Clinical Efficacy of Sitafloxacin–Colistin–Meropenem and Colistin–Meropenem in Patients with Carbapenem-Resistant and Multidrug-Resistant Acinetobacter baumannii Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) in One Super-Tertiary Hospital in Bangkok, Thailand: A Randomized Controlled Trial
Abstract
:1. Introduction
2. Objective
3. Results
4. Materials and Methods
4.1. Ethics Considerations
4.2. Study Design
4.3. Setting and Participants
4.4. Randomization and Intervention
4.5. Follow-up and Definitions
4.6. Outcome Measure
4.7. Statistic Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalil, A.C.; Metersky, M.L.; Klompas, M.; Muscedere, J.; Sweeney, D.A.; Palmer, L.B.; Napolitano, L.M.; O’Grady, N.P.; Bartlett, J.G.; Carratalà, J.; et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 Clinical Practice Guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2017, 63, e61–e111. [Google Scholar] [CrossRef]
- National Antimicrobial Resistance Surveillance Center (NARST). Antimicrobial Resistance Surveillance 2000–2020. Available online: http://narst.dmsc.moph.go.th/data/AMR%202000-2022-12M.pdf (accessed on 27 January 2024).
- Gaynes, R.; Edwards, J.R. National Nosocomial Infections Surveillance System. Overview of nosocomial infections caused by Gram-negative bacilli. Clin. Infect. Dis. 2005, 41, 848–854. [Google Scholar] [PubMed]
- El-Saed, A.; Balkhy, H.H.; Al-Dorzi, H.M.; Khan, R.; Rishu, A.H.; Arabi, Y.M. Acinetobacter is the most common pathogen associated with late-onset and recurrent ventilator-associated pneumonia in an adult intensive care unit in Saudi Arabia. Int. J. Infect. Dis. 2013, 17, e696–e701. [Google Scholar] [CrossRef] [PubMed]
- National Steering Committee on Antimicrobial Resistance of Thailand. Thailand’s First One Health Report on Antimicrobial Consumption and Antimicrobial Resistance in 2018, pp. 40–42. Available online: https://cms.thaiamrwatch.net/uploads/2018_Thailand_One_Health_Report_on_Antimicrobial_Consumption_and_Antimicrobial_Resistance_in_2018_Final_799d504b4a.pdf (accessed on 27 December 2023).
- Makris, D.; Petinaki, E.; Tsolaki, V.; Manoulakas, E.; Mantzarlis, K.; Apostolopoulou, O.; Sfyras, D.; Zakynthinos, E. Colistin versus colistin combined with ampicillin-sulbactam for multiresistant Acinetobacter baumannii ventilator-associated pneumonia treatment: An open-label prospective study. Indian J. Crit. Care Med. 2018, 22, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; University of Michigan. Trial for the Treatment of Extensively Drug-Resistant Gram-Negative Bacilli. Available online: https://clinicaltrials.gov/ct2/show/NCT01597973 (accessed on 14 August 2021).
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef]
- Aydemir, H.; Akduman, D.; Piskin, N.; Comert, F.; Horuz, E.; Terzi, A.; Kokturk, F.; Ornek, T.; Celebi, G. Colistin vs. the combination of colistin and rifampicin for the treatment of carbapenem-resistant Acinetobacter baumannii ventilator-associated pneumonia. Epidemiol. Infect. 2013, 141, 1214–1222. [Google Scholar] [CrossRef]
- Park, H.J.; Cho, J.H.; Kim, H.J.; Han, S.H.; Jeong, S.H.; Byun, M.K. Colistin monotherapy versus colistin/rifampicin combination therapy in pneumonia caused by colistin-resistant Acinetobacter baumannii: A randomised controlled trial. J. Glob. Antimicrob. Resist. 2019, 17, 66–71. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America guidance on the treatment of AmpC β-lactamase-producing Enterobacterales, carbapenem-resistant Acinetobacter baumannii, and Stenotrophomonas maltophilia infections. Clin Infect Dis. 2021, 74, 2089–2114. [Google Scholar] [CrossRef]
- Keating, G.M. Sitafloxacin: In bacterial infections. Drugs 2011, 71, 731–744. [Google Scholar] [CrossRef]
- Paiboonvong, T.; Nosoongnoen, W.; Sathirakul, K.; Tangsujaritvijit, V.; Kaemapairoj, J.; Tragulpiankit, P.; Montakantikul, P. Pharmacokinetics and penetration of sitafloxacin into alveolar epithelial lining fluid in critically ill Thai patients with pneumonia. Antimicrob. Agents Chemother. 2019, 63, e00800-19. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention [Internet]. Pneumonia (Ventilator-Associated [VAP] and Non-Ventilator Associated Pneumonia [PNEU]) Event. 2023. Available online: https://www.cdc.gov/nhsn/psc/pneu/index.html (accessed on 11 July 2023).
