Antibiotic Cocktail Effects on Intestinal Microbial Community, Barrier Function, and Immune Function in Early Broiler Chickens
Abstract
:1. Introduction
2. Results
2.1. Effects of Antibiotic Cocktail Treatment on Intestinal Length and Weight and Internal Organ Index
2.2. Effects of Antibiotic Cocktail Treatment Duration on Intestinal Morphological Structure
2.3. Effects of Antibiotic Cocktail on Cecal Short-Chain Fatty Acids
2.4. Effects of Antibiotic Cocktail on Immune Functions
2.5. Effects of Antibiotic Cocktail on Ileal Permeability and Barrier-Related Gene Expression
2.6. Effects of Antibiotic Cocktail on Cecal Microbial Composition
2.7. Effects of Antibiotic Cocktail on Ileal Microbial Composition
3. Discussion
4. Materials and Methods
4.1. Ethics Statement
4.2. Experimental Designs
4.3. Antibiotic Cocktail Preparation
4.4. Sample Collection
4.5. Intestinal Histomorphological Analysis
4.6. Assay for Immunoglobulins, Cytokines and LPS in the Serum, and DAO and MPO Activity in the Ileum
4.7. Quantitative Real-Time PCR
4.8. Short-Chain Fatty Acid Determination in Cecal Contents
4.9. Microbial DNA Extraction and 16S rRNA Sequencing and Analysis
4.10. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mancabelli, L.; Ferrario, C.; Milani, C.; Mangifesta, M.; Turroni, F.; Duranti, S.; Lugli, G.A.; Viappiani, A.; Ossiprandi, M.C.; van Sinderen, D. Insights into the biodiversity of the gut microbiota of broiler chickens. Environ. Microbiol. 2016, 18, 4727–4738. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Yan, W.; Sun, C.; Ji, C.; Zhou, Q.; Zhang, D.; Zheng, J.; Yang, N. The gut microbiota is largely independent of host genetics in regulating fat deposition in chickens. ISME J. 2019, 13, 1422–1436. [Google Scholar] [CrossRef] [PubMed]
- Korpela, K.; Salonen, A.; Virta, L.J.; Kekkonen, R.A.; Forslund, K.; Bork, P.; De Vos, W.M. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat. Commun. 2016, 7, 10410. [Google Scholar] [CrossRef]
- Kallam, N.R.K.; Sejian, V. Gut health and immunity in improving poultry production. In Advances in Poultry Nutrition Research; IntechOpen: London, UK, 2021. [Google Scholar]
- Rafiq, K.; Tofazzal Hossain, M.; Ahmed, R.; Hasan, M.M.; Islam, R.; Hossen, M.I.; Shaha, S.N.; Islam, M.R. Role of different growth enhancers as alternative to in-feed antibiotics in poultry industry. Front. Vet. Sci. 2022, 8, 794588. [Google Scholar] [CrossRef]
- Gadbois, P.; Brennan, J.; Bruce, H.; Wilson, J.; Aramini, J. The role of penicillin G potassium in managing Clostridium perfringens in broiler chickens. Avian Dis. 2008, 52, 407–411. [Google Scholar] [CrossRef]
- Authority, E.F.S. The European Union one health 2018 zoonoses report. EFSA J. 2019, 17, e05926. [Google Scholar]
- de Mesquita Souza Saraiva, M.; Lim, K.; do Monte, D.F.M.; Givisiez, P.E.N.; Alves, L.B.R.; de Freitas Neto, O.C.; Kariuki, S.; Júnior, A.B.; de Oliveira, C.J.B.; Gebreyes, W.A. Antimicrobial resistance in the globalized food chain: A One Health perspective applied to the poultry industry. Vet. Microbiol. 2022, 53, 465–486. [Google Scholar] [CrossRef]
