Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sáez-López, P.; Ojeda-Thies, C.; Alarcón, T.; Muñoz Pascual, A.; Mora-Fernández, J.; González de Villaumbrosia, C.; Molina Hernández, M.J. Spanish National Hip Fracture Registry (RNFC): First-year Results and Comparison with Other Registries and Prospective Multicentric Studies from Spain. Rev. Esp. Salud Pública 2019, 93, e201911072. [Google Scholar]
- Schemitsch, E.H.; Nowak, L.L.; Schulz, A.P.; Brink, O.; Poolman, R.W.; Mehta, S.; Stengel, D.; Zhang, C.Q.; Martinez, S.; Kinner, B.; et al. Intramedullary Nailing vs. Sliding Hip Screw in Trochanteric Fracture Management: The INSITE Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2317164. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.Y.; Park, S.; Kim, T.; Im, G.I. Cut-out risk factor analysis after intramedullary nailing for the treatment of extracapsular fractures of the proximal femur: A retrospective study. BMC Musculoskelet. Disord. 2022, 23, 107. [Google Scholar] [CrossRef]
- Klima, M.L. Mechanical Complications After Intramedullary Fixation of Extracapsular Hip Fractures. J. Am. Acad. Orthop. Surg. 2022, 30, E1550–E1562. [Google Scholar] [CrossRef] [PubMed]
- Lähdesmäki, M.; Ylitalo, A.A.; Karjalainen, L.; Uimonen, M.; Mattila, V.M.; Repo, J.P. Intramedullary Nailing of Intertrochanteric Femoral Fractures in a Level I Trauma Center in Finland: What Complications Can be Expected? Clin. Orthop. Relat. Res. 2023, 482, 278–288. [Google Scholar] [CrossRef] [PubMed]
- Panteli, M.; Vun, J.S.; Ahmadi, M.; West, R.M.; Howard, A.J.; Chloros, G.; Pountos, I.; Giannoudis, P.V. Blood loss and transfusion risk in intramedullary nailing for subtrochanteric fractures. Transfus. Med. 2023, 33, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Halonen, L.M.; Stenroos, A.; Vasara, H.; Huotari, K.; Kosola, J. Infections after intramedullary fixation of trochanteric fractures are uncommon and implant removal is not usually needed. Injury 2021, 52, 1511–1516. [Google Scholar] [CrossRef] [PubMed]
- Evaniew, N.; Bhandari, M. Cochrane in CORR®: Intramedullary Nails for Extracapsular Hip Fractures in Adults (Review). Clin. Orthop. Relat. Res. 2015, 473, 767–774. [Google Scholar] [CrossRef]
- Sator, T.; Binder, H.; Payr, S.; Pichler, L.; Frenzel, S.; Hajdu, S.; Presterl, E.; Tiefenboeck, T.M. Surgical site infection after trochanteric and subtrochanteric fractures: A single centre retrospective analysis. Sci. Rep. 2024, 14, 579. [Google Scholar] [CrossRef]
- Zimlichman, E.; Henderson, D.; Tamir, O.; Franz, C.; Song, P.; Yamin, C.K.; Keohane, C.; Denham, C.R.; Bates, D.W. Health Care–Associated Infections: A Meta-analysis of Costs and Financial Impact on the US Health Care System. JAMA Intern. Med. 2013, 173, 2039–2046. [Google Scholar] [CrossRef]
- Whitehouse, J.D.; Friedman, N.D.; Kirkland, K.B.; Richardson, W.J.; Sexton, D.J. The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: Adverse quality of life, excess length of stay, and extra cost. Infect. Control Hosp. Epidemiol. 2002, 23, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Metsemakers, W.J.; Kuehl, R.; Moriarty, T.F.; Richards, R.G.; Verhofstad, M.H.J.; Borens, O.; Kates, S.; Morgenstern, M. Infection after fracture fixation: Current surgical and microbiological concepts. Injury 2018, 49, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Hellebrekers, P.; Leenen LP, H.; Hoekstra, M.; Hietbrink, F. Effect of a standardized treatment regime for infection after osteosynthesis. J. Orthop. Surg. Res. 2017, 12, 41. [Google Scholar] [CrossRef]
