.; Hohmann, D.; Welte, T.; Rademacher, J. Bronchiectasis in Germany: A population-based estimation of disease prevalence. Eur. Respir. J. 2015, 46, 1805–1807. [Google Scholar] [CrossRef]
- Polverino, E.; Goeminne, P.C.; McDonnell, M.J.; Aliberti, S.; Marshall, S.E.; Loebinger, M.R.; Murris, M.; Cantón, R.; Torres, A.; Dimakou, K.; et al. European Respiratory Society guidelines for the management of adult bronchiectasis. Eur. Respir. J. 2017, 50, 1700629. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.T.; Welham, S.A.; Sullivan, A.L.; Loebinger, M.R. Updated BTS Adult Bronchiectasis Guideline 2018: A multidisciplinary approach to comprehensive care. Thorax 2019, 74, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Dicker, A.J.; Lonergan, M.; Keir, H.R.; Smith, A.H.; Pollock, J.; Finch, S.; Cassidy, A.J.; Huang, J.T.; Chalmers, J.D. The sputum microbiome and clinical outcomes in patients with bronchiectasis: A prospective observational study. Lancet Respir. Med. 2021, 9, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Finch, S.; McDonnell, M.J.; Abo-Leyah, H.; Aliberti, S.; Chalmers, J.D. A Comprehensive Analysis of the Impact of Pseudomonas aeruginosa Colonization on Prognosis in Adult Bronchiectasis. Ann. Am. Thorac. Soc. 2015, 12, 1602–1611. [Google Scholar] [CrossRef]
- Ito, A.; Ishida, T.; Tachibana, H.; Nakanishi, Y.; Yamazaki, A.; Washio, Y. Is antipseudomonal antibiotic treatment needed for all nursing and healthcare-associated pneumonia patients at risk for antimicrobial resistance? J. Glob. Antimicrob. Resist. 2020, 22, 441–447. [Google Scholar] [CrossRef]
- Matsuda, S.; Ogasawara, T.; Sugimoto, S.; Kato, S.; Umezawa, H.; Yano, T.; Kasamatsu, N. Prospective open-label randomized comparative, non-inferiority study of two initial antibiotic strategies for patients with nursing- and healthcare-associated pneumonia: Guideline-concordant therapy versus empiric therapy. J. Infect. Chemother. 2016, 22, 400–406. [Google Scholar] [CrossRef]
- Park, G.E.; Ko, J.H.; Ki, H.K. Clinical Benefits of Piperacillin/Tazobactam versus a Combination of Ceftriaxone and Clindamycin in the Treatment of Early, Non-Ventilator, Hospital-Acquired Pneumonia in a Community-Based Hospital. Int. J. Gen. Med. 2020, 13, 705–712. [Google Scholar] [CrossRef]
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef]
- Metlay, J.P.; Waterer, G.W.; Long, A.C.; Anzueto, A.; Brozek, J.; Crothers, K.; Cooley, L.A.; Dean, N.C.; Fine, M.J.; Flanders, S.A.; et al. Diagnosis and Treatment of Adults with Community-acquired Pneumonia. An Official Clinical Practice Guideline of the American Thoracic Society and Infectious Diseases Society of America. Am. J. Respir. Crit. Care Med. 2019, 200, e45–e67. [Google Scholar] [CrossRef]
- Goto, A.; Komiya, K.; Umeki, K.; Hiramatsu, K.; Kadota, J.I. Impact of Pseudomonas aeruginosa coverage on the prognosis of elderly patients with community-acquired pneumonia. J. Infect. Chemother. 2023, 29, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Goto, A.; Komiya, K.; Yamasue, M.; Yoshikawa, H.; Umeki, K.; Hiramatsu, K.; Kadota, J.I. Methicillin-resistant Staphylococcus aureus among elderly patients with community-acquired pneumonia. J. Infect. Chemother. 2022, 28, 1138–1142. [Google Scholar] [CrossRef] [PubMed]