- Rodrigues, G.; Maximiano, M.R.; Franco, O.L. Antimicrobial peptides used as growth promoters in livestock production. Appl. Microbiol. Biotechnol. 2021, 105, 7115–7121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Chen, D.-C. Facing a new challenge: The adverse effects of antibiotics on gut microbiota and host immunity. Chin. Med. J. 2019, 132, 1135–1138. [Google Scholar] [CrossRef]
- Feng, Y.; Huang, Y.; Wang, Y.; Wang, P.; Song, H.; Wang, F. Antibiotics induced intestinal tight junction barrier dysfunction is associated with microbiota dysbiosis, activated NLRP3 inflammasome and autophagy. PLoS ONE 2019, 14, e0218384. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Lee, S.-H.; Hong, S.-J. Antibiotics-induced dysbiosis of intestinal microbiota aggravates atopic dermatitis in mice by altered short-chain fatty acids. Allergy Asthma Immunol. Res. 2020, 12, 137–148. [Google Scholar] [CrossRef] [PubMed]
- Broom, L.J. The sub-inhibitory theory for antibiotic growth promoters. Poult. Sci. 2017, 96, 3104–3108. [Google Scholar] [CrossRef] [PubMed]
- Kairmi, S.H.; Taha-Abdelaziz, K.; Yitbarek, A.; Sargolzaei, M.; Spahany, H.; Astill, J.; Shojadoost, B.; Alizadeh, M.; Kulkarni, R.R.; Parkinson, J. Effects of therapeutic levels of dietary antibiotics on the cecal microbiome composition of broiler chickens. Poult. Sci. 2022, 101, 101864. [Google Scholar] [CrossRef]
- Tan, J.; Gong, J.; Liu, F.; Li, B.; Li, Z.; You, J.; He, J.; Wu, S. Evaluation of an antibiotic cocktail for fecal microbiota transplantation in mouse. Front. Nutr. 2022, 9, 918098. [Google Scholar] [CrossRef] [PubMed]
- Garcia, T.M.; van Roest, M.; Vermeulen, J.L.; Meisner, S.; Smit, W.L.; Silva, J.; Koelink, P.J.; Koster, J.; Faller, W.J.; Wildenberg, M.E.; et al. Early life antibiotics influence in vivo and in vitro mouse intestinal epithelium maturation and functioning. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 943–981. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Xu, H.-M.; Peng, Y.; Zhao, C.; Zhao, H.-l.; Huang, W.; Huang, H.-L.; He, J.; Du, Y.-L.; Zhou, Y.-J. The effect of different combinations of antibiotic cocktails on mice and selection of animal models for further microbiota research. Appl. Microbiol. Biotechnol. 2021, 105, 1669–1681. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Gao, M.; Fu, J.; Zhao, Y.; Liu, Y.; Yan, S.; Lv, Z.; Guo, Y. Construction of low intestinal bacteria model and its effect on laying performance and immune function of laying hens. Poult. Sci. 2023, 102, 102327. [Google Scholar] [CrossRef] [PubMed]
- Karakan, T.; Ozkul, C.; Küpeli Akkol, E.; Bilici, S.; Sobarzo-Sánchez, E.; Capasso, R. Gut-brain-microbiota axis: Antibiotics and functional gastrointestinal disorders. Nutrients 2021, 13, 389. [Google Scholar] [CrossRef]
- Miles, R.; Butcher, G.; Henry, P.; Littell, R. Effect of antibiotic growth promoters on broiler performance, intestinal growth parameters, and quantitative morphology. Poult. Sci. 2006, 85, 476–485. [Google Scholar] [CrossRef]
