Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections
Abstract
:1. Introduction
2. Mechanisms of Colistin Resistance
3. Available Treatments of A. baumannii Colistin Resistance
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ayoub Moubareck, C.; Hammoudi Halat, D. Insights into Acinetobacter baumannii: A Review of Microbiological, Virulence, and Resistance Traits in a Threatening Nosocomial Pathogen. Antibiotics 2020, 9, 119. [Google Scholar] [CrossRef]
- Michalopoulos, A.; Falagas, M.E. Treatment of Acinetobacter Infections. Expert Opin. Pharmacother. 2010, 11, 779–788. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Gikas, A.; Astrinaki, E.; Kritsotakis, E.I. Excess Mortality Due to Pandrug-Resistant Acinetobacter baumannii Infections in Hospitalized Patients. J. Hosp. Infect. 2020, 106, 447–453. [Google Scholar] [CrossRef]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial Resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Pandrug-Resistant Gram-Negative Bacteria: A Systematic Review of Current Epidemiology, Prognosis and Treatment Options. J. Antimicrob. Chemother. 2019, 75, dkz401. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Kritsotakis, E.I.; Gikas, A. Treatment Options for K. pneumoniae, P. aeruginosa and A. baumannii Co-Resistant to Carbapenems, Aminoglycosides, Polymyxins and Tigecycline: An Approach Based on the Mechanisms of Resistance to Carbapenems. Infection 2020, 48, 835–851. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Ioannou, P.; Samonis, G.; Kofteridis, D.P. Systematic Review of Antimicrobial Combination Options for Pandrug-Resistant Acinetobacter baumannii. Antibiotics 2021, 10, 1344. [Google Scholar] [CrossRef]
- Balkan, I.I.; Alkan, M.; Aygün, G.; Kuşkucu, M.; Ankaralı, H.; Karagöz, A.; Şen, S.; Arsu, H.Y.; Biçer, M.; Kaya, S.Y.; et al. Colistin Resistance Increases 28-Day Mortality in Bloodstream Infections Due to Carbapenem-Resistant Klebsiella Pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2161–2170. [Google Scholar] [CrossRef] [PubMed]
- Mantzarlis, K.; Makris, D.; Zakynthinos, E. Risk Factors for the First Episode of Acinetobacter baumannii Resistant to Colistin Infection and Outcome in Critically Ill Patients. J. Med. Microbiol. 2020, 69, 35–40. [Google Scholar] [CrossRef]
- Dickstein, Y.; Lellouche, J.; Ben Dalak Amar, M.; Schwartz, D.; Nutman, A.; Daitch, V.; Yahav, D.; Leibovici, L.; Skiada, A.; Antoniadou, A.; et al. Treatment Outcomes of Colistin- and Carbapenem-Resistant Acinetobacter baumannii Infections: An Exploratory Subgroup Analysis of a Randomized Clinical Trial. Clin. Infect. Dis. 2019, 69, 769–776. [Google Scholar] [CrossRef]
- Deris, Z.Z.; Akter, J.; Sivanesan, S.; Roberts, K.D.; Thompson, P.E.; Nation, R.L.; Li, J.; Velkov, T. A Secondary Mode of Action of Polymyxins against Gram-Negative Bacteria Involves the Inhibition of NADH-Quinone Oxidoreductase Activity. J. Antibiot. 2014, 67, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Velkov, T.; Thompson, P.E.; Nation, R.L.; Li, J. Structure−Activity Relationships of Polymyxin Antibiotics. J. Med. Chem. 2010, 53, 1898–1916. [Google Scholar] [CrossRef] [PubMed]
- Bolla, J.-M.; Alibert-Franco, S.; Handzlik, J.; Chevalier, J.; Mahamoud, A.; Boyer, G.; Kieć-Kononowicz, K.; Pagès, J.-M. Strategies for Bypassing the Membrane Barrier in Multidrug Resistant Gram-negative Bacteria. FEBS Lett. 2011, 585, 1682–1690. [Google Scholar] [CrossRef] [PubMed]
- Mohapatra, S.S.; Dwibedy, S.K.; Padhy, I. Polymyxins, the Last-Resort Antibiotics: Mode of Action, Resistance Emergence, and Potential Solutions. J. Biosci. 2021, 46, 85. [Google Scholar] [CrossRef] [PubMed]
- Espinal, P.; Pantel, A.; Rolo, D.; Marti, S.; López-Rojas, R.; Smani, Y.; Pachón, J.; Vila, J.; Lavigne, J.-P. Relationship between Different Resistance Mechanisms and Virulence in Acinetobacter baumannii. Microb. Drug Resist. 2019, 25, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, J.H.; Harper, M.; Harrison, P.; Hale, J.D.F.; Vinogradov, E.; Seemann, T.; Henry, R.; Crane, B.; St. Michael, F.; Cox, A.D.; et al. Colistin Resistance in Acinetobacter baumannii Is Mediated by Complete Loss of Lipopolysaccharide Production. Antimicrob. Agents Chemother. 2010, 54, 4971–4977. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.P.; Ong, R.T.-H.; Hon, P.-Y.; Hawkey, J.; Holt, K.E.; Koh, T.H.; Leong, M.L.-N.; Teo, J.Q.-M.; Tan, T.Y.; Ng, M.M.-L.; et al. Multiple Genetic Mutations Associated with Polymyxin Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 7899–7902. [Google Scholar] [CrossRef] [PubMed]
- Boinett, C.J.; Cain, A.K.; Hawkey, J.; Do Hoang, N.T.; Khanh, N.N.T.; Thanh, D.P.; Dordel, J.; Campbell, J.I.; Lan, N.P.H.; Mayho, M.; et al. Clinical and Laboratory-Induced Colistin-Resistance Mechanisms in Acinetobacter baumannii. Microb. Genom. 2019, 5, e000246. [Google Scholar] [CrossRef] [PubMed]
- Mu, X.; Wang, N.; Li, X.; Shi, K.; Zhou, Z.; Yu, Y.; Hua, X. The Effect of Colistin Resistance-Associated Mutations on the Fitness of Acinetobacter baumannii. Front. Microbiol. 2016, 7, 1715. [Google Scholar] [CrossRef]
