Genomic Characterization of Carbapenemase-Producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii Clinical Isolates from Bulgaria
Abstract
:1. Introduction
2. Results
2.1. Exploring Carbapenemase Diversity and Plasmid-Mediated Resistance in ESCPM Isolates
2.1.1. Serratia marcescens
2.1.2. Providentia stuartii
2.1.3. Citrobacter freundii
2.1.4. Enterobacter hormaechei
2.1.5. Morganella morganii
2.2. Antibiotic Susceptibility
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing and Detection of Carbapenemases
4.3. Screening for Carbapenemase Genes
4.4. Whole-Genome Sequencing
4.5. Bioinformatic Analysis
4.6. Transfer of Resistance Determinants and Identification of Transconjugant Plasmids
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Choi, S.H.; Jung, E.L.; Su, J.P.; Choi, S.H.; Lee, S.O.; Jeong, J.Y.; Kim, M.N.; Jun, H.W.; Yang, S.K. Emergence of Antibiotic Resistance during Therapy for Infections Caused by Enterobacteriaceae Producing AmpC Beta-Lactamase: Implications for Antibiotic Use. Antimicrob. Agents Chemother. 2008, 52, 995–1000. [Google Scholar] [CrossRef]
- Mizrahi, A.; Delerue, T.; Morel, H.; Le Monnier, A.; Carbonnelle, E.; Pilmis, B.; Zahar, J.R. Infections Caused by Naturally AmpC-Producing Enterobacteriaceae: Can We Use Third-Generation Cephalosporins? A Narrative Review. Int. J. Antimicrob. Agents 2020, 55, 105834. [Google Scholar] [CrossRef]
- Jacoby, G.A. AmpC Beta-Lactamases. Clin. Microbiol. Rev. 2009, 22, 161–182. [Google Scholar] [CrossRef]
- Harris, P.N.A.; Ferguson, J.K. Antibiotic Therapy for Inducible AmpC β-Lactamase-Producing Gram-Negative Bacilli: What Are the Alternatives to Carbapenems, Quinolones and Aminoglycosides? Int. J. Antimicrob. Agents 2012, 40, 297–305. [Google Scholar] [CrossRef]
- Zivkovic Zaric, R.; Zaric, M.; Sekulic, M.; Zornic, N.; Nesic, J.; Rosic, V.; Vulovic, T.; Spasic, M.; Vuleta, M.; Jovanovic, J.; et al. Antimicrobial Treatment of Serratia Marcescens Invasive Infections: Systematic Review. Antibiotics 2023, 12, 367. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Marchaim, D.; Divine, G.W.; Pogue, J.M.; Kumar, S.; Lephart, P.; Risko, K.; Sobel, J.D.; Kaye, K.S. Growing Prevalence of Providencia Stuartii Associated with the Increased Usage of Colistin at a Tertiary Health Care Center. Int. J. Infect. Dis. 2012, 16, e646–e648. [Google Scholar] [CrossRef] [PubMed]
- Osei Sekyere, J.; Govinden, U.; Bester, L.A.; Essack, S.Y. Colistin and Tigecycline Resistance in Carbapenemase-Producing Gram-Negative Bacteria: Emerging Resistance Mechanisms and Detection Methods. J. Appl. Microbiol. 2016, 121, 601–617. [Google Scholar] [CrossRef] [PubMed]
- Caliskan-Aydogan, O.; Alocilja, E.C. A Review of Carbapenem Resistance in Enterobacterales and Its Detection Techniques. Microorganisms 2023, 11, 1491. [Google Scholar] [CrossRef] [PubMed]