- Hellebrekers, P.; Verhofstad, M.H.; Leenen, L.P.; Varol, H.; van Lieshout, E.M.; Hietbrink, F. The effect of early broad-spectrum versus delayed narrow-spectrum antibiotic therapy on the primary cure rate of acute infection after osteosynthesis. Eur. J. Trauma Emerg. Surg. 2020, 46, 1341–1350. [Google Scholar] [CrossRef]
- Zimmerli, W. Clinical presentation and treatment of orthopaedic implant-associated infection. J. Intern. Med. 2014, 276, 111–119. [Google Scholar] [CrossRef]
- Simpson, A.H.; Tsang, J.S.T. Current treatment of infected non-union after intramedullary nailing. Injury 2017, 48, S82–S90. [Google Scholar] [CrossRef]
- D’Hoore, W.; Sicotte, C.; Tilquin, C. Risk adjustment in outcome assessment: The Charlson comorbidity index. Methods Inf. Med. 1993, 32, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Metsemakers, W.J.; Morgenstern, M.; McNally, M.A.; Moriarty, T.F.; McFadyen, I.; Scarborough, M.; Athanasou, N.A.; Ochsner, P.E.; Kuehl, R.; Raschke, M.; et al. Fracture-related infection: A consensus on definition from an international expert group. Injury 2018, 49, 505–510. [Google Scholar] [CrossRef]
- Sukhonthamarn, K.; Tan, T.L.; Xu, C.; Kuo, F.C.; Lee, M.S.; Citak, M.; Gehrke, T.; Goswami, K.; Parvizi, J. Determining Diagnostic Thresholds for Acute Postoperative Periprosthetic Joint Infection. J. Bone Jt. Surg. 2020, 102, 2043–2048. [Google Scholar] [CrossRef]
- Firth, D. Bias reduction of maximum likelihood estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Grønhaug, K.M.L.; Dybvik, E.; Matre, K.; Östman, B.; Gjertsen, J.E. Comparison of Intramedullary Nails in the Treatment of Trochanteric and Subtrochanteric Fractures: An Observational Study of 13,232 Fractures in the Norwegian Hip Fracture Register. J. Bone Jt. Surg. 2023, 105, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Horner, N.S.; Samuelsson, K.; Solyom, J.; Bjørgul, K.; Ayeni, O.R.; Östman, B. Implant-Related Complications and Mortality After Use of Short or Long Gamma Nail for Intertrochanteric and Subtrochanteric Fractures: A Prospective Study with Minimum 13-Year Follow-up. JBJS Open Access 2017, 2, E0026. [Google Scholar] [CrossRef] [PubMed]
- Velez, M.; Palacios-Barahona, U.; Paredes-Laverde, M.; Ramos-Castaneda, J.A. Factors associated with mortality due to trochanteric fracture. A cross-sectional study. Orthop. Traumatol. Surg. Res. 2020, 106, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Fischbacher, A.; Borens, O. Prosthetic-joint infections: Mortality over the last 10 years. J. Bone Jt. Infect. 2019, 4, 198–202. [Google Scholar] [CrossRef] [PubMed]
- Lenguerrand, E.; Whitehouse, M.R.; Beswick, A.D.; Kunutsor, S.K.; Burston, B.; Porter, M.; Blom, A.W. Risk factors associated with revision for prosthetic joint infection after hip replacement: A prospective observational cohort study. Lancet Infect. Dis. 2018, 18, 1004–1014. [Google Scholar] [CrossRef] [PubMed]
- Henry, T.W.; McEntee, R.M.; Matzon, J.L.; Beredjiklian, P.K.; Lutsky, K.F. Deep Infection after Distal Radius Open-reduction Internal Fixation: A Case Series. Arch. Bone Jt. Surg. 2021, 9, 427–431. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, B.P.; Weston, J.T.; Hanssen, A.D.; Berry, D.J.; Abdel, M.P.; Osmon, D.R. Prior hip or knee prosthetic joint infection in another joint increases risk three-fold of prosthetic joint infection after primary total knee arthroplasty: A matched control study. Bone Jt. J. 2019, 101, 91–97. [Google Scholar] [CrossRef]