- Moffatt, J.H.; Harper, M.; Adler, B.; Nation, R.L.; Li, J.; Boyce, J.D. Insertion Sequence IS Aba11 Is Involved in Colistin Resistance and Loss of Lipopolysaccharide in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2011, 55, 3022–3024. [Google Scholar] [CrossRef]
- Kamoshida, G.; Yamada, N.; Nakamura, T.; Yamaguchi, D.; Kai, D.; Yamashita, M.; Hayashi, C.; Kanda, N.; Sakaguchi, M.; Morimoto, H.; et al. Preferential Selection of Low-Frequency, Lipopolysaccharide-Modified, Colistin-Resistant Mutants with a Combination of Antimicrobials in Acinetobacter baumannii. Microbiol. Spectr. 2022, 10, e01928-22. [Google Scholar] [CrossRef]
- Ušjak, D.; Novović, K.; Filipić, B.; Kojić, M.; Filipović, N.; Stevanović, M.M.; Milenković, M.T. In Vitro Colistin Susceptibility of Pandrug-Resistant Ac. Baumannii Is Restored in the Presence of Selenium Nanoparticles. J. Appl. Microbiol. 2022, 133, 1197–1206. [Google Scholar] [CrossRef] [PubMed]
- Jovcic, B.; Novovic, K.; Dekic, S.; Hrenovic, J. Colistin Resistance in Environmental Isolates of Acinetobacter baumannii. Microb. Drug Resist. 2021, 27, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Nurtop, E.; Bayındır Bilman, F.; Menekse, S.; Kurt Azap, O.; Gönen, M.; Ergonul, O.; Can, F. Promoters of Colistin Resistance in Acinetobacter baumannii Infections. Microb. Drug Resist. 2019, 25, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Kline, T.; Trent, M.S.; Stead, C.M.; Lee, M.S.; Sousa, M.C.; Felise, H.B.; Nguyen, H.V.; Miller, S.I. Synthesis of and Evaluation of Lipid A Modification by 4-Substituted 4-Deoxy Arabinose Analogs as Potential Inhibitors of Bacterial Polymyxin Resistance. Bioorganic Med. Chem. Lett. 2008, 18, 1507–1510. [Google Scholar] [CrossRef]
- Nowak, J.; Zander, E.; Stefanik, D.; Higgins, P.G.; Roca, I.; Vila, J.; McConnell, M.J.; Cisneros, J.M.; Seifert, H. MagicBullet Working Group WP4 High Incidence of Pandrug-Resistant Acinetobacter baumannii Isolates Collected from Patients with Ventilator-Associated Pneumonia in Greece, Italy and Spain as Part of the MagicBullet Clinical Trial. J. Antimicrob. Chemother. 2017, 72, 3277–3282. [Google Scholar] [CrossRef] [PubMed]
- Olaitan, A.O.; Morand, S.; Rolain, J.-M. Mechanisms of Polymyxin Resistance: Acquired and Intrinsic Resistance in Bacteria. Front. Microbiol. 2014, 5, 643. [Google Scholar] [CrossRef] [PubMed]
- Chin, C.-Y.; Gregg, K.A.; Napier, B.A.; Ernst, R.K.; Weiss, D.S. A PmrB-Regulated Deacetylase Required for Lipid A Modification and Polymyxin Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 7911–7914. [Google Scholar] [CrossRef]
- Gerson, S.; Betts, J.W.; Lucaßen, K.; Nodari, C.S.; Wille, J.; Josten, M.; Göttig, S.; Nowak, J.; Stefanik, D.; Roca, I.; et al. Investigation of Novel pmrB and eptA Mutations in Isogenic Acinetobacter baumannii Isolates Associated with Colistin Resistance and Increased Virulence In Vivo. Antimicrob. Agents Chemother. 2019, 63, e01586-18. [Google Scholar] [CrossRef]
- Qureshi, Z.A.; Hittle, L.E.; O’Hara, J.A.; Rivera, J.I.; Syed, A.; Shields, R.K.; Pasculle, A.W.; Ernst, R.K.; Doi, Y. Colistin-Resistant Acinetobacter baumannii: Beyond Carbapenem Resistance. Clin. Infect. Dis. 2015, 60, 1295–1303. [Google Scholar] [CrossRef]
- Pelletier, M.R.; Casella, L.G.; Jones, J.W.; Adams, M.D.; Zurawski, D.V.; Hazlett, K.R.O.; Doi, Y.; Ernst, R.K. Unique Structural Modifications Are Present in the Lipopolysaccharide from Colistin-Resistant Strains of Acinetobacter baumannii. Antimicrob. Agents Chemother. 2013, 57, 4831–4840. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Herrera, C.M.; Fernandez, L.; Hankins, J.V.; Trent, M.S.; Hancock, R.E.W. The pmrCAB Operon Mediates Polymyxin Resistance in Acinetobacter baumannii ATCC 17978 and Clinical Isolates through Phosphoethanolamine Modification of Lipid A. Antimicrob. Agents Chemother. 2011, 55, 3743–3751. [Google Scholar] [CrossRef]
- Beceiro, A.; Llobet, E.; Aranda, J.; Bengoechea, J.A.; Doumith, M.; Hornsey, M.; Dhanji, H.; Chart, H.; Bou, G.; Livermore, D.M.; et al. Phosphoethanolamine Modification of Lipid A in Colistin-Resistant Variants of Acinetobacter baumannii Mediated by the pmrAB Two-Component Regulatory System. Antimicrob. Agents Chemother. 2011, 55, 3370–3379. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S. A Systematic Review of Implications, Mechanisms, and Stability of in Vivo Emergent Resistance to Colistin and Tigecycline in Acinetobacter baumannii. J. Chemother. 2021, 33, 1–11. [Google Scholar] [CrossRef]
- Haeili, M.; Kafshdouz, M.; Feizabadi, M.M. Molecular Mechanisms of Colistin Resistance Among Pandrug-Resistant Isolates of Acinetobacter baumannii with High Case-Fatality Rate in Intensive Care Unit Patients. Microb. Drug Resist. 2018, 24, 1271–1276. [Google Scholar] [CrossRef]