- Smagieł, R.; Ognik, K.; Cholewińska, E.; Stępniowska, A.; Listos, P.; Tykałowski, B.; Mikulski, D.; Koncicki, A.; Jankowski, J. The effect of early administration of antibiotics or feeding a diet containing a coccidiostat on inflammatory responses and the morphological structure of selected organs of the immune system in young meat-type turkeys. Poult. Sci. 2023, 102, 102876. [Google Scholar] [CrossRef] [PubMed]
- Yitbarek, A.; Taha-Abdelaziz, K.; Hodgins, D.C.; Read, L.; Nagy, É.; Weese, J.S.; Caswell, J.L.; Parkinson, J.; Sharif, S. Gut microbiota-mediated protection against influenza virus subtype H9N2 in chickens is associated with modulation of the innate responses. Sci. Rep. 2018, 8, 13189. [Google Scholar] [CrossRef]
- Murai, A.; Kitahara, K.; Okumura, S.; Kobayashi, M.; Horio, F. Oral antibiotics enhance antibody responses to keyhole limpet hemocyanin in orally but not muscularly immunized chickens. Anim. Sci. J. 2016, 87, 257–265. [Google Scholar] [CrossRef]
- Wisselink, H.; Cornelissen, J.; Mevius, D.; Smits, M.; Smidt, H.; Rebel, J.M. Antibiotics in 16-day-old broilers temporarily affect microbial and immune parameters in the gut. Poult. Sci. 2017, 96, 3068–3078. [Google Scholar] [CrossRef] [PubMed]
- Marchiando, A.M.; Graham, W.V.; Turner, J.R. Epithelial barriers in homeostasis and disease. Annu. Rev. Pathol. Mech. Dis. 2010, 5, 119–144. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 2009, 9, 799–809. [Google Scholar] [CrossRef]
- Gill, N.; Wlodarska, M.; Finlay, B.B. Roadblocks in the gut: Barriers to enteric infection. Cell. Microbiol. 2011, 13, 660–669. [Google Scholar] [CrossRef]
- Broom, L.J. Gut barrier function: Effects of (antibiotic) growth promoters on key barrier components and associations with growth performance. Poult. Sci. 2018, 97, 1572–1578. [Google Scholar] [CrossRef]
- Chen, J.; Tellez, G.; Richards, J.D.; Escobar, J. Identification of potential biomarkers for gut barrier failure in broiler chickens. Front. Vet. Sci. 2015, 2, 14. [Google Scholar] [CrossRef]
- Schumann, A.; Nutten, S.; Donnicola, D.; Comelli, E.M.; Mansourian, R.; Cherbut, C.; Corthesy-Theulaz, I.; Garcia-Rodenas, C. Neonatal antibiotic treatment alters gastrointestinal tract developmental gene expression and intestinal barrier transcriptome. Physiol. Genom. 2005, 23, 235–245. [Google Scholar] [CrossRef]
- Tulstrup, M.V.-L.; Christensen, E.G.; Carvalho, V.; Linninge, C.; Ahrné, S.; Højberg, O.; Licht, T.R.; Bahl, M.I. Antibiotic treatment affects intestinal permeability and gut microbial composition in Wistar rats dependent on antibiotic class. PLoS ONE 2015, 10, e0144854. [Google Scholar] [CrossRef]
- van Ampting, M.T.; Schonewille, A.J.; Vink, C.; Brummer, R.J.M.; van der Meer, R.; Bovee-Oudenhoven, I.M. Damage to the intestinal epithelial barrier by antibiotic pretreatment of salmonella-infected rats is lessened by dietary calcium or tannic acid. J. Nutr. 2010, 140, 2167–2172. [Google Scholar] [CrossRef]
- Yoon, H.; Schaubeck, M.; Lagkouvardos, I.; Blesl, A.; Heinzlmeir, S.; Hahne, H.; Clavel, T.; Panda, S.; Ludwig, C.; Kuster, B. Increased pancreatic protease activity in response to antibiotics impairs gut barrier and triggers colitis. Cell. Mol. Gastroenterol. Hepatol. 2018, 6, 370–388.e373. [Google Scholar] [CrossRef] [PubMed]