- Albin, O.R.; Henig, O.; Patel, T.S.; Valley, T.S.; Pogue, J.M.; Petty, L.A.; Mills, J.P.; Brancaccio, A.; Martin, E.T.; Kaye, K.S. Clinical implications of microbiologic treatment failure in the setting of clinical cure of bacterial pneumonia. Clin. Infect. Dis. 2020, 71, 3033–3041. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Lerma, F.; ICU-Acquired Pneumonia Study Group. Modification of empiric antibiotic treatment in patients with pneumonia acquired in the intensive care unit. Intensive Care Med. 1996, 22, 387–394. [Google Scholar] [CrossRef]
- Menendez, R.; Torres, A. Treatment failure in community-acquired pneumonia. Chest 2007, 132, 1348–1355. [Google Scholar] [CrossRef] [PubMed]
- Shebl, E.; Gulick, P.G. Nosocomial Pneumonia. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2024. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535441/ (accessed on 27 January 2024).
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Wagner, D.P.; Draper, E.A. Acute physiology and chronic health evaluation (APACHE II) and medicare reimbursement. Health Care Financ. Rev. 1984, 1984, 91–105. [Google Scholar]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Lee, J.S.; Park, S.Y.; Ko, Y.; Eom, J.S. Colistin plus carbapenem versus colistin monotherapy in the treatment of carbapenem-resistant Acinetobacter baumannii pneumonia. Infect. Drug Resist. 2019, 12, 3925–3934. [Google Scholar] [CrossRef] [PubMed]
- Paiboonvong, T.; Rodjun, V.; Houngsaitong, J.; Chomnawang, M.; Montakantikul, P.; Chulavatnatol, S. Comparative in vitro activity of sitafloxacin against multidrug-resistant and carbapenem-resistant Acinetobacter baumannii clinical isolates in Thailand. Pharm. Sci. Asia 2020, 47, 37–42. [Google Scholar] [CrossRef]
- Huang, Y.S.; Wang, J.T.; Sheng, W.H.; Chuang, Y.C.; Chang, S.C. Comparative in vitro activity of sitafloxacin against bacteremic isolates of carbapenem-resistant Acinetobacter baumannii complex. J. Microbiol. Immunol. Infect. 2015, 48, 545–551. [Google Scholar] [CrossRef] [PubMed]
- Tantisiriwat, W.; Linasmita, P. In vitro activity of sitafloxacin and other antibiotics against bacterial isolates from HRH Princess Maha Chakri Sirindhorn Medical Center, Srinakharinwirot University and Samitivej Sukhumvit Hospital. J. Med. Assoc. Thai. 2017, 100, 469–478. [Google Scholar] [PubMed]
- Wu, S.; Yang, Y.; Guo, Y.; Yin, D.; Zheng, Y.; Han, R.; Ding, L.; Zhu, D.; Hu, F. Comparative activities of sitafloxacin against recent clinical isolates in hospitals across China. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2271–2283. [Google Scholar] [CrossRef] [PubMed]
