Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence
Abstract
:1. Introduction
2. Considerations and Available Data about New β-Lactam Agents
2.1. Sulbactam/Durlobactam
- (1)
- What is the best antibiotic partner to use in combination with sulbactam/durlobactam in CRAB infections?
- (2)
- Is sulbactam/durlobactam best used in combination treatment rather than monotherapy in CRAB infections?
2.2. Cefiderocol
- (1)
- Is there a role for cefiderocol as a back-bone agent in combination treatment for CRAB infections?
- (2)
- What is the best antibiotic partner to use in combination with cefiderocol in CRAB infections?
3. Place in Therapy of Traditional Agents for Treatment of CRAB
3.1. Polymyxins
3.2. Tetracycline Derivatives
3.3. Fosfomycin
3.4. High-Dose Extended-Infusion Meropenem
3.5. Aminoglycosides
3.6. Rifamycins
3.7. Trimethoprim/Sulfamethoxazole
3.8. Novel Antibiotics (Zosurazalpin)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Peleg, A.Y.; Seifert, H.; Paterson, D.L. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 2008, 21, 538–582. [Google Scholar] [CrossRef] [PubMed]
- Wong, D.; Nielsen, T.B.; Bonomo, R.A.; Pantapalangkoor, P.; Luna, B.; Spellberg, B. Clinical and pathophysiological overview of Acinetobacter infections: A century of challenges. Clin. Microbiol. Rev. 2017, 30, 409–447. [Google Scholar] [CrossRef] [PubMed]
- Harding, C.M.; Hennon, S.W.; Feldman, M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018, 16, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Mendes, R.E.; Gales, A.C. Global Epidemiology and Mechanisms of Resistance of Acinetobacter baumannii-calcoaceticus Complex. Clin. Infect. Dis. 2023, 76 (Suppl. S2), S166–S178. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Paterson, D.L.; Tamma, P.D. Navigating Available Treatment Options for Carbapenem-Resistant Acinetobacter baumannii-calcoaceticus Complex Infections. Clin. Infect. Dis. 2023, 76 (Suppl. S2), S179–S193. [Google Scholar] [CrossRef] [PubMed]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Carrara, E.; Retamar, P.; Tängdén, T.; Bitterman, R.; Bonomo, R.A.; de Waele, J.; Daikos, G.L.; Akova, M.; Harbarth, S.; et al. European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines for the treatment of infections caused by multidrug-resistant Gram-negative bacilli (endorsed by European society of intensive care medicine). Clin. Microbiol. Infect. 2022, 28, 521–547. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Aitken, S.L.; Bonomo, R.A.; Mathers, A.J.; van Duin, D.; Clancy, C.J. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, 18, ciad428. [Google Scholar] [CrossRef]
- US Food and Drug Administration. FDA Approves New Treatment for Pneumonia Caused by Certain Difficult-to-Treat Bacteria [Media Release]. 23 May 2023. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-treatment-pneumonia-caused-certain-difficult-treat-bacteria (accessed on 2 May 2024).
- Falcone, M.; Tiseo, G.; Leonildi, A.; Della Sala, L.; Vecchione, A.; Barnini, S.; Farcomeni, A.; Menichetti, F. Cefiderocol- compared to colistin-based regimens for the treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2022, 66, e0214221. [Google Scholar] [CrossRef]
- Russo, A.; Bruni, A.; Gullì, S.; Borrazzo, C.; Quirino, A.; Lionello, R.; Serapide, F.; Garofalo, E.; Serraino, R.; Romeo, F.; et al. Efficacy of cefiderocol- vs colistin-containing regimen for treatment of bacteraemic ventilator-associated pneumonia caused by carbapenem-resistant Acinetobacter baumannii in patients with COVID-19. Int. J. Antimicrob. Agents. 2023, 62, 106825. [Google Scholar] [CrossRef]
- Penwell, W.F.; Shapiro, A.B.; Giacobbe, R.A.; Gu, R.-F.; Gao, N.; Thresher, J.; McLaughlin, R.E.; Huband, M.D.; DeJonge, B.L.M.; Ehmann, D.E.; et al. Molecular mechanisms of sulbactam antibacterial activity and resistance determinants in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2015, 59, 1680–1689. [Google Scholar] [CrossRef] [PubMed]
- Kuo, S.-C.; Lee, Y.-T.; Lauderdale, T.-L.Y.; Huang, W.-C.; Chuang, M.-F.; Chen, C.-P.; Su, S.-C.; Lee, K.-R.; Chen, T.-L. Contribution of Acinetobacter-derived cephalosporinase-30 to sulbactam resistance in Acinetobacter baumannii. Front. Microbiol. 2015, 6, 231. [Google Scholar] [CrossRef]