- Richardson, H.; Dicker, A.J.; Barclay, H.; Chalmers, J.D. The microbiome in bronchiectasis. Eur. Respir. Rev. 2019, 28. [Google Scholar] [CrossRef] [PubMed]
- Conceição, M.; Shteinberg, M.; Goeminne, P.; Altenburg, J.; Chalmers, J.D. Eradication treatment for Pseudomonas aeruginosa infection in adults with bronchiectasis: A systematic review and meta-analysis. Eur. Respir. Rev. 2024, 33. [Google Scholar] [CrossRef] [PubMed]
- Shindo, Y.; Ito, R.; Kobayashi, D.; Ando, M.; Ichikawa, M.; Shiraki, A.; Goto, Y.; Fukui, Y.; Iwaki, M.; Okumura, J.; et al. Risk factors for drug-resistant pathogens in community-acquired and healthcare-associated pneumonia. Am. J. Respir. Crit. Care Med. 2013, 188, 985–995. [Google Scholar] [CrossRef]
- Barreto, J.V.; Dias, C.C.; Cardoso, T. Risk factors for community-onset pneumonia caused by drug-resistant pathogens: A prospective cohort study. Eur. J. Intern. Med. 2022, 96, 66–73. [Google Scholar] [CrossRef]
- Aliberti, S.; Goeminne, P.C.; O’Donnell, A.E.; Aksamit, T.R.; Al-Jahdali, H.; Barker, A.F.; Blasi, F.; Boersma, W.G.; Crichton, M.L.; De Soyza, A.; et al. Criteria and definitions for the radiological and clinical diagnosis of bronchiectasis in adults for use in clinical trials: International consensus recommendations. Lancet Respir. Med. 2022, 10, 298–306. [Google Scholar] [CrossRef]
- Lewis, P.O. Risk Factor Evaluation for Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa in Community-Acquired Pneumonia. Ann. Pharmacother. 2021, 55, 36–43. [Google Scholar] [CrossRef]
- Metersky, M.L.; Frei, C.R.; Mortensen, E.M. Predictors of Pseudomonas and methicillin-resistant Staphylococcus aureus in hospitalized patients with healthcare-associated pneumonia. Respirology 2016, 21, 157–163. [Google Scholar] [CrossRef]
- Hayashida, K.; Murakami, G.; Matsuda, S.; Fushimi, K. History and Profile of Diagnosis Procedure Combination (DPC): Development of a Real Data Collection System for Acute Inpatient Care in Japan. J. Epidemiol. 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Central Social Insurance Medical Council (the Central Social Insurance Medical Council Medical Service Fee Investigation Professional Organization (DPC Evaluation Subcommittee Meeting)). Available online: https://www.mhlw.go.jp/stf/shingi/shingi-chuo_128164.html (accessed on 29 September 2024).
- Hagiwara, A.; Shuto, H.; Kudoh, R.; Omori, S.; Hiramatsu, K.; Kadota, J.I.; Fushimi, K.; Komiya, K. Medical Causes of Hospitalisation among Patients with Bronchiectasis: A Nationwide Study in Japan. Pathogens 2024, 13, 492. [Google Scholar] [CrossRef] [PubMed]
- Weir, C.B.; Jan, A. BMI Clsassification Percentile and Cut off Points; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Nakajima, M.; Okada, Y.; Sonoo, T.; Goto, T. Development and Validation of a Novel Method for Converting the Japan Coma Scale to Glasgow Coma Scale. J. Epidemiol. 2023, 33, 531–535. [Google Scholar] [CrossRef] [PubMed]