- Tiengrim, S.; Mootsikapun, P.; Wonglakorn, L.; Changpradub, D.; Thunyaharn, S.; Tantisiriwat, W.; Santiwatanakul, S.; Malithong, A.; U-thainua, N.; Kiratisin, P.; et al. Comparative in vitro activity of sitafloxacin against bacteria isolated from Thai patients with urinary tract infections and lower respiratory tract infections in 2016. J. Med. Assoc. Thail. 2017, 100, 1061. [Google Scholar]
- Dong, X.; Chen, F.; Zhang, Y.; Liu, H.; Liu, Y.; Ma, L. In vitro activities of sitafloxacin tested alone and in combination with rifampin, colistin, sulbactam, and tigecycline against extensively drug-resistant Acinetobacter baumannii. Int. J. Clin. Exp. Med. 2015, 8, 8135–8140. [Google Scholar] [PubMed]
- Thamlikitkul, V.; Tiengrim, S. In vitro susceptibility test of sitafloxacin against resistant Gram-negative bacilli isolated from Thai patients by disk diffusion method. J. Med. Assoc. Thai. 2014, 97 (Suppl. 3), S7–S12. [Google Scholar]
- Nakamura, T.; Komatsu, M.; Yamasaki, K.; Fukuda, S.; Higuchi, T.; Ono, T.; Nishio, H.; Sueyoshi, N.; Kida, K.; Satoh, K.; et al. Susceptibility of various oral antibacterial agents against extended spectrum beta-lactamase producing Escherichia coli and Klebsiella pneumoniae. J. Infect. Chemother. 2014, 20, 48–51. [Google Scholar] [CrossRef]
- Microbiology Laboratory. Percentage of Susceptible Organisms January–December 2021 [Internet]; Rajavithi Hospital: Bangkok, Thailand, 2021; Available online: https://intranet.rajavithi.go.th/news_raja/files/2021_RJ_Antibiogram.pdf (accessed on 28 August 2023).
- Microbiology Laboratory. Percentage of Susceptible Organisms January–December [Brochure]; Rajavithi Hospital: Bangkok, Thailand, 2018. [Google Scholar]
- Lin, M.F.; Lan, C.Y. Antimicrobial resistance in Acinetobacter baumannii: From bench to bedside. World J. Clin. Cases 2014, 2, 787–814. [Google Scholar] [CrossRef]
- Gordon, N.C.; Wareham, D.W. Multidrug-resistant Acinetobacter baumannii: Mechanisms of virulence and resistance. Int. J. Antimicrob. Agents 2010, 35, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Esterly, J.S.; Richardson, C.L.; Eltoukhy, N.S.; Qi, C.; Scheetz, M.H. Genetic mechanisms of antimicrobial resistance of Acinetobacter baumannii. Ann. Pharmacother. 2011, 45, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Roca, I.; Espinal, P.; Vila-Farrés, X.; Vila, J. The Acinetobacter baumannii oxymoron: Commensal hospital dweller turned pan-drug-resistant menace. Front. Microbiol. 2012, 3, 148. [Google Scholar] [CrossRef] [PubMed]
- Kiem, S.; Schentag, J.J. Correlations between microbiological outcomes and clinical responses in patients with severe pneumonia. Infect. Chemother. 2013, 45, 283–291. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 77) | Sitafloxacin–Colistin–Meropenem (n = 40) | Colistin–Meropenem (n = 37) | p-Value | |||