- Durand-Réville, T.F.; Guler, S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A.B.; McLeod, S.M.; Carter, N.M.; et al. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gram-negative bacteria including Acinetobacter baumannii. Nat. Microbiol. 2017, 2, 17104. [Google Scholar] [CrossRef] [PubMed]
- Principe, L.; Di Bella, S.; Conti, J.; Perilli, M.; Piccirilli, A.; Mussini, C.; Decorti, G. Acinetobacter baumannii Resistance to Sulbactam/Durlobactam: A Systematic Review. Antibiotics 2022, 11, 1793. [Google Scholar] [CrossRef] [PubMed]
- Rodvold, K.A.; Gotfried, M.H.; Isaacs, R.D.; O’Donnell, J.P.; Stone, E. Plasma and Intrapulmonary Concentrations of ETX2514 and Sulbactam following Intravenous Administration of ETX2514SUL to Healthy Adult Subjects. Antimicrob. Agents Chemother. 2018, 62, e01089-18. [Google Scholar] [CrossRef]
- Kaye, K.S.; Shorr, A.F.; Wunderink, R.G.; Du, B.; Poirier, G.E.; Rana, K.; Miller, A.; Lewis, D.; O’Donnell, J.; Chen, L.; et al. Efficacy and safety of sulbactam-durlobactam versus colistin for the treatment of patients with serious infections caused by Acinetobacter baumannii-calcoaceticus complex: A multicentre, randomised, active-controlled, phase 3, non-inferiority clinical trial (ATTACK). Lancet Infect. Dis. 2023, 23, 1072–1084. [Google Scholar] [PubMed]
- Giuliano, S.; Sbrana, F.; Tascini, C. Sulbactam-durlobactam for infections caused by Acinetobacter baumannii-calcoaceticus complex. Lancet Infect. Dis. 2023, 23, e274. [Google Scholar] [CrossRef] [PubMed]
- Kaye, K.S.; McLeod, S.M.; O’Donnell, J.P.; Altarac, D. Sulbactam-durlobactam for infections caused by Acinetobacter baumannii-calcoaceticus complex—Authors’ reply. Lancet Infect. Dis. 2023, 23, e275–e276. [Google Scholar] [CrossRef] [PubMed]
- Petropoulou, D.; Siopi, M.; Vourli, S.; Pournaras, S. Activity of Sulbactam-Durlobactam and Comparators Against a National Collection of Carbapenem-Resistant Acinetobacter baumannii Isolates From Greece. Front. Cell Infect. Microbiol. 2022, 11, 814530. [Google Scholar] [CrossRef]
- National Library of Medicine. ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ (accessed on 2 May 2024).
- Bassetti, M.; Echols, R.; Matsunaga, Y.; Ariyasu, M.; Doi, Y.; Ferrer, R.; Lodise, T.P.; Naas, T.; Niki, Y.; Paterson, D.L.; et al. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial. Lancet Infect. Dis. 2021, 21, 226–240. [Google Scholar] [CrossRef]
- Wunderink, R.G.; Matsunaga, Y.; Ariyasu, M.; Clevenbergh, P.; Echols, R.; Kaye, K.S.; Kollef, M.; Menon, A.; Pogue, J.M.; Shorr, A.F.; et al. Cefiderocol versus high-dose, extended-infusion meropenem for the treatment of Gram-negative nosocomial pneumonia (APEKS-NP): A randomised, double-blind, phase 3, non-inferiority trial. Lancet Infect. Dis. 2021, 21, 213–225. [Google Scholar] [CrossRef] [PubMed]
- Syed, Y.Y. Cefiderocol: A Review in Serious Gram-Negative Bacterial Infections. Drugs. 2021, 81, 1559–1571. [Google Scholar] [CrossRef] [PubMed]
- Kollef, M.; Dupont, H.; Greenberg, D.E.; Viale, P.; Echols, R.; Yamano, Y.; Nicolau, D.P. Prospective role of cefiderocol in the management of carbapenem-resistant Acinetobacter baumannii infections: Review of the evidence. Int. J. Antimicrob. Agents. 2023, 62, 106882. [Google Scholar] [CrossRef] [PubMed]
- Karlowsky, J.A.; Hackel, M.A.; Takemura, M.; Yamano, Y.; Echols, R.; Sahm, D.F. In Vitro Susceptibility of Gram-Negative Pathogens to Cefiderocol in Five Consecutive Annual Multinational SIDERO-WT Surveillance Studies, 2014 to 2019. Antimicrob. Agents Chemother. 2022, 66, e0199021. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Sadek, M.; Nordmann, P. Contribution of PER-Type and NDM-Type β-Lactamases to Cefiderocol Resistance in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2021, 65, e0087721. [Google Scholar] [CrossRef]
- Choby, J.E.; Ozturk, T.; Satola, S.W.; Jacob, J.T.; Weiss, D.S. Widespread cefiderocol heteroresistance in carbapenem-resistant Gram-negative pathogens. Lancet Infect. Dis. 2021, 21, 597–598. [Google Scholar] [CrossRef] [PubMed]