- Khoshnood, S.; Savari, M.; Abbasi Montazeri, E.; Farajzadeh Sheikh, A. Survey on Genetic Diversity, Biofilm Formation, and Detection of Colistin Resistance Genes in Clinical Isolates of Acinetobacter baumannii. IDR 2020, 13, 1547–1558. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.K.; Choi, J.Y.; Shin, D.; Ko, K.S. Correlation between Overexpression and Amino Acid Substitution of the PmrAB Locus and Colistin Resistance in Acinetobacter baumannii. Int. J. Antimicrob. Agents 2011, 37, 525–530. [Google Scholar] [CrossRef]
- Leite, G.C.; Stabler, R.A.; Neves, P.; Perdigão Neto, L.V.; Ruedas Martins, R.C.; Rizek, C.; Rossi, F.; Levin, A.S.; Costa, S.F. Genetic and Virulence Characterization of Colistin-Resistant and Colistin-Sensitive A. Baumannii Clinical Isolates. Diagn. Microbiol. Infect. Dis. 2019, 95, 99–101. [Google Scholar] [CrossRef] [PubMed]
- Kabic, J.; Novovic, K.; Kekic, D.; Trudic, A.; Opavski, N.; Dimkic, I.; Jovcic, B.; Gajic, I. Comparative Genomics and Molecular Epidemiology of Colistin-Resistant Acinetobacter baumannii. Comput. Struct. Biotechnol. J. 2023, 21, 574–585. [Google Scholar] [CrossRef]
- Trebosc, V.; Gartenmann, S.; Tötzl, M.; Lucchini, V.; Schellhorn, B.; Pieren, M.; Lociuro, S.; Gitzinger, M.; Tigges, M.; Bumann, D.; et al. Dissecting Colistin Resistance Mechanisms in Extensively Drug-Resistant Acinetobacter baumannii Clinical Isolates. mBio 2019, 10, e01083-19. [Google Scholar] [CrossRef]
- Deveson Lucas, D.; Crane, B.; Wright, A.; Han, M.-L.; Moffatt, J.; Bulach, D.; Gladman, S.L.; Powell, D.; Aranda, J.; Seemann, T.; et al. Emergence of High-Level Colistin Resistance in an Acinetobacter baumannii Clinical Isolate Mediated by Inactivation of the Global Regulator H-NS. Antimicrob. Agents Chemother. 2018, 62, e02442-17. [Google Scholar] [CrossRef] [PubMed]
- Ngbede, E.O.; Poudel, A.; Kalalah, A.; Yang, Y.; Adekanmbi, F.; Adikwu, A.A.; Adamu, A.M.; Mamfe, L.M.; Daniel, S.T.; Useh, N.M.; et al. Identification of Mobile Colistin Resistance Genes (Mcr-1.1, Mcr-5 and Mcr-8.1) in Enterobacteriaceae and Alcaligenes Faecalis of Human and Animal Origin, Nigeria. Int. J. Antimicrob. Agents 2020, 56, 106108. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef] [PubMed]
- Khuntayaporn, P.; Thirapanmethee, K.; Chomnawang, M.T. An Update of Mobile Colistin Resistance in Non-Fermentative Gram-Negative Bacilli. Front. Cell. Infect. Microbiol. 2022, 12, 882236. [Google Scholar] [CrossRef] [PubMed]
- Martins-Sorenson, N.; Snesrud, E.; Xavier, D.E.; Cacci, L.C.; Iavarone, A.T.; McGann, P.; Riley, L.W.; Moreira, B.M. A Novel Plasmid-Encoded Mcr-4.3 Gene in a Colistin-Resistant Acinetobacter baumannii Clinical Strain. J. Antimicrob. Chemother. 2020, 75, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Hameed, F.; Khan, M.A.; Muhammad, H.; Sarwar, T.; Bilal, H.; Rehman, T.U. Plasmid-Mediated Mcr-1 Gene in Acinetobacter baumannii and Pseudomonas Aeruginosa: First Report from Pakistan. Rev. Soc. Bras. Med. Trop. 2019, 52, e20190237. [Google Scholar] [CrossRef] [PubMed]
- Vila, J.; Martí, S.; Sánchez-Céspedes, J. Porins, Efflux Pumps and Multidrug Resistance in Acinetobacter baumannii. J. Antimicrob. Chemother. 2007, 59, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Yong, D.; Jeong, S.H.; Chong, Y. Multidrug-Resistant Acinetobacter spp.: Increasingly Problematic Nosocomial Pathogens. Yonsei Med. J. 2011, 52, 879. [Google Scholar] [CrossRef]
- Hood, M.I.; Becker, K.W.; Roux, C.M.; Dunman, P.M.; Skaar, E.P. Genetic Determinants of Intrinsic Colistin Tolerance in Acinetobacter baumannii. Infect. Immun. 2013, 81, 542–551. [Google Scholar] [CrossRef]
- Lean, S.-S.; Suhaili, Z.; Ismail, S.; Rahman, N.I.A.; Othman, N.; Abdullah, F.H.; Jusoh, Z.; Yeo, C.C.; Thong, K.-L. Prevalence and Genetic Characterization of Carbapenem- and Polymyxin-Resistant Acinetobacter baumannii Isolated from a Tertiary Hospital in Terengganu, Malaysia. ISRN Microbiol. 2014, 2014, 953417. [Google Scholar] [CrossRef]
- Thi Khanh Nhu, N.; Riordan, D.W.; Do Hoang Nhu, T.; Thanh, D.P.; Thwaites, G.; Huong Lan, N.P.; Wren, B.W.; Baker, S.; Stabler, R.A. The Induction and Identification of Novel Colistin Resistance Mutations in Acinetobacter baumannii and Their Implications. Sci. Rep. 2016, 6, 28291. [Google Scholar] [CrossRef] [PubMed]
- El-Halfawy, O.M.; Valvano, M.A. Antimicrobial Heteroresistance: An Emerging Field in Need of Clarity. Clin. Microbiol. Rev. 2015, 28, 191–207. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rayner, C.R.; Nation, R.L.; Owen, R.J.; Spelman, D.; Tan, K.E.; Liolios, L. Heteroresistance to Colistin in Multidrug-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2006, 50, 2946–2950. [Google Scholar] [CrossRef] [PubMed]
- Hawley, J.S.; Murray, C.K.; Jorgensen, J.H. Colistin Heteroresistance in Acinetobacter and Its Association with Previous Colistin Therapy. Antimicrob. Agents Chemother. 2008, 52, 351–352. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Rayner, C.R.; Nation, R.L.; Deans, R.; Boots, R.; Widdecombe, N.; Douglas, A.; Lipman, J. Pharmacokinetics of Colistin Methanesulfonate and Colistin in a Critically Ill Patient Receiving Continuous Venovenous Hemodiafiltration. Antimicrob. Agents Chemother. 2005, 49, 4814–4815. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect Dis. 2023, ciad428. [Google Scholar] [CrossRef]