---|---|---|---|---|---|---|---|
Gender | |||||||
Male | 56 | (72.7) | 27 | (67.5) | 29 | (78.4) | 0.248 |
Female | 21 | (27.3) | 13 | (32.5) | 8 | (21.6) | |
Age (year) | 59.82 ± 17.11 | 57.40 ± 18.26 | 62.43 ± 15.59 | 0.199 | |||
Bodyweight (kg) | 56.83 ± 12.55 | 56.72 ± 10.39 | 56.95 ± 14.68 | 0.468 | |||
BMI (kg/m2) | 21.31 ± 4.10 | 21.08 ± 3.47 | 21.56 ± 4.70 | 0.308 | |||
Underlying disease | 73 | (94.8) | 38 | (95.0) | 35 | (94.6) | 1.000 |
Cardiovascular disease | 27 | (35.1) | 13 | (32.5) | 14 | (37.8) | 0.624 |
Diabetes mellitus | 13 | (16.9) | 8 | (20.0) | 5 | (13.5) | 0.448 |
Malignancy | 20 | (26.0) | 8 | (20.0) | 12 | (32.4) | 0.214 |
Respiratory disease | 6 | (7.8) | 4 | (10.0) | 2 | (5.4) | 0.676 |
Liver disease | 4 | (5.2) | 2 | (5.0) | 2 | (5.4) | 1.000 |
Neurological disease | 35 | (45.5) | 23 | (57.5) | 12 | (32.4) | 0.027 |
Others | 6 | (7.8) | 2 | (5) | 4 | (10.8) | 0.419 |
Previous CRAB HAP/VAP | 9 | (11.7) | 5 | (12.5) | 4 | (10.8) | 1.000 |
Previous carbapenem used | 36 | (46.8) | 20 | (50) | 16 | (43.2) | 0.553 |
Mechanical ventilation | 59 | (76.6) | 31 | (77.5) | 28 | (75.7) | 0.850 |
Duration of sitafloxacin (days) | 8.75 ± 2.84 | ||||||
Duration of colistin (days) | 8.03 ± 2.80 | 8.75 ± 2.84 | 7.24 ± 2.58 | 0.009 | |||
Duration of meropenem (days) | 8.03 ± 2.80 | 8.75 ± 2.84 | 7.24 ± 2.58 | 0.009 | |||
Hospitalization before HAP/VAP (days) | 12 | (8–26) | 15 | (9–36) | 10 | (8–19) | 0.079 |
Body temperature (°C) | 38.52 ± 0.96 | 38.69 ± 0.91 | 38.34 ± 0.98 | 0.115 | |||
FiO2 | 0.39 ± 0.13 | 0.39 ± 0.13 | 0.39 ± 0.13 | 0.840 | |||
APACHE II score | 12.95 ± 6.09 | 14.33 ± 6.76 | 11.46 ± 4.95 | 0.036 | |||
qSOFA score | 0.91 ± 0.69 | 1.05 ± 0.75 | 0.76 ± 0.6 | 0.063 | |||
White blood cell (cell/mm3) | 14,124.55 ± 6007.66 | 16,675.25 ± 5877.33 | 11,367.03 ± 4871.2 | <0.001 | |||
Procalcitonin (ng/mL) | 1.23 ± 2.82 | 2.04 ± 3.72 | 0.35 ± 0.56 | 0.007 | |||
Lactate (mmol/L) | 1.80 ± 0.70 | 1.97 ± 0.78 | 1.62 ± 0.55 | 0.027 | |||
Serum creatinine (mg/dL) | 0.69 ± 0.25 | 0.65 ± 0.25 | 0.73 ± 0.24 | 0.151 | |||
GFR (mL/min/1.73 m2) | 102.09 ± 23.37 | 107.55 ± 25.51 | 96.19 ± 19.49 | 0.031 | |||
CrCl (mL/min) | 99.20 ± 45.53 | 111.41 ± 53.77 | 86.32 ± 30.57 | 0.015 | |||
AST (U/L) | 59.81 ± 45.93 | 54.05 ± 37.85 | 66.03 ± 53.15 | 0.256 | |||
ALT (U/L) | 54.97 ± 55.89 | 55.05 ± 47.24 | 54.89 ± 64.62 | 0.990 | |||
ALP (U/L) | 137.45 ± 74.48 | 145.03 ± 87.09 | 129.27 ± 57.99 | 0.357 | |||
QT (msec) | 451.96 ± 36.56 | 450.30 ± 36.36 | 453.76 ± 37.19 | 0.681 |