- Eichenberger, E.M.; Thaden, J.T. Epidemiology and Mechanisms of Resistance of Extensively Drug Resistant Gram-Negative Bacteria. Antibiotics 2019, 8, 37. [Google Scholar] [CrossRef]
- Meletis, G. Carbapenem Resistance: Overview of the Problem and Future Perspectives. Ther. Adv. Infect. Dis. 2016, 3, 15–21. [Google Scholar] [CrossRef]
- Albiger, B.; Glasner, C.; Struelens, M.J.; Grundmann, H.; Monnet, D.L.; Koraqi, A.; Bino, S.; Hartl, R.; Apfalter, P.; Glupczynski, Y.; et al. Carbapenemase-Producing Enterobacteriaceae in Europe: Assessment by National Experts from 38 Countries, May 2015. Eurosurveillance 2015, 20, 30062. [Google Scholar] [CrossRef] [PubMed]
- Mathers, A.J.; Peirano, G.; Pitout, J.D.D. The Role of Epidemic Resistance Plasmids and International High-Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae. Clin. Microbiol. Rev. 2015, 28, 565–591. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Dortet, L.; Bernabeu, S.; Nordmann, P. Genetic Features of BlaNDM-1-Positive Enterobacteriaceae. Antimicrob. Agents Chemother. 2011, 55, 5403. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Resistance Plasmid Families in Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- Kopotsa, K.; Osei Sekyere, J.; Mbelle, N.M. Plasmid Evolution in Carbapenemase-Producing Enterobacteriaceae: A Review. Ann. N. Y. Acad. Sci. 2019, 1457, 61–91. [Google Scholar] [CrossRef]
- Ivanov, I.; Sabtcheva, S.; Dobreva, E.; Todorova, B.; Velinov, T.Z.; Borissova, V.; Petrova, I.; Ivancheva, K.; Asseva, G.; Padeshki, P.; et al. Prevalence of Carbapenemase Genes among 16S RRNA Methyltransferase-Producing Enterobacteriaceae Isolated from Cancer Patients. Probl. Infect. Parasit. Dis. 2014, 42, 10–13. [Google Scholar]
- Todorova, B.; Sabtcheva, S.; Ivanov, I.N.; Lesseva, M.; Chalashkanov, T.; Ioneva, M.; Bachvarova, A.; Dobreva, E.; Kantardjiev, T. First Clinical Cases of NDM-1-Producing Klebsiella Pneumoniae from Two Hospitals in Bulgaria. J. Infect. Chemother. 2016, 22, 837–840. [Google Scholar] [CrossRef] [PubMed]
- Gołȩbiewski, M.; Kern-Zdanowicz, I.; Zienkiewicz, M.; Adamczyk, M.; Zyliǹska, J.; Baraniak, A.; Gniadkowski, M.; Bardowski, J.; Cegłowski, P. Complete Nucleotide Sequence of the PCTX-M3 Plasmid and Its Involvement in Spread of the Extended-Spectrum β-Lactamase Gene BlaCTX-M-3. Antimicrob. Agents Chemother. 2007, 51, 3789. [Google Scholar] [CrossRef]
- Rezzoug, I.; Emeraud, C.; Girlich, D.; Creton, E.; Naas, T.; Bonnin, R.A.; Dortet, L. Characterization of VIM-29 and VIM-86, Two VIM-1 Variants Isolated in Multidrug-Resistant Enterobacterales in France. J. Antimicrob. Chemother. 2024, 79, 683–685. [Google Scholar] [CrossRef]
- Boattini, M.; Bianco, G.; Llorente, L.I.; Acero, L.A.; Nunes, D.; Seruca, M.; Mendes, V.S.; Almeida, A.; Bastos, P.; Rodríguez-Villodres, Á.; et al. Enterobacterales Carrying Chromosomal AmpC β-Lactamases in Europe (EuESCPM): Epidemiology and Antimicrobial Resistance Burden from a Cohort of 27 Hospitals, 2020–2022. Int. J. Antimicrob. Agents 2024, 63, 107115. [Google Scholar] [CrossRef]