- Shields, R.K.; Paterson, D.L.; Tamma, P.D. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-Calcoaceticus Complex Infections. Clin. Infect. Dis. 2023, 76, S179–S193. [Google Scholar] [CrossRef] [PubMed]
- Onorato, L.; De Luca, I.; Monari, C.; Coppola, N. Cefiderocol Either in Monotherapy or Combination versus Best Available Therapy in the Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections: A Systematic Review and Meta-Analysis. J. Infect. 2024, 88, 106113. [Google Scholar] [CrossRef]
- Gill, K.; Takamichi, B.; Cooper, A. Clinical Efficacy of Cefiderocol-Based Regimens in Patients with Carbapenem-Resistant Acinetobacter baumannii Infections: New Data from CREDIBLE-CR with an Updated Meta-Analysis. Int. J. Antimicrob. Agents 2024, 63, 107167. [Google Scholar] [CrossRef]
- Lyu, C.; Zhang, Y.; Liu, X.; Wu, J.; Zhang, J. Clinical Efficacy and Safety of Polymyxins Based versus Non-Polymyxins Based Therapies in the Infections Caused by Carbapenem-Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. BMC Infect. Dis. 2020, 20, 296. [Google Scholar] [CrossRef]
- Mei, H.; Yang, T.; Wang, J.; Wang, R.; Cai, Y. Efficacy and Safety of Tigecycline in Treatment of Pneumonia Caused by MDR Acinetobacter baumannii: A Systematic Review and Meta-Analysis. J. Antimicrob. Chemother. 2019, 74, 3423–3431. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Shu, Y.; Zhu, F.; Feng, B.; Zhang, Z.; Liu, L.; Wang, G. Comparative Efficacy and Safety of Combination Therapy with High-Dose Sulbactam or Colistin with Additional Antibacterial Agents for Multiple Drug-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections: A Systematic Review and Network Meta-Analysis. J. Glob. Antimicrob. Resist. 2021, 24, 136–147. [Google Scholar] [CrossRef]
- Kengkla, K.; Kongpakwattana, K.; Saokaew, S.; Apisarnthanarak, A.; Chaiyakunapruk, N. Comparative Efficacy and Safety of Treatment Options for MDR and XDR Acinetobacter baumannii Infections: A Systematic Review and Network Meta-Analysis. J. Antimicrob. Chemother. 2018, 73, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.Y.; Lee, S.H.; Lee, S.Y.; Yang, S.; Noh, H.; Chung, E.K.; Lee, J.I. Antimicrobials for the Treatment of Drug-Resistant Acinetobacter baumannii Pneumonia in Critically Ill Patients: A Systemic Review and Bayesian Network Meta-Analysis. Crit. Care 2017, 21, 319. [Google Scholar] [CrossRef]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; De Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Guidelines for the Treatment of Infections Caused by Multidrug-Resistant Gram-Negative Bacilli (Endorsed by European Society of Intensive Care Medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Rousaki, M.; Vassilopoulou, L.; Kritsotakis, E.I. Global Prevalence of Cefiderocol Non-Susceptibility in Enterobacterales, Pseudomonas Aeruginosa, Acinetobacter baumannii, and Stenotrophomonas Maltophilia: A Systematic Review and Meta-Analysis. Clin. Microbiol. Infect. 2024, 30, 178–188. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef]
- Martins-Gonçalves, T.; Pimenta, J.S.; Fontana, H.; Esposito, F.; Melocco, G.; Dantas, K.; Vásquez-Ponce, F.; Carrara, F.E.; Vespero, E.C.; Lincopan, N. Acinetobacter baumannii International Clone 2 Co-Producing OXA-23, NDM-1, and ArmA Emerging in South America. Antimicrob. Agents Chemother. 2024, 68, e00298-24. [Google Scholar] [CrossRef] [PubMed]
- Tsilipounidaki, K.; Gkountinoudis, C.-G.; Florou, Z.; Fthenakis, G.C.; Miriagou, V.; Petinaki, E. The Molecular Characterization of blaNDM-1-Positive Acinetobacter baumannii Isolated in Central Greece. Microorganisms 2023, 11, 2588. [Google Scholar] [CrossRef]
- Miller, A.A.; Moussa, S.H.; McLeod, S.M. Characterization of Acinetobacter baumannii-Calcoaceticus Complex Isolates and Microbiological Outcome for Patients Treated with Sulbactam-Durlobactam in a Phase 3 Trial (ATTACK). Antimicrob. Agents Chemother. 2024, 68, e01698-23. [Google Scholar] [CrossRef]
- Iovleva, A.; McElheny, C.L.; Fowler, E.L.; Cober, E.; Herc, E.S.; Arias, C.A.; Hill, C.; Baum, K.; Fowler, V.G.; Chambers, H.F.; et al. In Vitro Activity of Sulbactam-Durlobactam against Colistin-Resistant and/or Cefiderocol-Non-Susceptible, Carbapenem-Resistant Acinetobacter baumannii Collected in U.S. Hospitals. Antimicrob. Agents Chemother. 2024, 68, e01258-23. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and Safety of Sulbactam–Durlobactam versus Colistin for the Treatment of Patients with Serious Infections Caused by Acinetobacter baumannii–Calcoaceticus Complex: A Multicentre, Randomised, Active-Controlled, Phase 3, Non-Inferiority Clinical Trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and Safety of Cefiderocol or Best Available Therapy for the Treatment of Serious Infections Caused by Carbapenem-Resistant Gram-Negative Bacteria (CREDIBLE-CR): A Randomised, Open-Label, Multicentre, Pathogen-Focused, Descriptive, Phase 3 Trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus High-Dose, Extended-Infusion Meropenem for the Treatment of Gram-Negative Nosocomial Pneumonia (APEKS-NP): A Randomised, Double-Blind, Phase 3, Non-Inferiority Trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Petropoulou, D.; Siopi, M.; Vourli, S.; Pournaras, S. Activity of Sulbactam-Durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates From Greece. Front. Cell. Infect. Microbiol. 2022, 11, 814530. [Google Scholar] [CrossRef]