Antimicrobial Agents | Total (n = 77) | Sitafloxacin–Colistin–Meropenem (n = 40) | Colistin–Meropenem (n = 37) |
---|---|---|---|
Meropenem | |||
>16 µg/mL | 73 (94.8) | 39 (97.5) | 34 (91.9) |
16 µg/mL | 4 (5.2) | 1 (2.5) | 3 (8.1) |
Colistin | |||
2 µg/mL | 7 (9.1) | 4 (10) | 3 (8.1) |
≤1 µg/mL | 70 (90.9) | 36 (90) | 34 (91.9) |
Outcome | Intention-to-Treat (ITT) Analysis | Per-Protocol (PP) Analysis | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Total | Sitafloxacin–Colistin–Meropenem | Colistin–Meropenem | p-Value | Total | Sitafloxacin–Colistin–Meropenem | Colistin–Meropenem | p-Value | |||||||
(n = 77) | (n = 40) | (n = 37) | (n = 70) | (n = 39) | (n = 31) | |||||||||
Primary outcome | ||||||||||||||
7-day mortality rate | 4 | (5.2) | 3 | (7.5) | 1 | (2.7) | 0.616 | 4 | (5.7) | 3 | (7.7) | 1 | (3.2) | 0.624 |
14-day mortality rate | 8 | (10.4) | 4 | (10.0) | 4 | (10.0) | 1.000 | 8 | (11.4) | 4 | (10.3) | 4 | (12.9) | 1.000 |
Secondary outcome | ||||||||||||||
Clinical cure | 58 | (75.3) | 35 | (87.5) | 23 | (62.2) | 0.016 | 55 | (78.6) | 34 | (87.2) | 21 | (67.7) | 0.049 |
Microbiological clearance on day 3 | 29 | (37.7) | 16 | (40.0) | 13 | (35.1) | 0.660 | 26 | (38.2) | 16 | (41) | 10 | (34.5) | 0.583 |
Microbiological clearance on day 7 | 34 | (44.2) | 19 | (47.5) | 15 | (40.5) | 0.539 | 33 | (53.2) | 19 | (52.8) | 14 | (53.8) | 0.934 |
Drug adverse event | 50 | (64.9) | 25 | (62.5) | 25 | (67.6) | 0.642 | 47 | (69.1) | 24 | (63.2) | 23 | (76.7) | 0.231 |
Nephrotoxicity | 33 | (42.9) | 14 | (35.0) | 19 | (51.4) | 0.147 | 28 | (40.6) | 13 | (33.3) | 15 | (50.0) | 0.162 |
QT prolongation | 17 | (22.1) | 8 | (20.0) | 9 | (24.3) | 0.648 | 17 | (27.9) | 8 | (22.9) | 9 | (34.6) | 0.311 |
Acute diarrhea | 12 | (15.6) | 5 | (12.5) | 7 | (18.9) | 0.438 | 12 | (18.8) | 5 | (13.5) | 7 | (25.9) | 0.209 |
Elevation of liver enzyme from baseline | 26 | (33.8) | 14 | (35.0) | 12 | (32.4) | 0.812 | 25 | (39.7) | 14 | (38.9) | 11 | (40.7) | 0.882 |
Clinical outcome | ||||||||||||||
Defervescence on day 3 | 37.81 ± 0.96 | 37.75 ± 0.84 | 37.87 ± 1.08 | 0.594 | 37.78 ± 0.83 | 37.69 ± 0.77 | 37.89 ± 0.90 | 0.318 | ||||||
Defervescence on day 7 | 37.52 ± 0.94 | 37.32 ± 0.73 | 37.74 ± 1.08 | 0.048 | 37.40 ± 0.67 | 37.23 ± 0.49 | 37.63 ± 0.80 | 0.032 | ||||||
FiO2 on day 3 | 0.37 ± 0.11 | 0.37 ± 0.09 | 0.38 ± 0.13 | 0.917 | 0.37 ± 0.08 | 0.37 ± 0.09 | 0.36 ± 0.08 | 0.559 | ||||||
FiO2 on day 7 | 0.36 ± 0.12 | 0.36 ± 0.10 | 0.36 ± 0.14 | 0.914 | 0.34 ± 0.09 | 0.35 ± 0.09 | 0.33 ± 0.09 | 0.522 | ||||||
Wean off mechanical ventilation (n = 58) | 20 | (34.5) | 14 | (45.2) | 6 | (22.2) | 0.067 | 19 | (35.2) | 14 | (45.2) | 5 | (21.7) | 0.075 |