- Carattoli, A.; Seiffert, S.N.; Schwendener, S.; Perreten, V.; Endimiani, A. Differentiation of IncL and IncM Plasmids Associated with the Spread of Clinically Relevant Antimicrobial Resistance. PLoS ONE 2015, 10, e0123063. [Google Scholar] [CrossRef] [PubMed]
- Blackwell, G.A.; Doughty, E.L.; Moran, R.A. Evolution and Dissemination of L and M Plasmid Lineages Carrying Antibiotic Resistance Genes in Diverse Gram-Negative Bacteria. Plasmid 2021, 113, 102528. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Chen, R.; Wang, Q.; Li, C.; Ge, H.; Qiao, J.; Li, Y. Global Prevalence, Characteristics, and Future Prospects of IncX3 Plasmids: A Review. Front. Microbiol. 2022, 13, 979558. [Google Scholar] [CrossRef] [PubMed]
- Juraschek, K.; Käsbohrer, A.; Malorny, B.; Schwarz, S.; Meemken, D.; Hammerl, J.A. Dissection of Highly Prevalent QnrS1-Carrying IncX Plasmid Types in Commensal Escherichia Coli from German Food and Livestock. Antibiotics 2021, 10, 1236. [Google Scholar] [CrossRef]
- Li, R.; Liu, Z.; Li, Y.; Xiao, X.; Wang, Z. Characterization of BlaNDM-Positive Enterobacteriaceae Reveals the Clonal Dissemination of Enterobacter Hormaechei Coharboring BlaNDM and Tet(X4) along the Pork Production Chain. Int. J. Food Microbiol. 2022, 372, 109692. [Google Scholar] [CrossRef]
- Nakano, R.; Nakano, A.; Abe, M.; Inoue, M.; Okamoto, R. Regional Outbreak of CTX-M-2 β-Lactamase-Producing Proteus Mirabilis in Japan. J. Med. Microbiol. 2012, 61, 1727–1735. [Google Scholar] [CrossRef]
- Mataseje, L.F.; Peirano, G.; Church, D.L.; Conly, J.; Mulvey, M.; Pitout, J.D. Colistin-Nonsusceptible Pseudomonas Aeruginosa Sequence Type 654 with BlaNDM-1 Arrives in North America. Antimicrob. Agents Chemother. 2016, 60, 1794. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L.; Dortet, L. Rapid Detection of Carbapenemase-Producing Enterobacteriaceae. Emerg. Infect. Dis. 2012, 18, 1503. [Google Scholar] [CrossRef]
- Matuschek, E.; Brown, D.F.J.; Kahlmeter, G. Development of the EUCAST Disk Diffusion Antimicrobial Susceptibility Testing Method and Its Implementation in Routine Microbiology Laboratories. Clin. Microbiol. Infect. 2014, 20, O255–O266. [Google Scholar] [CrossRef]
- Stoikov, I.; Ivanov, I.N.; Donchev, D.; Teneva, D.; Dobreva, E.; Hristova, R.; Sabtcheva, S. Genomic Characterization of IMP-Producing Pseudomonas Aeruginosa in Bulgaria Reveals the Emergence of IMP-100, a Novel Plasmid-Mediated Variant Coexisting with a Chromosomal VIM-4. Microorganisms 2023, 11, 2270. [Google Scholar] [CrossRef]
- Gröbner, S.; Linke, D.; Schütz, W.; Fladerer, C.; Madlung, J.; Autenrieth, I.B.; Witte, W.; Pfeifer, Y. Emergence of Carbapenem-Non-Susceptible Extended-Spectrum β-Lactamase-Producing Klebsiella Pneumoniae Isolates at the University Hospital of Tübingen, Germany. J. Med. Microbiol. 2009, 58, 912–922. [Google Scholar] [CrossRef] [PubMed]