- Soriano, A.; Marco, F.; Martínez, J.A.; Pisos, E.; Almela, M.; Dimova, V.P.; Alamo, D.; Ortega, M.; Lopez, J.; Mensa, J. Influence of vancomycin minimum inhibitory concentration on the treatment of methicillin-resistant Staphylococcus aureus bacteremia. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2008, 46, 193–200. [Google Scholar] [CrossRef]
- Tornero, E.; Morata, L.; Martínez-Pastor, J.C.; Bori, G.; Climent, C.; García-Velez, D.M.; García-Ramiro, S.; Bosch, J.; Mensa, J.; Soriano, A. KLIC-score for predicting early failure in prosthetic joint infections treated with debridement, implant retention and antibiotics. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2015, 21, 786.e9–786.e17. [Google Scholar] [CrossRef]
- Scholten, R.; Klein Klouwenberg, P.M.C.; Gisolf, J.E.H.; van Susante, J.L.C.; Somford, M.P. Empiric antibiotic therapy in early periprosthetic joint infection: A retrospective cohort study. Eur. J. Orthop. Surg. Traumatol. 2023, 33, 29–35. [Google Scholar] [CrossRef]
- Moran, E.; Masters, S.; Berendt, A.R.; McLardy-Smith, P.; Byren, I.; Atkins, B.L. Guiding empirical antibiotic therapy in orthopaedics: The microbiology of prosthetic joint infection managed by debridement, irrigation and prosthesis retention. J. Infect. 2007, 55, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Benito, N.; Franco, M.; Ribera, A.; Soriano, A.; Rodriguez-Pardo, D.; Sorlí, L.; Fresco, G.; Fernández-Sampedro, M.; Del Toro, M.D.; Guío, L.; et al. Time trends in the aetiology of prosthetic joint infections: A multicentre cohort study. Clin. Microbiol. Infect. 2016, 22, 732.e1–732.e8. [Google Scholar] [CrossRef] [PubMed]
- Siljander, M.P.; Sobh, A.H.; Baker, K.C.; Baker, E.A.; Kaplan, L.M. Multidrug-Resistant Organisms in the Setting of Periprosthetic Joint Infection—Diagnosis, Prevention, and Treatment. J. Arthroplast. 2018, 33, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Zmistowski, B.; Fedorka, C.J.; Sheehan, E.; Deirmengian, G.; Austin, M.S.; Parvizi, J. Prosthetic Joint Infection Caused by Gram-Negative Organisms. J. Arthroplast. 2011, 26, 104–108. [Google Scholar] [CrossRef] [PubMed]
- Casenaz, A.; Piroth, L.; Labattut, L.; Sixt, T.; Magallon, A.; Guilloteau, A.; Neuwirth, C.; Amoureux, L. Epidemiology and antibiotic resistance of prosthetic joint infections according to time of occurrence, a 10-year study. J. Infect. 2022, 85, 492–498. [Google Scholar] [CrossRef] [PubMed]
- Benito, N.; Mur, I.; Ribera, A.; Soriano, A.; Rodriguez-Pardo, D.; Sorli, L.; Cobo, J.; Fernandez-Sampedro, M.; Del Toro, M.D.; Guío, L.; et al. The Different Microbial Etiology of Prosthetic Joint Infections according to Route of Acquisition and Time after Prosthesis Implantation, Including the Role of Multidrug-Resistant Organisms. J. Clin. Med. 2019, 8, 673. [Google Scholar] [CrossRef] [PubMed]
- Pfang, B.G.; García-Cañete, J.; García-Lasheras, J.; Blanco, A.; Auñón, Á.; Parron-Cambero, R.; Macías-Valcayo, A.; Esteban, J. Orthopedic Implant-Associated Infection by Multidrug Resistant Enterobacteriaceae. J. Clin. Med. 2019, 8, 220. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.H.; Lee, M.S.; Hsu, K.Y.; Chang, Y.H.; Shin, H.N.; Ueng, S.W. Gram-negative prosthetic joint infections: Risk factors and outcome of treatment. Clin. Infect. Dis. 2009, 49, 1036–1043. [Google Scholar] [CrossRef]
- Sadique, H.; Evans, S.; Parry, M.; Stevenson, J.; Reeves, N.; Mimmack, S.; Jumaa, P.; Jeys, L. Multidrug-resistant bacteria: An independent predictor of failure in peri-prosthetic joint infection. Orthop. Proc. 2016, 98-B, 11. [Google Scholar]
- Rudelli, B.A.; Giglio, P.N.; de Carvalho, V.C.; Pécora, J.R.; Gurgel, H.M.C.; Gobbi, R.G.; Vicente, J.R.N.; Lima, A.L.L.M.; Helito, C.P. Bacteria drug resistance profile affects knee and hip periprosthetic joint infection outcome with debridement, antibiotics and implant retention. BMC Musculoskelet. Disord. 2020, 21, 574. [Google Scholar] [CrossRef]