APACHE II score | 11.55 ± 6.48 | 11.38 ± 6.25 | 11.73 ± 6.80 | 0.812 | 11.06 ± 6.37 | 11.03 ± 5.69 | 11.11 ± 7.26 | 0.961 | ||||||
qSOFA score | 0.52 ± 0.66 | 0.43 ± 0.59 | 0.62 ± 0.72 | 0.194 | 0.41 ± 0.61 | 0.36 ± 0.54 | 0.46 ± 0.69 | 0.506 | ||||||
Laboratory on day 7 | ||||||||||||||
White blood cell (cell/mm3) | 9974.68 ± 4352.27 | 10,193.14 ± 4272.58 | 9691.48 ± 4519.07 | 0.656 | 9974.68 ± 4352.27 | 10,193.14 ± 4272.58 | 9691.48 ± 4519.07 | 0.656 | ||||||
Procalcitonin (ng/mL) | 0.60 ± 1.95 | 0.28 ± 0.32 | 1.02 ± 2.93 | 0.204 | 0.39 ± 0.82 | 0.28 ± 0.32 | 0.54 ± 1.20 | 0.224 | ||||||
Lactate (mmol/L) | 1.45 ± 0.54 | 1.44 ± 0.51 | 1.47 ± 0.58 | 0.872 | 1.45 ± 0.54 | 1.44 ± 0.51 | 1.47 ± 0.58 | 0.872 | ||||||
Serum creatinine (mg/dL) | 0.96 ± 0.55 | 0.92 ± 0.54 | 1.00 ± 0.56 | 0.563 | 0.98 ± 0.60 | 0.93 ± 0.57 | 1.06 ± 0.63 | 0.385 | ||||||
Serum GFR (mL/min/1.73 m2) | 86.78 ± 31.78 | 90.98 ± 34.05 | 82.24 ± 28.92 | 0.231 | 86.83 ± 34.25 | 91.5 ± 35.83 | 80.59 ± 31.59 | 0.214 | ||||||
CrCl (mL/min) | 83.66 ± 58.16 | 94.74 ± 67.72 | 71.97 ± 43.95 | 0.088 | 86.27 ± 62.87 | 97.86 ± 70.49 | 71.26 ± 48.60 | 0.099 | ||||||
AST (U/L) | 66.42 ± 65.28 | 59.80 ± 50.17 | 73.57 ± 78.54 | 0.359 | 66.65 ± 69.10 | 59.72 ± 52.23 | 75.89 ± 86.94 | 0.362 | ||||||
ALT (U/L) | 48.12 ± 40.15 | 51.45 ± 34.64 | 44.42 ± 45.73 | 0.449 | 48.74 ± 40.57 | 53.86 ± 35.05 | 41.65 ± 46.97 | 0.246 | ||||||
ALP (U/L) | 135.52 ± 83.89 | 139.85 ± 99.74 | 130.84 ± 63.53 | 0.641 | 140.03 ± 89.21 | 146.03 ± 102.46 | 132.04 ± 68.78 | 0.542 | ||||||
QT (msec) | 455.86 ± 40.67 | 448.30 ± 32.39 | 464.03 ± 47.14 | 0.090 | 453.79 ± 40.53 | 448.77 ± 32.82 | 460.54 ± 48.94 | 0.266 |
Outcome | Intention to Treat (ITT) Analysis | Per Protocol (PP) Analysis | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Univariable Analysis | Multivariable Analysis | Univariable Analysis | Multivariable Analysis | |||||||||
OR | 95% CI | p-Value | ORadj | 95% CI | p-Value | OR | 95% CI | p-Value | ORadj | 95% CI | p-Value | |
Primary outcome | ||||||||||||
7-day mortality rate | 2.92 | (0.29–29.38) | 0.363 | 3.25 | (0.31–33.60) | 0.323 | 2.50 | (0.25–25.3) | 0.438 | 2.31 | (0.16–34.3) | 0.542 |
14-day mortality rate | 0.29 | (0.03–2.93) | 0.294 | 0.27 | (0.02–3.42) | 0.312 | 0.77 | (0.18–3.37) | 0.730 | 0.75 | (0.14–3.93) | 0.730 |
Secondary outcome | ||||||||||||
Clinical response | 4.26 | (1.35–13.44) | 0.013 | 3.93 | (1.21–12.78) | 0.023 | 3.24 | (0.97–10.79) | 0.056 | 3.45 | (0.92–12.97) | 0.066 |
Microbiological clearance on day 3 | 1.23 | (0.49–3.10) | 0.660 | 1.41 | (0.54–3.71) | 0.487 | 1.32 | (0.49–3.58) | 0.583 | 1.43 | (0.48–4.20) | 0.521 |