- Cole, J.M.; Schuetz, A.N.; Hill, C.E.; Nolte, F.S. Development and Evaluation of a Real-Time PCR Assay for Detection of Klebsiella Pneumoniae Carbapenemase Genes. J. Clin. Microbiol. 2009, 47, 322. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Naas, T.; Nordmann, P. Pyrosequencing as a Rapid Tool for Identification of GES-Type Extended-Spectrum Beta-Lactamases. J. Clin. Microbiol. 2006, 44, 3008–3011. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, H.; Mirsamadi, E.S.; Ghalavand, Z.; Hakemi Vala, M.; Mirjalali, H.; Hashemi, A. Rapid Detection and Molecular Survey of BlaVIM, BlaIMP and BlaNDM Genes among Clinical Isolates of Acinetobacter Baumannii Using New Multiplex Real-Time PCR and Melting Curve Analysis. BMC Microbiol. 2019, 19, 122. [Google Scholar] [CrossRef]
- Mendes, R.E.; Kiyota, K.A.; Monteiro, J.; Castanheira, M.; Andrade, S.S.; Gales, A.C.; Pignatari, A.C.C.; Tufik, S. Rapid Detection and Identification of Metallo-Beta-Lactamase-Encoding Genes by Multiplex Real-Time PCR Assay and Melt Curve Analysis. J. Clin. Microbiol. 2007, 45, 544–547. [Google Scholar] [CrossRef]
- Alvarez-Arevalo, M.; Sterndorff, E.B.; Faurdal, D.; Jørgensen, T.S.; Mourched, A.S.; Vuksanovic, O.; Saha, S.; Weber, T. Extraction and Oxford Nanopore Sequencing of Genomic DNA from Filamentous Actinobacteria. STAR Protoc. 2022, 4, 101955. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. Fastp: An Ultra-Fast All-in-One FASTQ Preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Wick, R.R.; Judd, L.M.; Cerdeira, L.T.; Hawkey, J.; Méric, G.; Vezina, B.; Wyres, K.L.; Holt, K.E. Trycycler: Consensus Long-Read Assemblies for Bacterial Genomes. Genome Biol. 2021, 22, 266. [Google Scholar] [CrossRef]
- Clausen, P.T.L.C.; Aarestrup, F.M.; Lund, O. Rapid and Precise Alignment of Raw Reads against Redundant Databases with KMA. BMC Bioinform. 2018, 19, 307. [Google Scholar] [CrossRef]
- Schwengers, O.; Jelonek, L.; Dieckmann, M.A.; Beyvers, S.; Blom, J.; Goesmann, A. Bakta: Rapid and Standardized Annotation of Bacterial Genomes via Alignment-Free Sequence Identification. Microb. Genom. 2021, 7, 000685. [Google Scholar] [CrossRef]
- Feldgarden, M.; Brover, V.; Gonzalez-Escalona, N.; Frye, J.G.; Haendiges, J.; Haft, D.H.; Hoffmann, M.; Pettengill, J.B.; Prasad, A.B.; Tillman, G.E.; et al. AMRFinderPlus and the Reference Gene Catalog Facilitate Examination of the Genomic Links among Antimicrobial Resistance, Stress Response, and Virulence. Sci. Rep. 2021, 11, 12728. [Google Scholar] [CrossRef] [PubMed]