- Koch, K.A.; Spranz, D.M.; Westhauser, F.; Bruckner, T.; Lehner, B.; Alvand, A.; Merle, C.; Walker, T. Impact of Comorbidities and Previous Surgery on Mid-Term Results of Revision Total Knee Arthroplasty for Periprosthetic Joint Infection. J. Clin. Med. 2023, 12, 5542. [Google Scholar] [CrossRef] [PubMed]
- Payá-Llorente, C.; Martínez-López, E.; Sebastián-Tomás, J.C.; Santarrufina-Martínez, S.; de’Angelis, N.; Martínez-Pérez, A. The impact of age and comorbidity on the postoperative outcomes after emergency surgical management of complicated intra-abdominal infections. Sci. Rep. 2020, 10, 1631. [Google Scholar] [CrossRef] [PubMed]
- Picot-Guéraud, R.; Batailler, P.; Caspar, Y.; Hennebique, A.; Mallaret, M.R. Bacteremia caused by multidrug-resistant bacteria in a French university hospital center: 3 years of collection. Am. J. Infect. Control 2015, 43, 960–964. [Google Scholar] [CrossRef] [PubMed]
- Laudisio, A.; Marinosci, F.; Fontana, D.; Gemma, A.; Zizzo, A.; Coppola, A.; Rodano, L.; Antonelli Incalzi, R. The burden of comorbidity is associated with symptomatic polymicrobial urinary tract infection among institutionalized elderly. Aging Clin. Exp. Res. 2015, 27, 805–812. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.F.; Kim, K.; Cavadino, A.; Coleman, B.; Munro, J.T.; Young, S.W. Success Rates of Debridement, Antibiotics, and Implant Retention in 230 Infected Total Knee Arthroplasties: Implications for Classification of Periprosthetic Joint Infection. J. Arthroplast. 2021, 36, 305–310.e1. [Google Scholar] [CrossRef] [PubMed]
- Zimmerli, W.; Sendi, P. Orthopaedic biofilm infections. APMIS 2017, 125, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Peel, T.N. Studying biofilm and clinical issues in orthopedics. Front. Microbiol. 2019, 10, 359. [Google Scholar] [CrossRef] [PubMed]
- Pollmann, C.T.; Dahl, F.A.; Røtterud JH, M.; Gjertsen, J.E.; Årøen, A. Surgical site infection after hip fracture-mortality and risk factors: An observational cohort study of 1709 patients. Acta Orthop. 2020, 91, 347–352. [Google Scholar] [CrossRef]
- Sousa, R.; Abreu, M.A. Treatment of Prosthetic Joint Infection with Debridement, Antibiotics and Irrigation with Implant Retention—A Narrative Review. J. Bone Jt. Infect. 2018, 3, 108–117. [Google Scholar] [CrossRef]
Patient | Sex | Age | Comorbidities | CCI | Acute/Chronic | Days from Implant to Infection Diagnosis | Pathogen | Initial Surgical Treatment | Definitive Surgical Treatment | Antibiotic/Duration (Days) | Combined Antibiotic Therapy | One-Year Mortality/Attributable Mortality | Infection Control | Fracture Healing |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | M | 39 | Ulcerative colitis | 1 | C | 196 | Enterococcus faecium | Implant removal | Implant removal | Amoxicillin-clavulanic acid/90 | No | No/No | Yes | Yes |
2 | F | 59 | Obesity, sleep apnea, lymphoma | 3 | C | 310 | Corynebacterium striatum; Escherichia coli | Implant removal | Implant removal | Fosfomycin and co-trimoxazole/90 | Yes | No/No | Yes | N/A (total hip replacement was carried out after full course of antibiotic treatment) |
3 | M | 67 | Dyslipidemia | 2 | C | 442 | MSSA | Implant removal | Implant removal | Ciprofloxacin and co-trimoxazole/35 | Yes | No/No | Yes | Yes |
4 | F | 68 | Hypertension, dysplidemia, hypothyroidism, osteoporosis | 2 | A | 24 | MSSA | DAIR | DAIR | Levofloxacin and rifampicin/360 | Yes | No/No | Yes | N/A |