Microbiological clearance on day 7 | 1.33 | (0.54–3.27) | 0.539 | 1.33 | (0.52–3.42) | 0.554 | 0.96 | (0.35–2.63) | 0.934 | 0.98 | (0.34–2.83) | 0.967 |
Drug adverse event | 0.80 | (0.31–2.05) | 0.642 | 0.96 | (0.35–2.64) | 0.940 | 0.52 | (0.18–1.53) | 0.234 | 0.59 | (0.18–1.94) | 0.386 |
Nephrotoxicity | 0.51 | (0.20–1.27) | 0.149 | 0.59 | (0.22–1.59) | 0.294 | 0.50 | (0.19–1.33) | 0.165 | 0.65 | (0.22–1.91) | 0.436 |
QT prolongation | 0.78 | (0.26–2.29) | 0.648 | 0.93 | (0.29–2.93) | 0.896 | 0.56 | (0.18–1.73) | 0.314 | 0.65 | (0.19–2.28) | 0.505 |
Acute diarrhea | 0.61 | (0.18–2.13) | 0.441 | 0.46 | (0.12–1.81) | 0.267 | 0.45 | (0.13–1.60) | 0.216 | 0.34 | (0.08–1.41) | 0.137 |
Elevation of liver enzyme from baseline | 1.12 | (0.44–2.89) | 0.812 | 1.17 | (0.43–3.17) | 0.765 | 0.93 | (0.33–2.56) | 0.882 | 1.01 | (0.34–3.04) | 0.986 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wantanatavatod, M.; Wongkulab, P. Clinical Efficacy of Sitafloxacin–Colistin–Meropenem and Colistin–Meropenem in Patients with Carbapenem-Resistant and Multidrug-Resistant Acinetobacter baumannii Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) in One Super-Tertiary Hospital in Bangkok, Thailand: A Randomized Controlled Trial. Antibiotics 2024, 13, 137. https://doi.org/10.3390/antibiotics13020137
Wantanatavatod M, Wongkulab P. Clinical Efficacy of Sitafloxacin–Colistin–Meropenem and Colistin–Meropenem in Patients with Carbapenem-Resistant and Multidrug-Resistant Acinetobacter baumannii Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) in One Super-Tertiary Hospital in Bangkok, Thailand: A Randomized Controlled Trial. Antibiotics. 2024; 13(2):137. https://doi.org/10.3390/antibiotics13020137
Chicago/Turabian StyleWantanatavatod, Manasawee, and Panuwat Wongkulab. 2024. "Clinical Efficacy of Sitafloxacin–Colistin–Meropenem and Colistin–Meropenem in Patients with Carbapenem-Resistant and Multidrug-Resistant Acinetobacter baumannii Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) in One Super-Tertiary Hospital in Bangkok, Thailand: A Randomized Controlled Trial" Antibiotics 13, no. 2: 137. https://doi.org/10.3390/antibiotics13020137
APA StyleWantanatavatod, M., & Wongkulab, P. (2024). Clinical Efficacy of Sitafloxacin–Colistin–Meropenem and Colistin–Meropenem in Patients with Carbapenem-Resistant and Multidrug-Resistant Acinetobacter baumannii Hospital-Acquired Pneumonia (HAP)/Ventilator-Associated Pneumonia (VAP) in One Super-Tertiary Hospital in Bangkok, Thailand: A Randomized Controlled Trial. Antibiotics, 13(2), 137. https://doi.org/10.3390/antibiotics13020137