- Wlodarska, M.; Willing, B.; Keeney, K.; Menendez, A.; Bergstrom, K.; Gill, N.; Russell, S.; Vallance, B.; Finlay, B. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect. Immun. 2011, 79, 1536–1545. [Google Scholar] [CrossRef]
- Zhang, T.; Ding, H.; Chen, L.; Lin, Y.; Gong, Y.; Pan, Z.; Zhang, G.; Xie, K.; Dai, G.; Wang, J. Antibiotic-induced dysbiosis of microbiota promotes chicken lipogenesis by altering metabolomics in the cecum. Metabolites 2021, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Macpherson, A.J.; Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 2004, 4, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Gasaly, N.; De Vos, P.; Hermoso, M.A. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Front. Immunol. 2021, 12, 658354. [Google Scholar] [CrossRef]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Torok, V.A.; Allison, G.E.; Percy, N.J.; Ophel-Keller, K.; Hughes, R.J. Influence of antimicrobial feed additives on broiler commensal posthatch gut microbiota development and performance. Appl. Environ. Microbiol. 2011, 77, 3380–3390. [Google Scholar] [CrossRef]
- Choi, J.; Lee, K.; Kim, D.; Kil, D.Y.; Kim, G.B.; Cha, C.J. Influence of dietary avilamycin on ileal and cecal microbiota in broiler chickens. Poult. Sci. 2018, 97, 970–979. [Google Scholar] [CrossRef]
- Wang, J.; Chen, X.; Li, J.; Ishfaq, M. Gut microbiota dysbiosis aggravates Mycoplasma gallisepticum colonization in the chicken lung. Front. Vet. Sci. 2021, 8, 788811. [Google Scholar] [CrossRef]
- Danzeisen, J.L.; Kim, H.B.; Isaacson, R.E.; Tu, Z.J.; Johnson, T.J. Modulations of the chicken cecal microbiome and metagenome in response to anticoccidial and growth promoter treatment. PLoS ONE 2011, 6, e27949. [Google Scholar] [CrossRef] [PubMed]
- Proctor, A.; Phillips, G.J. Differential effects of bacitracin methylene disalicylate (BMD) on the distal colon and cecal microbiota of young broiler chickens. Front. Vet. Sci. 2019, 6, 114. [Google Scholar] [CrossRef]
- Robinson, K.; Becker, S.; Xiao, Y.; Lyu, W.; Yang, Q.; Zhu, H.; Yang, H.; Zhao, J.; Zhang, G. Differential impact of subtherapeutic antibiotics and ionophores on intestinal microbiota of broilers. Microorganisms 2019, 7, 282. [Google Scholar] [CrossRef]
- Ballou, A.L.; Ali, R.A.; Mendoza, M.A.; Ellis, J.C.; Hassan, H.M.; Croom, W.J.; Koci, M.D. Development of the chick microbiome: How early exposure influences future microbial diversity. Front. Vet. Sci. 2016, 3, 2. [Google Scholar] [CrossRef] [PubMed]
- Engberg, R.M.; Hedemann, M.S.; Leser, T.; Jensen, B.B. Effect of zinc bacitracin and salinomycin on intestinal microflora and performance of broilers. Poult. Sci. 2000, 79, 1311–1319. [Google Scholar] [CrossRef]