- The Japanese Respiratory Society. The JRS Guidelines for the Management of Pneumonia in Adults 2024; The Japanese Respiratory Society: Tokyo, Japan, 2024. [Google Scholar]
- Tamma, P.D.; Heil, E.L.; Justo, J.A.; Mathers, A.J.; Satlin, M.J.; Bonomo, R.A. Infectious Diseases Society of America 2024 Guidance on the Treatment of Antimicrobial-Resistant Gram-Negative Infections. Clin. Infect. Dis. 2024. [Google Scholar] [CrossRef]
Unmatched | Matched | |||||
---|---|---|---|---|---|---|
Antipseudomonal Group (n = 2633) | Nonantipseudomonal Group (n = 2310) | p | Antipseudomonal Group (n = 2045) | Nonantipseudomonal Group (n = 2045) | p | |
Age (years) | 78 (71–84) | 81 (73–86) | <0.001 | 79 (72–85) | 80 (72–86) | 0.557 |
Sex (female) | 1796 (68.2) | 1507 (65.2) | 0.027 | 1369 (66.9) | 1355 (66.3) | 0.643 |
Body mass index (kg/m2) | ||||||
<18.5 | 1388 (52.7) | 1077 (46.6) | <0.001 | 1004 (49.1) | 1004 (49.1) | 1.000 |
18.5–24.9 | 951 (36.1) | 899 (38.9) | 0.042 | 780 (38.1) | 784 (38.3) | 0.898 |
25.0–29.9 | 114 (4.3) | 105 (4.5) | 0.713 | 96 (4.7) | 96 (4.7) | 1.000 |
≥30.0 | 16 (0.6) | 28 (1.2) | 0.024 | 15 (0.7) | 14 (0.7) | 0.852 |
Missing data | 164 (6.2) | 201 (8.7) | 0.001 | 150 (7.3) | 147 (7.2) | 0.857 |
Smoking history | ||||||
Nonsmoker | 1906 (72.4) | 1687 (73.0) | 0.614 | 1493 (73.0) | 1489 (72.8) | 0.888 |
Current/past smoker | 469 (17.8) | 428 (18.5) | 0.515 | 366 (17.9) | 377 (18.4) | 0.656 |
Missing data | 258 (9.8) | 195 (8.4) | 0.099 | 186 (9.1) | 179 (8.8) | 0.701 |
Barthel index | ||||||
0–55 | 792 (30.1) | 771 (33.4) | 0.013 | 641 (31.3) | 638 (31.2) | 0.919 |
60–95 | 447 (17.0) | 390 (16.9) | 0.930 | 351 (17.2) | 346 (16.9) | 0.835 |
100 | 1026 (39.0) | 846 (36.6) | 0.090 | 778 (38.0) | 787 (38.5) | 0.772 |
Missing data | 368 (14.0) | 303 (13.1) | 0.379 | 275 (13.4) | 274 (13.4) | 0.963 |
Charlson comorbidity index | ||||||
0 | 12 (0.5) | 17 (0.7) | 0.198 | 11 (0.5) | 10 (0.5) | 0.827 |
1–2 | 1931 (73.3) | 1522 (65.9) | <0.001 | 1433 (70.1) | 1421 (69.5) | 0.683 |
3–4 | 613 (23.3) | 689 (29.8) | <0.001 | 533 (26.1) | 542 (26.5) | 0.749 |
≥5 | 77 (2.9) | 82 (3.5) | 0.214 | 68 (3.3) | 72 (3.5) | 0.731 |
Japan Coma Scale | ||||||
0 | 2282 (86.7) | 1925 (83.3) | 0.001 | 1741 (85.1) | 1748 (85.5) | 0.757 |
1–3 | 289 (11.0) | 330 (14.3) | <0.001 | 259 (12.7) | 257 (12.6) | 0.925 |
10–30 | 45 (1.7) | 48 (2.1) | 0.341 | 39 (1.9) | 35 (1.7) | 0.639 |
100–300 | 17 (0.6) | 7 (0.3) | 0.084 | 6 (0.3) | 5 (0.2) | 0.763 |
Hugh–Jones dyspnea scale | ||||||
1 | 376 (14.3) | 365 (15.8) | 0.135 | 321 (15.7) | 322 (15.7) | 0.966 |
2 | 428 (16.3) | 357 (15.5) | 0.442 | 336 (16.4) | 334 (16.3) | 0.933 |
3 | 393 (14.9) | 304 (13.2) | 0.075 | 276 (13.5) | 286 (14.0) | 0.650 |
4 | 513 (19.5) | 422 (18.3) | 0.276 | 386 (18.9) | 384 (18.8) | 0.936 |
5 | 442 (16.8) | 332 (14.4) | 0.020 | 302 (14.8) | 304 (14.9) | 0.930 |
Missing data | 481 (18.3) | 530 (22.9) | <0.001 | 424 (20.7) | 415 (20.3) | 0.727 |
Supplemental oxygen | 1572 (59.7) | 1168 (50.6) | <0.001 | 1089 (53.3) | 1088 (53.2) | 0.975 |
Mechanical ventilation | 178 (6.8) | 57 (2.5) | <0.001 | 57 (2.8) | 57 (2.8) | 1.000 |
Antifungal | 97 (3.7) | 25 (1.1) | <0.001 | 27 (1.3) | 25 (1.2) | 0.780 |