5 | M | 68 | Hypertension, atrial fibrillation, liver failure | 5 | A | 9 | Enterobacter cloacae | DAIR | DAIR | Imipenem and ciprofloxacin/30 | Yes | Yes/Yes | Yes | N/A |
6 | M | 78 | Hypertension, T2DM, mielodysplasic syndrome | 4 | A | 30 | Pseudomonas aeruginosa | DAIR | DAIR | Ciprofloxacin and imipenem/42 | Yes | No/No | Yes | N/A |
7 | F | 79 | Atrial fibrillation, heart failure, liver failure | 7 | C | 53 | ESBL-producing Klebsiella pneumoniae; Providencia stuartii | Suppressive antibiotic therapy | Suppressive antibiotic therapy | Ciprofloxacin/suppressive | No | Yes/No | No | N/A |
8 | F | 82 | Dyslipidemia | 4 | A | 7 | Coagulase-negative Staphylococcus | DAIR | Implant removal | Levofloxacin and rifampicin/84 | Yes | No/No | Yes | N/A |
9 | M | 82 | Hypertension, atrial fibrillation, mild cognitive impairment | 5 | A | 23 | MSSA | DAIR | DAIR | Ciprofloxacin and rifampicin/42 | Yes | No/No | Yes | Yes |
10 | F | 86 | Hypertension, moderate cognitive impairment | 5 | C | 49 | Pseudomonas aeruginosa; Corynebacterium striatum; MSSA | DAIR | Implant removal | Linezolid and rifampicin/90 | Yes | No/No | No | No |
11 | F | 86 | Hypertension | 4 | C | 223 | Listeria monocytogenes | Implant removal | Implant removal | Co-trimoxazole/42 | No | No/No | Yes | Yes |
12 | F | 88 | Hypertension, dyslipidemia, atrial fibrillation, heart failure | 5 | A | 21 | Enterobacter cloacae | DAIR | DAIR | Imipenem and fosfomycin/42 | Yes | No/No | Yes | N/A |
13 | F | 88 | Hypertension, dyslipidemia, atrial fibrillation, coronary artery disease, mild cognitive impairment | 6 | C | 80 | Escherichia coli; Proteus mirabilis | DAIR | DAIR | Levofloxacin and co-trimoxazole/70 | Yes | Yes/Yes | No | N/A |
14 | F | 89 | Hypertension, heart failure | 5 | C | 34 | MRSA | Antibiotics with curative intent | Suppressive antibiotic therapy | Rifampicin and clindamycin/suppressive | Yes | No/No | No | N/A |
15 | F | 89 | Atrial fibrillation, heart failure, ischemic stroke, cognitive impairment | 6 | C | 45 | MSSA; coagulase-negative Staphylococcus | DAIR | DAIR | Fusidic acid and rifampicin/42 | Yes | No/No | Yes | N/A |
16 | F | 90 | Atrial fibrillation, heart failure, cognitive impairment | 6 | A | 10 | Klebsiella pneumoniae | DAIR | Implant removal | Co-trimoxazole and ciprofloxacin/56 | Yes | No/No | Yes | Yes |
17 | F | 91 | Hypertension, giant cell arteritis, ischemic stroke | 6 | A | 19 | MSSA; Escherichia coli | Implant removal | Implant removal | Cefazolin and gentamycin/56 | Yes | Yes/No | No | N/A (early death during hospital admission) |
18 | F | 91 | T2DM, dyslipidemia | 5 | A | 11 | Morganella morganii; Klebsiella pneumoniae; Enterobacter cloacae | DAIR | DAIR | Levofloxacin/42 | No | Yes/No | Yes | N/A |
19 | F | 91 | 4 | C | 61 | ESBL-producing Escherichia coli; Enterococcus faecalis | Implant removal | Implant removal | Fosfomycin, amoxicillin, and co-trimoxazole/90 | Yes | No/No | Yes | N/A (partial hip replacement was performed a full course of antibiotic therapy) | |
20 | F | 91 | Hypertension, chronic kidney disease | 6 | C | 744 | Cutibacterium acnes | Implant removal | Implant removal | Levofloxacin/56 | No | No/No | Yes | Yes |
21 | F | 96 | Hypertension, dyslipidemia, T2DM, atrial fibrillation, heart failure | 6 | C | 34 | MRSA | Implant removal | Implant removal | Clindamycin/56 | No | No/No | Yes | No |
22 | F | 99 | Venous insufficiency | 4 | C | 51 | Gut microbiota | Suppressive antibiotic therapy | Suppressive antibiotic therapy | Co-trimoxazole/suppressive | No | No/No | No | N/A |