- Bortolaia, V.; Kaas, R.S.; Ruppe, E.; Roberts, M.C.; Schwarz, S.; Cattoir, V.; Philippon, A.; Allesoe, R.L.; Rebelo, A.R.; Florensa, A.F.; et al. ResFinder 4.0 for Predictions of Phenotypes from Genotypes. J. Antimicrob. Chemother. 2020, 75, 3491–3500. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Zankari, E.; Garciá-Fernández, A.; Larsen, M.V.; Lund, O.; Villa, L.; Aarestrup, F.M.; Hasman, H. In Silico Detection and Typing of Plasmids Using PlasmidFinder and Plasmid Multilocus Sequence Typing. Antimicrob. Agents Chemother. 2014, 58, 3895–3903. [Google Scholar] [CrossRef]
- Shakya, M.; Ahmed, S.A.; Davenport, K.W.; Flynn, M.C.; Lo, C.-C.C.; Chain, P.S.G.G. Standardized Phylogenetic and Molecular Evolutionary Analysis Applied to Species across the Microbial Tree of Life. Sci. Rep. 2020, 10, 1723. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (ITOL) v5: An Online Tool for Phylogenetic Tree Display and Annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
- Livermore, D.M.; Jones, C.S. Characterization of NPS-1, a Novel Plasmid-Mediated Beta-Lactamase, from Two Pseudomonas Aeruginosa Isolates. Antimicrob. Agents Chemother. 1986, 29, 99–103. [Google Scholar] [CrossRef] [PubMed]
- Woodford, N.; Fagan, E.J.; Ellington, M.J. Multiplex PCR for Rapid Detection of Genes Encoding CTX-M Extended-Spectrum (Beta)-Lactamases. J. Antimicrob. Chemother. 2006, 57, 154–155. [Google Scholar] [CrossRef] [PubMed]
- Mlynarcik, P.; Chalachanova, A.; Vagnerova, I.; Holy, O.; Zatloukalova, S.; Kolar, M. PCR Detection of Oxacillinases in Bacteria. Microb. Drug Resist. 2020, 26, 1023–1037. [Google Scholar] [CrossRef]
- Pérez-Pérez, F.J.; Hanson, N.D. Detection of Plasmid-Mediated AmpC Beta-Lactamase Genes in Clinical Isolates by Using Multiplex PCR. J. Clin. Microbiol. 2002, 40, 2153–2162. [Google Scholar] [CrossRef]
- Berçot, B.; Poirel, L.; Nordmann, P. Updated Multiplex Polymerase Chain Reaction for Detection of 16S RRNA Methylases: High Prevalence among NDM-1 Producers. Diagn. Microbiol. Infect. Dis. 2011, 71, 442–445. [Google Scholar] [CrossRef]
- Davis, M.A.; Baker, K.N.K.; Orfe, L.H.; Shah, D.H.; Besser, T.E.; Call, D.R. Discovery of a Gene Conferring Multiple-Aminoglycoside Resistance in Escherichia Coli. Antimicrob. Agents Chemother. 2010, 54, 2666. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, L.; Hopkins, K.L.; Gutierrez, B.; Ovejero, C.M.; Shukla, S.; Douthwaite, S.; Prasad, K.N.; Woodford, N.; Gonzalez-Zorn, B. Association of the Novel Aminoglycoside Resistance Determinant RmtF with NDM Carbapenemase in Enterobacteriaceae Isolated in India and the UK. J. Antimicrob. Chemother. 2013, 68, 1543–1550. [Google Scholar] [CrossRef] [PubMed]
- Cattoir, V.; Poirel, L.; Rotimi, V.; Soussy, C.-J.J.; Nordmann, P. Multiplex PCR for Detection of Plasmid-Mediated Quinolone Resistance Qnr Genes in ESBL-Producing Enterobacterial Isolates. J. Antimicrob. Chemother. 2007, 60, 394–397. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Guo, Q.; Xu, X.; Wang, X.; Ye, X.; Wu, S.; Hooper, D.C.; Wang, M. New Plasmid-Mediated Quinolone Resistance Gene, QnrC, Found in a Clinical Isolate of Proteus Mirabilis. Antimicrob. Agents Chemother. 2009, 53, 1892–1897. [Google Scholar] [CrossRef] [PubMed]