- Abaidullah, M.; Peng, S.; Kamran, M.; Song, X.; Yin, Z. Current findings on gut microbiota mediated immune modulation against viral diseases in chicken. Viruses 2019, 11, 681. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Li, C.; Cui, P.; Wang, H. Detection of Tn7-like transposons and antibiotic resistance in Enterobacterales from animals used for food production with identification of three novel transposons Tn6813, Tn6814, and Tn6765. Front. Microbiol. 2020, 11, 565875. [Google Scholar] [CrossRef] [PubMed]
- Adewole, D.; Akinyemi, F. Gut microbiota dynamics, growth performance, and gut morphology in broiler chickens fed diets varying in energy density with or without bacitracin methylene disalicylate (Bmd). Microorganisms 2021, 9, 787. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Polansky, O.; Sekelova, Z.; Faldynova, M.; Sebkova, A.; Sisak, F.; Rychlik, I. Important metabolic pathways and biological processes expressed by chicken cecal microbiota. Appl. Environ. Microbiol. 2016, 82, 1569–1576. [Google Scholar] [CrossRef]
- Onrust, L.; Ducatelle, R.; Van Driessche, K.; De Maesschalck, C.; Vermeulen, K.; Haesebrouck, F.; Eeckhaut, V.; Van Immerseel, F. Steering endogenous butyrate production in the intestinal tract of broilers as a tool to improve gut health. Front. Vet. Sci. 2015, 2, 75. [Google Scholar] [CrossRef]
- Stanley, D.; Hughes, R.J.; Geier, M.S.; Moore, R.J. Bacteria within the gastrointestinal tract microbiota correlated with improved growth and feed conversion: Challenges presented for the identification of performance enhancing probiotic bacteria. Front. Microbiol. 2016, 7, 175834. [Google Scholar] [CrossRef]
- Biddle, A.; Stewart, L.; Blanchard, J.; Leschine, S. Untangling the genetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity 2013, 5, 627–640. [Google Scholar] [CrossRef]
- Diaz Carrasco, J.M.; Casanova, N.A.; Fernández Miyakawa, M.E. Microbiota, gut health and chicken productivity: What is the connection? Microorganisms 2019, 7, 374. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Li, Y.; Wen, Z.; Liu, W.; Meng, L.; Huang, H. Oscillospira-a candidate for the next-generation probiotics. Gut Microb. 2021, 13, 1987783. [Google Scholar] [CrossRef] [PubMed]
- Rocha, E.R.; Smith, C.J. Ferritin-like family proteins in the anaerobe Bacteroides fragilis: When an oxygen storm is coming, take your iron to the shelter. Biometals 2013, 26, 577–591. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Q.; Zhang, J.; Guan, T.; Chen, Y.; Shi, W. Critical roles of cyanobacteria as reservoir and source for antibiotic resistance genes. Environ. Int. 2020, 144, 106034. [Google Scholar] [CrossRef]
- Dolka, B.; Chrobak-Chmiel, D.; Czopowicz, M.; Szeleszczuk, P. Characterization of pathogenic Enterococcus cecorum from different poultry groups: Broiler chickens, layers, turkeys, and waterfowl. PLoS ONE 2017, 12, e0185199. [Google Scholar] [CrossRef]
- Jung, A.; Chen, L.R.; Suyemoto, M.M.; Barnes, H.J.; Borst, L.B. A review of Enterococcus cecorum infection in poultry. Avian Dis. 2018, 62, 261–271. [Google Scholar] [CrossRef]
- Stępień-Pyśniak, D.; Marek, A.; Banach, T.; Adaszek, Ł.; Pyzik, E.; Wilczyński, J.; Winiarczyk, S. Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry. Acta Vet. Hung. 2016, 64, 148–163. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, V.; Monteiro, A.; Vieira-Pinto, M.; Igrejas, G.; Reis, F.S.; Barros, L.; Poeta, P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals 2023, 13, 1362. [Google Scholar] [CrossRef]