Inhaled drug | 633 (24.0) | 431 (18.7) | <0.001 | 417 (20.4) | 412 (20.1) | 0.846 |
Vasopressor | 72 (2.7) | 26 (1.1) | <0.001 | 28 (1.4) | 25 (1.2) | 0.678 |
Red blood cell transfusion | 33 (1.3) | 20 (0.9) | 0.187 | 17 (0.8) | 20 (1.0) | 0.620 |
Fresh frozen plasma transfusion | 2 (0.1) | 2 (0.1) | 1 | 0 (0.0) | 1 (0.0) | 1.000 |
Platelet transfusion | 3 (0.1) | 1 (0.0) | 0.628 | 0 (0.0) | 1 (0.0) | 1.000 |
Renal replacement therapy | 24 (0.9) | 7 (0.3) | 0.007 | 11 (0.5) | 7 (0.3) | 0.345 |
ICU admission | 33 (1.3) | 10 (0.4) | 0.002 | 7 (0.3) | 10 (0.5) | 0.466 |
Unmatched | Matched | |||||
---|---|---|---|---|---|---|
Antipseudomonal Group (n = 855) | Nonantipseudomonal Group (n = 1059) | p | Antipseudomonal Group (n = 803) | Nonantipseudomonal Group (n = 803) | p | |
Age (years) | 75 (68–81) | 76 (68–82) | 0.645 | 75 (68–82) | 76 (68–82) | 0.802 |
Sex (female) | 618 (72.3) | 770 (72.7) | 0.834 | 577 (71.9) | 593 (73.8) | 0.369 |
Body mass index (kg/m2) | ||||||
<18.5 | 449 (52.5) | 506 (47.8) | 0.039 | 425 (52.9) | 422 (52.6) | 0.881 |
18.5–24.9 | 312 (36.5) | 431 (40.7) | 0.060 | 288 (35.9) | 288 (35.9) | 1.000 |
25.0–29.9 | 41 (4.8) | 55 (5.2) | 0.691 | 39 (4.9) | 44 (5.5) | 0.573 |
≥30.0 | 11 (1.3) | 10 (0.9) | 0.475 | 11 (1.4) | 10 (1.2) | 0.826 |
Missing data | 42 (4.9) | 57 (5.4) | 0.644 | 40 (5.0) | 39 (4.9) | 0.908 |
Smoking history | ||||||
Nonsmoker | 653 (76.4) | 789 (74.5) | 0.345 | 610 (76.0) | 624 (77.7) | 0.408 |
Current/past smoker | 145 (17.0) | 173 (16.3) | 0.716 | 136 (16.9) | 128 (15.9) | 0.590 |
Missing data | 57 (6.7) | 97 (9.2) | 0.046 | 57 (7.1) | 51 (6.4) | 0.550 |
Barthel index | ||||||
0–55 | 170 (19.9) | 226 (21.3) | 0.434 | 163 (20.3) | 163 (20.3) | 1.000 |
60–95 | 151 (17.7) | 181 (17.1) | 0.744 | 146 (18.2) | 148 (18.4) | 0.897 |
100 | 420 (49.1) | 528 (49.9) | 0.749 | 390 (48.6) | 389 (48.4) | 0.960 |
Missing data | 114 (13.3) | 124 (11.7) | 0.284 | 104 (13.0) | 103 (12.8) | 0.941 |
Charlson comorbidity index | ||||||
0 | 299 (35.0) | 437 (41.3) | 0.005 | 286 (35.6) | 298 (37.1) | 0.534 |
1–2 | 431 (50.4) | 476 (44.9) | 0.017 | 402 (50.1) | 394 (49.1) | 0.690 |
3–4 | 113 (13.2) | 127 (12.0) | 0.421 | 103 (12.8) | 102 (12.7) | 0.940 |
≥5 | 12 (1.4) | 19 (1.8) | 0.501 | 12 (1.5) | 9 (1.1) | 0.510 |
Japan Coma Scale | ||||||
0 | 785 (91.8) | 978 (92.4) | 0.664 | 738 (91.9) | 739 (92.0) | 0.927 |
1–3 | 61 (7.1) | 67 (6.3) | 0.482 | 58 (7.2) | 56 (7.0) | 0.846 |
10–30 | 8 (0.9) | 10 (0.9) | 0.985 | 7 (0.9) | 8 (1.0) | 0.795 |
100–300 | 1 (0.1) | 4 (0.4) | 0.388 | 0 (0.0) | 0 (0.0) | |
Hugh–Jones dyspnea scale | ||||||
1 | 171 (20.0) | 285 (26.9) | <0.001 | 169 (21.0) | 162 (20.2) | 0.666 |
2 | 172 (20.1) | 157 (14.8) | 0.002 | 145 (18.1) | 149 (18.6) | 0.796 |
3 | 135 (15.8) | 157 (14.8) | 0.560 | 127 (15.8) | 131 (16.3) | 0.786 |
4 | 165 (19.3) | 166 (15.7) | 0.037 | 159 (19.8) | 156 (19.4) | 0.850 |
5 | 118 (13.8) | 132 (12.5) | 0.388 | 109 (13.6) | 119 (14.8) | 0.475 |
Missing data | 94 (11.0) | 162 (15.3) | 0.006 | 94 (11.7) | 86 (10.7) | 0.527 |
Supplemental oxygen | 467 (54.6) | 555 (52.4) | 0.335 | 437 (54.4) | 432 (53.8) | 0.802 |