- Cavaco, L.M.; Hasman, H.; Xia, S.; Aarestrup, F.M. QnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella Enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin. Antimicrob. Agents Chemother. 2009, 53, 603–608. [Google Scholar] [CrossRef] [PubMed]
- Yamane, K.; Wachino, J.I.; Suzuki, S.; Arakawa, Y. Plasmid-Mediated QepA Gene among Escherichia Coli Clinical Isolates from Japan. Antimicrob. Agents Chemother. 2008, 52, 1564. [Google Scholar] [CrossRef]
- Ivanov, I.; Sabtcheva, S.; T., S.; Y., I.; M., K.; Kantardjiev, T. A rapid and versatile assay for screening of aac(6′)-ib-cr in multidrug-resistant enterocbacteriaceae. In Problems of Infectious and Parasitic Diseases; National Centre of Infectious and Parasitic Diseases: Sofia, Bulgaria, 2018; Volume 46, pp. 5–8. [Google Scholar]
- Ruekit, S.; Wangchuk, S.; Dorji, T.; Tshering, K.P.; Pootong, P.; Nobthai, P.; Serichantalergs, O.; Poramathikul, K.; Bodhidatta, L.; Mason, C.J. Molecular Characterization and PCR-Based Replicon Typing of Multidrug Resistant Shigella Sonnei Isolates from an Outbreak in Thimphu, Bhutan. BMC Res. Notes 2014, 7, 95. [Google Scholar] [CrossRef]
Species | VIM | NDM | VIM + NDM | OXA-48-like | Total |
---|---|---|---|---|---|
S. marcescens | 10 | 3 | 1 | 14 | |
P. stuartii | 6 | 2 | 8 | ||
C. freundii | 1 | 4 | 1 | 6 | |
E. hormaechei | 1 | 5 | 6 | ||
M. morganii | 2 | 2 | |||
Total | 17 (47.2%) | 10 (27.8%) | 2 (5.6%) | 7 (19.4%) | 36 |
Transconjugant | Transferred Resistance Genes and Plasmid Incompatibility Group | Associated Phenotypic Resistance a | Donor Plasmid Replicon Type(s) b (WGS) | ||
---|---|---|---|---|---|
Carbapenemase Gene(s) | Additional Resistance Genes | Inc Group (PCR) | |||
TC—SM4015/1 | blaNDM-1 | - | IncX | - | IncX3; IncM2 |
TC—SM4015/2 | - | armA, blaCTX-M-3, blaOXA-1, aac(6′)-Ib-cr | IncL/M | - | IncM2; IncX3 |
TC—SM4949 | blaNDM-1 | armA, blaCTX-M-3, qnrB | IncL/M | Sxt | IncM2 |
TC—SM4487 | - | armA, blaCTX-M-3 | IncL/M | Sxt | IncM2; Col |
TC—SM585 | blaOXA-48 | - | IncL/M | - | IncL |
TC—SM502 | - | armA | ND | - | IncFII; IncHI2; IncHI2A; Col |
TC—SM1281 | - | armA, blaCTX-M-3 | IncL/M | Sxt | IncM2; IncFII; IncHI2; IncHI2A CCol |
TC—SM2238 | - | armA, blaCTX-M-3 | IncL/M | - | IncM2; IncFII |
TC—SM791 | - | armA, blaCTX-M-3 | IncL/M | - | IncM2; IncFII |
TC—SM2942 | - | armA, blaCTX-M-3 | IncL/M | - | IncM2; IncFII; Col |
TC—PS995/1 | blaVIM-86 | blaCMY-4 | IncA/C | Sxt Cm Te Tm | IncC; IncM2 |
TC—PS995/2 | - | armA, blaCTX-M-3 | IncL/M | Sxt | IncM2; IncC |
TC—PS1396 | blaVIM-86, blaNDM-1 | armA, blaCMY-4, qnrB | IncA/C | Sxt Cm Te | IncC |
TC—PS3722 | blaVIM-86 | blaCMY-4 | IncA/C | Sxt Cm Te Tm | IncC |