23 | M | 49 | Alcohol abuse, liver failure, HIV infection, HCV infection | 3 | A | 18 | Escherichia coli | DAIR | DAIR | Amoxicillin-clavulanic acid and ciprofloxacin/42 | Yes | No/No | Yes | N/A |
24 | M | 68 | T2DM, liver failure, HIV infection, HBV infection | 6 | A | 23 | ESBL-producing Escherichia coli | DAIR | DAIR | Imipenem/28 | No | Yes/No | No | N/A |
25 | F | 89 | Hypertension | 4 | C | 587 | MSSA | One-step septic exchange | Implant removal | Levofloxacin and rifampicin/56 | Yes | No/No | Yes | Yes |
26 | F | 93 | Hypertension | 4 | A | 20 | Escherichia coli | DAIR | Suppressive antibiotic therapy | Ciprofloxacin/suppressive | No | No/No | No | N/A |
27 | F | 92 | Hypertension, mild cognitive impairment | 5 | C | 138 | ESBL-producing Klebsiella pneumoniae; Proteus mirabilis | Implant removal | Suppressive antibiotic therapy | Ertapenem and ciprofloxacin/52; then switched to ciprofloxacin/suppressive | Yes | No/No | No | N/A |
28 | M | 93 | Hypertension, atrial fibrillation | 4 | A | 27 | MRSA | DAIR | DAIR | Clindamycin and rifampicin/90 | Yes | No/No | Yes | N/A |
29 | M | 55 | 1 | C | 2213 | Cutibacterium acnes | Implant removal | Implant removal | Clindamycin and rifampicin/60 | Yes | No/No | Yes | Yes | |
30 | F | 84 | Hypertension, atrial fibrillation | 4 | C | 343 | Enterococcus faecalis | Implant removal | Implant removal | Amoxicillin/35 | No | No/No | Yes | Yes |
31 | F | 88 | Hypertension, T2DM, dyslipidemia | 5 | A | 11 | Enterococcus faecalis | DAIR | DAIR | Amoxicillin/56 | No | No/No | Yes | N/A |
32 | F | 96 | T2DM, atrial fibrillation, cognitive impairment | 6 | A | 13 | MRSA | DAIR | DAIR | Vancomycin and clindamycin/4 | Yes | Yes/Yes | No | N/A |
33 | F | 93 | T2DM, coronary artery disease, heart failure | 8 | A | 15 | Escherichia coli; Enterococcus faecalis; Klebsiella pneumoniae | DAIR | DAIR | Amoxicillin/60 | No | No/No | Yes | N/A |
34 | F | 93 | 4 | A | 27 | Culture negative (prior antibiotic therapy) | DAIR | DAIR | Ciprofloxacin and clindamycin/60 | Yes | Yes/No | Yes | N/A |
Infection Control (n = 24) | Therapeutic Failure (n = 10) | |
---|---|---|
Female | 16 (66.7%) | 9 (90.0%) |
Age | 79.6 (SD 15.7) | 88.1 (SD 9.03) |
Comorbidities | 21 (87.5%) | 10 (100.0%) |
Charlson Comorbidity Index * | 4.2 (SD 2.8) | 5.4 (SD 0.93) |
Chronic infection | 13 (54.2%) | 4 (40.0%) |
Polymicrobial infection * | 5 (20.8%) | 6 (60.0%) |
Multidrug-resistant pathogen * | 3 (12.5%) | 5 (50.0%) |
Implant removal | 12 (50.0%) | 2 (20.0%) |
Combined antibiotic treatment | 16 (66.7%) | 6 (60.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfang, B.; Villegas García, M.A.; Blanco García, A.; Auñón Rubio, Á.; Esteban, J.; García Cañete, J. Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair. Antibiotics 2024, 13, 463. https://doi.org/10.3390/antibiotics13050463
Pfang B, Villegas García MA, Blanco García A, Auñón Rubio Á, Esteban J, García Cañete J. Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair. Antibiotics. 2024; 13(5):463. https://doi.org/10.3390/antibiotics13050463
Chicago/Turabian StylePfang, Bernadette, Marco A. Villegas García, Antonio Blanco García, Álvaro Auñón Rubio, Jaime Esteban, and Joaquín García Cañete. 2024. "Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair" Antibiotics 13, no. 5: 463. https://doi.org/10.3390/antibiotics13050463
APA StylePfang, B., Villegas García, M. A., Blanco García, A., Auñón Rubio, Á., Esteban, J., & García Cañete, J. (2024). Risk Factors for Therapeutic Failure and One-Year Mortality in Patients with Intramedullary Nail-Associated Infection after Trochanteric and Subtrochanteric Hip Fracture Repair. Antibiotics, 13(5), 463. https://doi.org/10.3390/antibiotics13050463