- Jaruratanasirikul, S.; Nitchot, W.; Wongpoowarak, W.; Samaeng, M.; Nawakitrangsan, M. Population Pharmacokinetics and Monte Carlo Simulations of Sulbactam to Optimize Dosage Regimens in Patients with Ventilator-Associated Pneumonia Caused by Acinetobacter baumannii. Eur. J. Pharm. Sci. 2019, 136, 104940. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar] [CrossRef]
- Karaiskos, I.; Gkoufa, A.; Polyzou, E.; Schinas, G.; Athanassa, Z.; Akinosoglou, K. High-Dose Nebulized Colistin Methanesulfonate and the Role in Hospital-Acquired Pneumonia Caused by Gram-Negative Bacteria with Difficult-to-Treat Resistance: A Review. Microorganisms 2023, 11, 1459. [Google Scholar] [CrossRef]
- Andrianopoulos, I.; Kazakos, N.; Lagos, N.; Maniatopoulou, T.; Papathanasiou, A.; Papathanakos, G.; Koulenti, D.; Toli, E.; Gartzonika, K.; Koulouras, V. Co-Administration of High-Dose Nebulized Colistin for Acinetobacter baumannii Bacteremic Ventilator-Associated Pneumonia: Impact on Outcomes. Antibiotics 2024, 13, 169. [Google Scholar] [CrossRef]
- Feng, J.-Y.; Huang, J.-R.; Lee, C.-C.; Tseng, Y.-H.; Pan, S.-W.; Chen, Y.-M.; Yang, K.-Y. Role of Nebulized Colistin as a Substitutive Strategy against Nosocomial Pneumonia Caused by CR-GNB in Intensive Care Units: A Retrospective Cohort Study. Ann. Intensive Care 2023, 13, 1. [Google Scholar] [CrossRef]
- Sodeifian, F.; Zangiabadian, M.; Arabpour, E.; Kian, N.; Yazarlou, F.; Goudarzi, M.; Centis, R.; Seghatoleslami, Z.S.; Kameh, M.C.; Danaei, B.; et al. Tigecycline-Containing Regimens and Multi Drug-Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Microb. Drug Resist. 2023, 29, 344–359. [Google Scholar] [CrossRef] [PubMed]
- Tsakris, A.; Koumaki, V.; Dokoumetzidis, A. Minocycline Susceptibility Breakpoints for Acinetobacter baumannii: Do We Need to Re-Evaluate Them? J. Antimicrob. Chemother. 2019, 74, 295–297. [Google Scholar] [CrossRef] [PubMed]
- Scott, C.J.; Zhu, E.; Jayakumar, R.A.; Shan, G.; Viswesh, V. Efficacy of Eravacycline Versus Best Previously Available Therapy for Adults With Pneumonia Due to Difficult-to-Treat Resistant (DTR) Acinetobacter baumannii. Ann. Pharmacother. 2022, 56, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Alexander, C.; Hill, D. A Retrospective Case-Control Study of Eravacycline for the Treatment of Carbapenem-Resistant Acinetobacter Infections in Patients With Burn Injuries. J. Burn. Care Res. 2024, 45, 487–492. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.N.W.; Wei, W.; Mang, N.S.; Prokesch, B.C.; Ortwine, J.K. Combination Eravacycline Therapy for Ventilator-associated Pneumonia Due to Carbapenem-resistant Acinetobacter baumannii in Patients with COVID-19: A Case Series. Pharmacotherapy 2024, 44, phar.2908. [Google Scholar] [CrossRef] [PubMed]
- Buckley, V.; Tran, M.; Price, T.; Singh, S.; Stramel, S. Use of Eravacycline for Acinetobacter baumannii Infections: A Case Series. J. Pharm. Pract. 2023, 08971900231196076. [Google Scholar] [CrossRef] [PubMed]
- Guastalegname, M.; Trecarichi, E.M.; Russo, A. Intravenous Fosfomycin: The Underdog Player in the Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Clin. Infect. Dis. 2023, 77, 1736–1737. [Google Scholar] [CrossRef] [PubMed]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary Study of Colistin versus Colistin plus Fosfomycin for Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections. Antimicrob. Agents Chemother. 2014, 58, 5598–5601. [Google Scholar] [CrossRef] [PubMed]
- Assimakopoulos, S.F.; Karamouzos, V.; Eleftheriotis, G.; Lagadinou, M.; Bartzavali, C.; Kolonitsiou, F.; Paliogianni, F.; Fligou, F.; Marangos, M. Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023, 12, 286. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Marincola Cattaneo, F.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef]
- Pasteran, F.; Cedano, J.; Baez, M.; Albornoz, E.; Rapoport, M.; Osteria, J.; Montaña, S.; Le, C.; Ra, G.; Bonomo, R.A.; et al. A New Twist: The Combination of Sulbactam/Avibactam Enhances Sulbactam Activity against Carbapenem-Resistant Acinetobacter baumannii (CRAB) Isolates. Antibiotics 2021, 10, 577. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.H.; Brune, A.; Nastro, M.; Vay, C.; Famiglietti, A. In Vitro Synergistic Activity of the Sulbactam/Avibactam Combination against Extensively Drug-Resistant Acinetobacter baumannii. J. Med. Microbiol. 2020, 69, 928–931. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vardakas, K.Z.; Roussos, N.S. Trimethoprim/Sulfamethoxazole for Acinetobacter Spp.: A Review of Current Microbiological and Clinical Evidence. Int. J. Antimicrob. Agents 2015, 46, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Raz-Pasteur, A.; Liron, Y.; Amir-Ronen, R.; Abdelgani, S.; Ohanyan, A.; Geffen, Y.; Paul, M. Trimethoprim-Sulfamethoxazole vs. Colistin or Ampicillin–Sulbactam for the Treatment of Carbapenem-Resistant Acinetobacter baumannii: A Retrospective Matched Cohort Study. J. Glob. Antimicrob. Resist. 2019, 17, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Luna, B.; Trebosc, V.; Lee, B.; Bakowski, M.; Ulhaq, A.; Yan, J.; Lu, P.; Cheng, J.; Nielsen, T.; Lim, J.; et al. A Nutrient-Limited Screen Unmasks Rifabutin Hyperactivity for Extensively Drug-Resistant Acinetobacter baumannii. Nat. Microbiol. 2020, 5, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Trebosc, V.; Schellhorn, B.; Schill, J.; Lucchini, V.; Bühler, J.; Bourotte, M.; Butcher, J.J.; Gitzinger, M.; Lociuro, S.; Kemmer, C.; et al. In Vitro Activity of Rifabutin against 293 Contemporary Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates and Characterization of Rifabutin Mode of Action and Resistance Mechanisms. J. Antimicrob. Chemother. 2020, 75, 3552–3562. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Yan, J.; Reyna, Z.; Slarve, M.; Lu, P.; Spellberg, B.; Luna, B. Synergistic Rifabutin and Colistin Reduce Emergence of Resistance When Treating Acinetobacter baumannii. Antimicrob. Agents Chemother. 2021, 65, e02204-20. [Google Scholar] [CrossRef] [PubMed]
- Antraygues, K.; Maingot, M.; Schellhorn, B.; Trebosc, V.; Gitzinger, M.; Deprez, B.; Defert, O.; Dale, G.E.; Bourotte, M.; Lociuro, S.; et al. Design and Synthesis of Water-Soluble Prodrugs of Rifabutin for Intraveneous Administration. Eur. J. Med. Chem. 2022, 238, 114515. [Google Scholar] [CrossRef] [PubMed]
- Trebosc, V.; Kemmer, C.; Lociuro, S.; Gitzinger, M.; Dale, G.E. Rifabutin for Infusion (BV100) for the Treatment of Severe Carbapenem-Resistant Acinetobacter baumannii Infections. Drug Discov. Today 2021, 26, 2099–2104. [Google Scholar] [CrossRef]
- Phillips, M.C.; Wald-Dickler, N.; Loomis, K.; Luna, B.M.; Spellberg, B. Pharmacology, Dosing, and Side Effects of Rifabutin as a Possible Therapy for Antibiotic-Resistant Acinetobacter Infections. Open Forum Infect. Dis. 2020, 7, ofaa460. [Google Scholar] [CrossRef]
- Miller, S.; Goy, K.; She, R.; Spellberg, B.; Luna, B. Antimicrobial Susceptibility Testing Performed in RPMI 1640 Reveals Azithromycin Efficacy against Carbapenem-Resistant Acinetobacter baumannii and Predicts In Vivo Outcomes in Galleria Mellonella. Antimicrob. Agents Chemother. 2023, 67, e01320-22. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Nonejuie, P.; Munguia, J.; Hollands, A.; Olson, J.; Dam, Q.; Kumaraswamy, M.; Rivera, H.; Corriden, R.; Rohde, M.; et al. Azithromycin Synergizes with Cationic Antimicrobial Peptides to Exert Bactericidal and Therapeutic Activity Against Highly Multidrug-Resistant Gram-Negative Bacterial Pathogens. EBioMedicine 2015, 2, 690–698. [Google Scholar] [CrossRef] [PubMed]
- Dillon, N.; Holland, M.; Tsunemoto, H.; Hancock, B.; Cornax, I.; Pogliano, J.; Sakoulas, G.; Nizet, V. Surprising Synergy of Dual Translation Inhibition vs. Acinetobacter baumannii and Other Multidrug-Resistant Bacterial Pathogens. eBioMedicine 2019, 46, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S. Re: ‘Macrolide Therapy in Pseudomonas Aeruginosa Infections Causes uL4 Ribosomal Protein Mutations Leading to High-Level Resistance’ by Goltermann et al. Clin. Microbiol. Infect. 2022, 28, 1665–1666. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Ioannou, P.; Kofteridis, D.D. In Search for a Synergistic Combination against Pandrug-Resistant A. Baumannii; Methodological Considerations. Infection 2022, 50, 569–581. [Google Scholar] [CrossRef] [PubMed]
- Maraolo, A.E.; Ong, D.S.Y. Colistin plus Meropenem versus Colistin Alone for Invasive Infections Caused by Carbapenem-Resistant Acinetobacter baumannii: A Rapid Systematic Review of Randomized Controlled Trials Using Bayesian Meta-Analysis. Clin. Microbiol. Infect. 2023, 29, 1208–1210. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Chen, I.; Tang, T. Colistin Monotherapy versus Colistin plus Meropenem Combination Therapy for the Treatment of Multidrug-Resistant Acinetobacter baumannii Infection: A Meta-Analysis. JCM 2022, 11, 3239. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Cho, J.H.; Kim, H.J.; Han, S.H.; Jeong, S.H.; Byun, M.K. Colistin Monotherapy versus Colistin/Rifampicin Combination Therapy in Pneumonia Caused by Colistin-Resistant Acinetobacter baumannii: A Randomised Controlled Trial. J. Glob. Antimicrob. Resist. 2019, 17, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and Rifampicin Compared With Colistin Alone for the Treatment of Serious Infections Due to Extensively Drug-Resistant Acinetobacter baumannii: A Multicenter, Randomized Clinical Trial. Clin. Infect. Dis. 2013, 57, 349–358. [Google Scholar] [CrossRef]
- Aydemir, H.; Akduman, D.; Piskin, N.; Comert, F.; Horuz, E.; Terzi, A.; Kokturk, F.; Ornek, T.; Celebi, G. Colistin vs. the Combination of Colistin and Rifampicin for the Treatment of Carbapenem-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia. Epidemiol. Infect. 2013, 141, 1214–1222. [Google Scholar] [CrossRef]