TC—PS314 | blaVIM-86 | blaCMY-4 | IncA/C | Sxt Cm Te Tm | IncC |
TC—PS2654 | blaVIM-86 | blaCMY-4 | IncA/C | Sxt Cm Te Tm | IncC |
TC—PS316 | blaVIM-86 | blaCMY-4 | IncA/C | Sxt Cm Te Tm | IncC |
TC—PS567 | blaVIM-86, blaNDM-1 | armA, blaCMY-4, qnrB | IncA/C | Sxt Cm Te | IncC |
TC—PS3347 | blaVIM-86 | armA, blaCMY-4, blaOXA-1, aac(6′)-Ib-cr | IncA/C | Sxt Cm Te | IncC |
TC—CF2748 | blaVIM-4 | armA, blaCTX-M-3 | IncL/M | Sxt | IncM2; IncFIB; IncFII; Col |
TC—CF1843 | blaOXA-48 | - | IncL/M | - | IncL; IncFII; IncFIA; Col |
TC—CF4015 | blaNDM-1 | armA, blaCTX-M-3, qnrB | IncL/M | Sxt | IncM2; IncFIB; IncR;Col |
TC—CF2341 | blaNDM-1 | armA, blaCTX-M-3, qnrB | IncL/M | Sxt | IncM2; IncFIB; IncR;Col |
TC—CF2068 | blaNDM-1 | armA, blaCTX-M-3, qnrB | IncL/M | Sxt | IncM2; IncFIB; IncR;Col |
TC—CF1976 | blaNDM-1 | armA, blaCTX-M-3, qnrB | IncL/M | Sxt | IncM2; IncFIB; IncR;Col |
TC—EH10088 | blaNDM-1 | - | ND | - | Col |
TC—EH273 | blaOXA-48 | - | IncL/M | - | IncL; IncFIB; IncX5; Col |
TC—EH3371 | blaOXA-48 | - | IncL/M | - | IncL; IncFII; IncFIB; Col |
TC—EH1872 | blaOXA-48 | blaCTX-M-3 | IncL/M | - | IncL; IncFII; Col |
TC—EH3113 | blaOXA-48 | armA, blaOXA-1, aac(6′)-Ib-cr, qnrB | IncL/M | Sxt | IncL; IncFII; IncFIB; Col |
TC—EH1401 | blaOXA-48 | - | IncL/M | - | IncL; IncFII; IncFIB; IncX3 |
TC—MM4395 | blaNDM-1 | armA, blaOXA-1, aac(6′)-Ib, qnrB | ND | Sxt Cm | IncT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sabtcheva, S.; Stoikov, I.; Ivanov, I.N.; Donchev, D.; Lesseva, M.; Georgieva, S.; Teneva, D.; Dobreva, E.; Christova, I. Genomic Characterization of Carbapenemase-Producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii Clinical Isolates from Bulgaria. Antibiotics 2024, 13, 455. https://doi.org/10.3390/antibiotics13050455
Sabtcheva S, Stoikov I, Ivanov IN, Donchev D, Lesseva M, Georgieva S, Teneva D, Dobreva E, Christova I. Genomic Characterization of Carbapenemase-Producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii Clinical Isolates from Bulgaria. Antibiotics. 2024; 13(5):455. https://doi.org/10.3390/antibiotics13050455
Chicago/Turabian StyleSabtcheva, Stefana, Ivan Stoikov, Ivan N. Ivanov, Deyan Donchev, Magdalena Lesseva, Sylvia Georgieva, Deana Teneva, Elina Dobreva, and Iva Christova. 2024. "Genomic Characterization of Carbapenemase-Producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii Clinical Isolates from Bulgaria" Antibiotics 13, no. 5: 455. https://doi.org/10.3390/antibiotics13050455
APA StyleSabtcheva, S., Stoikov, I., Ivanov, I. N., Donchev, D., Lesseva, M., Georgieva, S., Teneva, D., Dobreva, E., & Christova, I. (2024). Genomic Characterization of Carbapenemase-Producing Enterobacter hormaechei, Serratia marcescens, Citrobacter freundii, Providencia stuartii, and Morganella morganii Clinical Isolates from Bulgaria. Antibiotics, 13(5), 455. https://doi.org/10.3390/antibiotics13050455