- Souillard, R.; Laurentie, J.; Kempf, I.; Le Caër, V.; Le Bouquin, S.; Serror, P.; Allain, V. Increasing incidence of Enterococcus-associated diseases in poultry in France over the past 15 years. Vet. Microbiol. 2022, 269, 109426. [Google Scholar] [CrossRef]
- Brisbin, J.T.; Gong, J.; Orouji, S.; Esufali, J.; Mallick, A.I.; Parvizi, P.; Shewen, P.E.; Sharif, S. Oral treatment of chickens with lactobacilli influences elicitation of immune responses. Clin. Vaccine Immunol. 2011, 18, 1447–1455. [Google Scholar] [CrossRef] [PubMed]
- La Ragione, R.; Narbad, A.; Gasson, M.; Woodward, M.J. In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett. Appl. Microbiol. 2004, 38, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Hardy, H.; Harris, J.; Lyon, E.; Beal, J.; Foey, A.D. Probiotics, prebiotics and immunomodulation of gut mucosal defences: Homeostasis and immunopathology. J. Nutr. 2013, 5, 1869–1912. [Google Scholar] [CrossRef] [PubMed]
- Rehman, H.U.; Vahjen, W.; Awad, W.A.; Zentek, J. Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Arch. Anim. Nutr. 2007, 61, 319–335. [Google Scholar] [CrossRef]
- Van Immerseel, F.; Fievez, V.; De Buck, J.; Pasmans, F.; Martel, A.; Haesebrouck, F.; Ducatelle, R. Microencapsulated short-chain fatty acids in feed modify colonization and invasion early after infection with Salmonella enteritidis in young chickens. Poult. Sci. 2004, 83, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Józefiak, D.; Rutkowski, A.; Martin, S. Carbohydrate fermentation in the avian ceca: A review. Anim. Feed Sci. Technol. 2004, 113, 1–15. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.; Yang, Y.; Guo, A. Biological function of short-chain fatty acids and its regulation on intestinal health of poultry. Front. Vet. Sci. 2021, 8, 736739. [Google Scholar] [CrossRef]
- Peng, L.; Li, Z.-R.; Green, R.S.; Holzmanr, I.R.; Lin, J. Butyrate enhances the intestinal barrier by facilitating tight junction assembly via activation of AMP-activated protein kinase in Caco-2 cell monolayers. J. Nutr. 2009, 139, 1619–1625. [Google Scholar] [CrossRef]
- Sun, Y.; O’Riordan, M.X. Regulation of bacterial pathogenesis by intestinal short-chain fatty acids. Adv. Appl. Microbiol. 2013, 85, 93–118. [Google Scholar] [PubMed]
- Vinolo, M.A.; Rodrigues, H.G.; Nachbar, R.T.; Curi, R. Regulation of inflammation by short chain fatty acids. Nutrients 2011, 3, 858–876. [Google Scholar] [CrossRef]
- Chen, C.; Chen, W.; Ding, H.; Wu, P.; Zhang, G.; Xie, K.; Zhang, T. High-fat diet-induced gut microbiota alteration promotes lipogenesis by butyric acid/miR-204/ACSS2 axis in chickens. Poult. Sci. 2023, 102, 102856. [Google Scholar] [CrossRef]
- Marosvölgyi, T.; Mintál, K.; Farkas, N.; Sipos, Z.; Makszin, L.; Szabó, É.; Tóth, A.; Kocsis, B.; Kovács, K.; Hormay, E. Antibiotics and probiotics-induced effects on the total fatty acid composition of feces in a rat model. Sci. Rep. 2024, 14, 6542. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.O.; Baptiste, K.E. Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb. Drug Resist. 2018, 24, 590–606. [Google Scholar] [CrossRef]