- Karakonstantis, S.; Kritsotakis, E.I. Systematic Review and Meta-Analysis of the Proportion and Associated Mortality of Polymicrobial (vs Monomicrobial) Pulmonary and Bloodstream Infections by Acinetobacter baumannii Complex. Infection 2021, 49, 1149–1161. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sazlly Lim, S.; Heffernan, A.J.; Roberts, J.A.; Sime, F.B. Semimechanistic Pharmacokinetic/Pharmacodynamic Modeling of Fosfomycin and Sulbactam Combination against Carbapenem-Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2021, 65, e02472-20. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sazlly Lim, S.; Heffernan, A.J.; Zowawi, H.M.; Roberts, J.A.; Sime, F.B. Semi-Mechanistic PK/PD Modelling of Meropenem and Sulbactam Combination against Carbapenem-Resistant Strains of Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 1943–1952. [Google Scholar] [CrossRef] [PubMed]
- Mohd Sazlly Lim, S.; Heffernan, A.J.; Roberts, J.A.; Sime, F.B. Pharmacodynamic Analysis of Meropenem and Fosfomycin Combination Against Carbapenem-Resistant Acinetobacter baumannii in Patients with Normal Renal Clearance: Can It Be a Treatment Option? Microb. Drug Resist. 2021, 27, 546–552. [Google Scholar] [CrossRef]
- Mohd Sazlly Lim, S.; Heffernan, A.; Naicker, S.; Wallis, S.; Roberts, J.A.; Sime, F.B. Evaluation of Fosfomycin-Sulbactam Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Isolates in a Hollow-Fibre Infection Model. Antibiotics 2022, 11, 1578. [Google Scholar] [CrossRef]
Mechanism of Colistin Resistance |
---|
Modification of LPS |
Mutations leading to deficient or complete loss of LPS structure |
Mutations in lpxACD genes leading to decreased LPS production |
Addition of positively charged molecules |
Addition of galactosamine to lipid A fraction of LPS through mutations in pmrB |
Overexpression of pmrC leads to the modification of lipid A fraction of LPS through the addition of pEtN |
Overexpression of EptA leads to modification of lipid A fraction of LPS through the addition of pEtN |
Dysfunction of H-NS |
Horizontal gene transfer |
Horizontal gene transfer enables the acquisition of mcr genes, encoding pEtN transferases that attach pEtN to lipid A |
Alterations in outer membrane permeability |
Overexpression of efflux pumps (EmrAB)–Decreased expression of OmpW porin |
Expression of specific non-lpx proteins involved in the structure and integrity of the outer membrane |
Heteroresistance |
Occurrence of resistance within a subpopulation through spontaneous mutations or the presence of resistance genes despite majority susceptibility, leading to rapid resistance development. |
Antibiotic | Comment |
---|---|
Sulbactam/durlobactam | The preferred treatment option where available [57]. Retains activity against most XDR/PDR A. baumannii strains [70], including strains resistant to colistin and cefiderocol [71]. Has shown non-inferiority and lower nephrotoxicity compared to colistin in the registrational phase 3 trial [72]. Limitations:
|
Cefiderocol | Retains activity against most XDR/PDR A. baumannii strains [66]. Despite initial disappointing data from subgroup analyses from the randomized trials [73,74], subsequent studies and meta-analyses are more encouraging [57,58,59]. Limitations: |
Ampicillin/sulbactam | Sulbactam is the active component. Used in high doses: 27 g/day (18 g ampicillin/3 g sulbactam) infused over 24 h or divided into three doses and infused over 4 h. Most XDR A. baumannii strains have a sulbactam MIC of 32–64 mg/L, and only a small proportion have an MIC below the CLSI-defined breakpoint for ampicillin/sulbactam [71,75]. Based on PK/PD data high-dose sulbactam may cover isolates with MICs as high as 32–64 mg/dL [76]. Limitations:
|
Colistin/Polymyxin-B | Even in case of resistance, it can be useful as part of synergistic combination regimens (subinhibitory concentrations are sufficient for synergy) [6,7]. With the exception of urinary tract infections, polymyxin-B is preferable to colistin where available due to better pharmacokinetic properties and lower risk of nephrotoxicity. Despite conflicting recommendations by guidelines [56,77], nebulized colistin may be a useful option when administered properly (correct nebulization technique and at high doses) [78,79,80], but larger well-designed studies are necessary to confirm potential benefits. Notably, nebulized colistin may achieve concentrations well above MICs [78], suggesting potential benefit even against colistin-resistant isolates. Limitations:
|
Tigecycline | Good penetration in skin and soft tissue infections and osteoarticular infections. Recommended dose: 200 mg loading dose followed by 100 mg twice daily. Limitations:
|
Minocycline | Good penetration skin and soft tissue infections and osteoarticular infections. Recommended dosing for A. baumannii is 200 mg twice daily. Can also be given orally. Limitations:
|