Mechanical ventilation | 67 (7.8) | 61 (5.8) | 0.071 | 60 (7.5) | 52 (6.5) | 0.433 |
Antifungal | 30 (3.5) | 21 (2.0) | 0.039 | 26 (3.2) | 18 (2.2) | 0.221 |
Inhaled drug | 235 (27.5) | 225 (21.2) | 0.001 | 202 (25.2) | 202 (25.2) | 1.000 |
Vasopressor | 27 (3.2) | 52 (4.9) | 0.055 | 23 (2.9) | 21 (2.6) | 0.760 |
Red blood cell transfusion | 14 (1.6) | 19 (1.8) | 0.793 | 13 (1.6) | 13 (1.6) | 1.000 |
Fresh frozen plasma transfusion | 3 (0.4) | 5 (0.5) | 0.738 | 2 (0.2) | 3 (0.4) | 1.000 |
Platelet transfusion | 2 (0.2) | 1 (0.1) | 0.589 | 1 (0.1) | 1 (0.1) | 1.000 |
Renal replacement therapy | 9 (1.1) | 13 (1.2) | 0.721 | 9 (1.1) | 9 (1.1) | 1.000 |
ICU admission | 17 (2.0) | 19 (1.8) | 0.756 | 14 (1.7) | 13 (1.6) | 0.846 |
Unmatched | Matched | |||||
---|---|---|---|---|---|---|
Antipseudomonal Group (n = 2633) | Nonantipseudomonal Group (n = 2310) | p | Antipseudomonal Group (n = 2045) | Nonantipseudomonal Group (n = 2045) | p | |
In-hospital mortality | 274 (10.4) | 174 (7.5) | <0.001 | 185 (9.0) | 151 (7.4) | 0.053 |
Hospital stay (days) | 15 (10–25) | 14 (9–23) | 0.308 | 15 (10–24) | 14 (9–23) | 0.875 |
Hospitalization cost (US dollars) | 4165 (2919–6502) | 3661 (2626–5712) | <0.001 | 4023 (2840–6273) | 3643 (2598–5730) | 0.053 |
Unmatched | Matched | |||||
---|---|---|---|---|---|---|
Antipseudomonal Group (n = 855) | Nonantipseudomonal Group (n = 1059) | p | Antipseudomonal Group (n = 803) | Nonantipseudomonal Group (n = 803) | p | |
In-hospital mortality | 47 (5.5) | 47 (4.4) | 0.287 | 42 (5.2) | 33 (4.1) | 0.287 |
Hospital stay (days) | 15 (10–22) | 11 (7–18) | 0.004 | 15 (10–22) | 12 (7–19) | 0.032 |
Hospitalization cost (US dollars) | 4002 (2811–5838) | 3457 (2157–5830) | 0.039 | 4029 (2814–5909) | 3610 (2202–5721) | 0.076 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagiwara, A.; Shuto, H.; Kudoh, R.; Omori, S.; Hiramatsu, K.; Kadota, J.-i.; Fushimi, K.; Komiya, K. Impact of Antipseudomonal Antibiotics in Patients with Bronchiectasis Who Experienced Exacerbation or Developed Pneumonia: A Nationwide Study in Japan. Antibiotics 2024, 13, 1182. https://doi.org/10.3390/antibiotics13121182
Hagiwara A, Shuto H, Kudoh R, Omori S, Hiramatsu K, Kadota J-i, Fushimi K, Komiya K. Impact of Antipseudomonal Antibiotics in Patients with Bronchiectasis Who Experienced Exacerbation or Developed Pneumonia: A Nationwide Study in Japan. Antibiotics. 2024; 13(12):1182. https://doi.org/10.3390/antibiotics13121182
Chicago/Turabian StyleHagiwara, Akihiko, Hisayuki Shuto, Ryohei Kudoh, Shota Omori, Kazufumi Hiramatsu, Jun-ichi Kadota, Kiyohide Fushimi, and Kosaku Komiya. 2024. "Impact of Antipseudomonal Antibiotics in Patients with Bronchiectasis Who Experienced Exacerbation or Developed Pneumonia: A Nationwide Study in Japan" Antibiotics 13, no. 12: 1182. https://doi.org/10.3390/antibiotics13121182
APA StyleHagiwara, A., Shuto, H., Kudoh, R., Omori, S., Hiramatsu, K., Kadota, J.-i., Fushimi, K., & Komiya, K. (2024). Impact of Antipseudomonal Antibiotics in Patients with Bronchiectasis Who Experienced Exacerbation or Developed Pneumonia: A Nationwide Study in Japan. Antibiotics, 13(12), 1182. https://doi.org/10.3390/antibiotics13121182