- Mahdavi, R.; Torki, M. Study on usage period of dietary protected butyric acid on performance. J. Vet. Adv. 2009, 8, 1702–1709. [Google Scholar]
- Shao, Y.; Guo, Y.; Wang, Z. β-1, 3/1, 6-Glucan alleviated intestinal mucosal barrier impairment of broiler chickens challenged with Salmonella enterica serovar Typhimurium. Poult. Sci. 2013, 92, 1764–1773. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Pham, V.H.; Abbas, W.; Huang, J.; He, Q.; Zhen, W.; Guo, Y.; Wang, Z. Effect of blending encapsulated essential oils and organic acids as an antibiotic growth promoter alternative on growth performance and intestinal health in broilers with necrotic enteritis. Poult. Sci. 2022, 101, 101563. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef] [PubMed]
- Caporaso, J.G.; Kuczynski, J.; Stombaugh, J.; Bittinger, K.; Bushman, F.D.; Costello, E.K.; Fierer, N.; Peña, A.G.; Goodrich, J.K.; Gordon, J.I. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 2010, 7, 335–336. [Google Scholar] [CrossRef] [PubMed]
- Warton, D.I.; Wright, S.T.; Wang, Y. Distance-based multivariate analyses confound location and dispersion effects. Methods Ecol. Evol. 2012, 3, 89–101. [Google Scholar] [CrossRef]
- Segata, N.; Izard, J.; Waldron, L.; Gevers, D.; Miropolsky, L.; Garrett, W.S.; Huttenhower, C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011, 12, R60. [Google Scholar] [CrossRef] [PubMed]
Items | CC14 | AC14 | BC14 | SEM | p-Values |
---|---|---|---|---|---|
Body weight gain (g) | |||||
Day 7 | 173.10 | 189.91 | 193.41 | 4.22 | 0.148 |
Day 14 | 472.53 | 451.80 | 467.08 | 7.34 | 0.518 |
Organ index (g/kg) | |||||
Liver index | 27.85 | 29.29 | 25.37 | 0.74 | 0.145 |
Spleen index | 0.71 | 0.81 | 0.85 | 0.37 | 0.329 |
Bursa index | 1.86 | 1.96 | 2.10 | 0.117 | 0.783 |
Intestinal length (cm/kg) | |||||
Duodenum length | 7.73 a | 4.48 c | 6.05 b | 0.411 | 0.001 |
Jejunum length | 14.32 | 12.42 | 14.83 | 0.676 | 0.328 |
Ileum length | 10.75 | 9.70 | 9.72 | 0.425 | 0.546 |
Total small intestinal length | 32.79 a | 26.60 b | 30.60 ab | 1.191 | 0.092 |
Small intestinal weight (g/kg) | |||||
Duodenum weight | 10.250 a | 7.135 b | 5.472 b | 0.646 | <0.001 |
Jejunum weight | 16.647 a | 14.973 a | 12.278 b | 0.553 | <0.001 |
Ileum weight | 12.467 a | 9.937 b | 9.007 b | 0.446 | <0.001 |
Total small intestinal weight | 39.363 a | 32.048 b | 26.753 c | 1.509 | <0.001 |
Items | CC14 | AC14 | BC14 | SEM | p-Values |
---|---|---|---|---|---|
Duodenum | |||||
Villus height, μm | 1441.33 a | 1239.16 b | 1043.00 c | 49.53 | <0.001 |
Crypt depth, μm | 235.50 a | 269.50 b | 222.50 a | 5.79 | <0.001 |
VH/CD | 6.16 a | 4.61 b | 4.59 b | 0.23 | <0.002 |
Jejunum | |||||
Villus height, μm | 955.16 a | 767.83 b | 642.83 c | 32.72 | <0.001 |
Crypt depth, μm | 127.66 b | 196.00 a | 206.33 a | 9.53 | <0.001 |
VH/CD | 7.55 a | 4.00 b | 3.11 c | 0.49 | <0.001 |
Ileum | |||||