Eravacycline | More potent (lower minimum inhibitory concentrations) than tigecycline/minocycline [83]. Can be administered orally. Limitations:
|
Fosfomycin | A. baumannii is considered inherently resistant to fosfomycin. However, fosfomycin can be useful as part of synergistic combination regimens based on in vitro data, as well as limited clinical data [7,87,88,89,90]. Limitations:
|
Ceftazidime/avibactam | Ceftazidime/avibactam is not active against carbapenem-resistant A. baumannii. However, where sulbactam/durlobactam is not available, the combination of ceftazidime/avibactam with ampicillin/sulbactam is promising [91,92]. The rationale is that avibactam (similar to durlobactam) may help restore the activity of sulbactam [91,92]. Limitations:
|
Trimethoprim/sulfamethoxazole | Active against some XDR A. baumannii strains Limitations: |
Aminoglycosides | Active against some XDR A. baumannii strains Limitations:
|
Rifabutin | Using culture media more relevant to in-vivo conditions rifabutin is much more potent than rifampicin [95], and is active even against PDR A. baumannii strains [96], and has been shown to be effective in vivo [95]. Rifabutin also demonstrates synergy with polymyxins and the combination may be associated with lower risk of emergent resistance [97]. Limitations:
|
Azithromycin | Similar to rifabutin, traditional culture media may underestimate azithromycin’s potential. In vitro and in vivo data suggest potential to treat A. baumannii with azithromycin, as well as synergy potential with polymyxins [101,102,103]. Limitations:
|
Combination vs. monotherapy | Based on in vitro and in vivo synergy and limitations of monotherapy options guidelines currently suggest combination therapy over monotherapy, especially for severe infections by A. baumannii. Where sulbactam/durlobactam is not yet available, guidelines suggest ampicillin/sulbactam as the preferred backbone for combination therapy [56,57]. Limitations:
|
Consideration | Comment |
---|---|
Infection vs. colonization | Isolation of A. baumannii from a non-sterile site does not prove infection. This is especially problematic when A. baumannii is isolated from the respiratory tract, urine or ulcers/burns/surgical site as well as in polymicrobial cultures (which are quite common [111]). To differentiate infection vs. colonization it is useful to consider a response to empirical treatment and the patient’s status at the time of A. baumannii isolation (in a patient already improving or asymptomatic at the time of A. baumannii identification, treatment escalation to better cover A. baumannii is unnecessary). |
Severity of the infection and comorbidities | For high-risk patients and/or severe infections a more aggressive treatment approach is reasonable (e.g., combination therapy vs. monotherapy). |
Antibiotic susceptibility and mechanisms of resistance | Ideally, the treatment regimen should include at least one active antibiotic (if available). If this is not an option then selecting an antibiotic with an MIC close to breakpoints (e.g., tigecycline) is reasonable. Note also that for many of the above-discussed options, breakpoints are not well-established or need revising (see Table 2). Furthermore, appropriate breakpoints for synergistic antibiotic combinations are unclear. In vitro evaluation of synergy combined with PK/PD modeling may be helpful in selecting an appropriate antibiotic combination [112,113,114,115]. |
Site of infection | Antibiotic selection should take into account the penetration of different options at the site of infection. For example, tigecycline/minocycline have great penetration in soft tissues/bone but low urinary excretion and low. Colistin on the other hand does not achieve sufficient concentration in the epithelial lining fluid. |
Adverse effects/history of allergies | Patients often do not tolerate treatment due to adverse effects and/or history of adverse reactions. |
Response to treatment | In patients not responding or with recurrent infections it may be reasonable to add a third antibiotic to the treatment regimen [57]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papazachariou, A.; Tziolos, R.-N.; Karakonstantis, S.; Ioannou, P.; Samonis, G.; Kofteridis, D.P. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics 2024, 13, 423. https://doi.org/10.3390/antibiotics13050423
Papazachariou A, Tziolos R-N, Karakonstantis S, Ioannou P, Samonis G, Kofteridis DP. Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics. 2024; 13(5):423. https://doi.org/10.3390/antibiotics13050423
Chicago/Turabian StylePapazachariou, Andria, Renatos-Nikolaos Tziolos, Stamatis Karakonstantis, Petros Ioannou, George Samonis, and Diamantis P. Kofteridis. 2024. "Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections" Antibiotics 13, no. 5: 423. https://doi.org/10.3390/antibiotics13050423
APA StylePapazachariou, A., Tziolos, R. -N., Karakonstantis, S., Ioannou, P., Samonis, G., & Kofteridis, D. P. (2024). Treatment Strategies of Colistin Resistance Acinetobacter baumannii Infections. Antibiotics, 13(5), 423. https://doi.org/10.3390/antibiotics13050423