Villus height, μm | 662.66 a | 562.00 b | 512.22 c | 16.54 | <0.001 |
Crypt depth, μm | 95.00 b | 113.16 b | 150.01 a | 6.55 | <0.001 |
VH/CD | 7.11 a | 4.97 b | 3.477 c | 0.398 | <0.001 |
Items (μmol/g) | CC14 | AC14 | BC14 | SEM | p-Values |
---|---|---|---|---|---|
Acetic acid | 41.42 b | 52.15 a | 4.34 c | 5.165 | <0.001 |
Propanoic acid | 1.48 b | 3.11 a | 1.31 b | 0.220 | <0.001 |
Isobutyric acid | 0.30 a | 0.35 a | 0.12 b | 0.034 | <0.006 |
Butyric acid | 3.84 b | 6.60 a | 0.46 c | 0.677 | <0.001 |
Isovaleric acid | 0.293 ab | 0.527 a | 0.219 b | 0.055 | 0.004 |
Valeric acid | 0.18 | 0.15 | 0.16 | 0.011 | 0.363 |
Items | CC14 | AC14 | BC14 | SEM | p-Values |
---|---|---|---|---|---|
Systemic immune responses | |||||
IFN-γ (pg/mL) | 52.16 b | 64.49 ab | 73.65 a | 3.53 | 0.033 |
TNF-α (pg/mL) | 33.91 b | 37.83 b | 45.81 a | 1.41 | 0.001 |
IL-2 (pg/mL) | 102.76 | 107.76 | 133.76 | 9.28 | 0.377 |
IgG (μg/mL) | 1428.27 b | 1744.46 a | 1528.26 a | 42.70 | 0.011 |
IgA (μg/mL) | 183.92 a | 152.63 b | 167.63 b | 5.31 | 0.004 |
Ileal immune responses | |||||
IL-1β | 1.00 a | 0.39 ab | 0.23 b | 0.138 | 0.047 |
IL-6 | 1.00 | 0.43 | 0.79 | 0.223 | 0.641 |
IL-8 | 1.00 a | 0.39 ab | 0.31 b | 0.138 | 0.057 |
IFN-r | 1.00 a | 0.86 ab | 0.37 b | 0.118 | 0.082 |
TNF-a | 1.00 a | 0.51 b | 0.28 b | 0.118 | 0.016 |
Items | CC14 | AC14 | BC14 | SEM | p-Value |
---|---|---|---|---|---|
Intestinal permeability | |||||
LPS (EU/L) | 47.48 b | 85.29 a | 114.50 a | 8.87 | 0.002 |
DAO (ng/mL) | 10.01 b | 9.11 b | 30.50 a | 3.35 | 0.006 |
MPO (pg/mL) | 692.83 | 701.33 | 741.66 | 9.10 | 0.057 |
Barrier-related gene expression | |||||
ZO-1 | 1.00 ab | 0.26 ab | 0.10 b | 0.163 | 0.041 |
Occludin | 1.00 | 0.21 | 0.09 | 0.234 | 0.242 |
Mucin 2 | 1.00 a | 0.30 ab | 0.07 b | 0.166 | 0.030 |
FABP-2 | 1.00 | 1.27 | 0.46 | 0.299 | 0.558 |
Claudin 1 | 1.00 a | 1.34 a | 0.34 b | 0.201 | 0.042 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abbas, W.; Bi, R.; Hussain, M.D.; Tajdar, A.; Guo, F.; Guo, Y.; Wang, Z. Antibiotic Cocktail Effects on Intestinal Microbial Community, Barrier Function, and Immune Function in Early Broiler Chickens. Antibiotics 2024, 13, 413. https://doi.org/10.3390/antibiotics13050413
Abbas W, Bi R, Hussain MD, Tajdar A, Guo F, Guo Y, Wang Z. Antibiotic Cocktail Effects on Intestinal Microbial Community, Barrier Function, and Immune Function in Early Broiler Chickens. Antibiotics. 2024; 13(5):413. https://doi.org/10.3390/antibiotics13050413
Chicago/Turabian StyleAbbas, Waseem, Ruichen Bi, Muhammad Dilshad Hussain, Alia Tajdar, Fangshen Guo, Yuming Guo, and Zhong Wang. 2024. "Antibiotic Cocktail Effects on Intestinal Microbial Community, Barrier Function, and Immune Function in Early Broiler Chickens" Antibiotics 13, no. 5: 413. https://doi.org/10.3390/antibiotics13050413
APA StyleAbbas, W., Bi, R., Hussain, M. D., Tajdar, A., Guo, F., Guo, Y., & Wang, Z. (2024). Antibiotic Cocktail Effects on Intestinal Microbial Community, Barrier Function, and Immune Function in Early Broiler Chickens. Antibiotics, 13(5), 413. https://doi.org/10.3390/antibiotics13050413