- Karakonstantis, S.; Rousaki, M.; Kritsotakis, E.I. Cefiderocol: Systematic Review of Mechanisms of Resistance, Heteroresistance and In Vivo Emergence of Resistance. Antibiotics 2022, 11, 723. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, N.; Katsube, T.; Echols, R.; Wajima, T. Population Pharmacokinetic and Pharmacokinetic/Pharmacodynamic Analyses of Cefiderocol, a Parenteral Siderophore Cephalosporin, in Patients with Pneumonia, Bloodstream Infection/Sepsis, or Complicated Urinary Tract Infection. Antimicrob. Agents Chemother. 2021, 65, e01437-20. [Google Scholar] [CrossRef]
- Dalfino, L.; Stufano, M.; Bavaro, D.F.; Diella, L.; Belati, A.; Stolfa, S.; Romanelli, F.; Ronga, L.; Di Mussi, R.; Murgolo, F.; et al. Effectiveness of First-Line Therapy with Old and Novel Antibiotics in Ventilator-Associated Pneumonia Caused by Carbapenem-Resistant Acinetobacter baumannii: A Real Life, Prospective, Observational, Single-Center Study. Antibiotics 2023, 12, 1048. [Google Scholar] [CrossRef]
- Pascale, R.; Pasquini, Z.; Bartoletti, M.; Caiazzo, L.; Fornaro, G.; Bussini, L.; Volpato, F.; Marchionni, E.; Rinaldi, M.; Trapani, F.; et al. Cefiderocol treatment for carbapenem-resistant Acinetobacter baumannii infection in the ICU during the COVID-19 pandemic: A multicentre cohort study. JAC Antimicrob. Resist. 2021, 3, dlab174. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Gregori, D.; Sasset, L.; Trevenzoli, M.; Scaglione, V.; Lo Menzo, S.; Marinello, S.; Mengato, D.; Venturini, F.; Tiberio, I.; et al. Cefiderocol-Based versus Colistin-Based Regimens for Severe Carbapenem-Resistant Acinetobacter baumannii Infections: A Propensity Score-Weighted, Retrospective Cohort Study during the First Two Years of the COVID-19 Pandemic. Microorganisms 2023, 11, 984. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Cosentino, F.; Giannella, M.; Viale, P.; Pea, F. Clinical efficacy of cefiderocol-based regimens in patients affected by carbapenem-resistant Acinetobacter baumannii infections: A systematic review with meta-analysis. Int. J. Antimicrob. Agents. 2024, 63, 107047. [Google Scholar] [CrossRef] [PubMed]
- Zaidan, N.; Hornak, J.P.; Reynoso, D. Extensively Drug-Resistant Acinetobacter baumannii Nosocomial Pneumonia Successfully Treated with a Novel Antibiotic Combination. Antimicrob. Agents Chemother. 2021, 65, e0092421. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; Zhang, Y.; Liu, X.; Wu, J.; Zhang, J. Clinical efficacy and safety of polymyxins based versus non-polymyxins based therapies in the infections caused by carbapenem-resistant Acinetobacter baumannii: A systematic review and meta-analysis. BMC Infect. Dis. 2020, 20, 296. [Google Scholar] [CrossRef] [PubMed]
- Seifert, H.; Blondeau, J.; Lucaßen, K.; Utt, E.A. Global update on the in vitro activity of tigecycline and comparators against isolates of Acinetobacter baumannii and rates of resistant phenotypes (2016–2018). J. Glob. Antimicrob. Resist. 2022, 31, 82–89. [Google Scholar] [CrossRef]
- Tsuji, B.T.; Pogue, J.M.; Zavascki, A.P.; Paul, M.; Daikos, G.L.; Forrest, A.; Giacobbe, D.R.; Viscoli, C.; Giamarellou, H.; Karaiskos, I.; et al. International Consensus Guidelines for the Optimal Use of the Polymyxins: Endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy 2019, 39, 10–39. [Google Scholar] [PubMed]
- Nang, S.C.; Azad, M.A.K.; Velkov, T.; Zhou, Q.T.; Li, J. Rescuing the Last-Line Polymyxins: Achievements and Challenges. Pharmacol. Rev. 2021, 73, 679–728. [Google Scholar] [CrossRef]
- Kassamali, Z.; Jain, R.; Danziger, L.H. An update on the arsenal for multidrug-resistant Acinetobacter infections: Polymyxin antibiotics. Int. J. Infect. Dis. 2015, 30, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Durante-Mangoni, E.; Signoriello, G.; Andini, R.; Mattei, A.; De Cristoforo, M.; Murino, P.; Bassetti, M.; Malacarne, P.; Petrosillo, N.; Galdieri, N.; et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: A multicenter, randomized clinical trial. Clin. Infect. Dis. 2013, 3, 349–358. [Google Scholar] [CrossRef]
- Sirijatuphat, R.; Thamlikitkul, V. Preliminary study of colistin versus colistin plus fosfomycin for treatment of carbapenem-resistant Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 2014, 9, 5598–5601. [Google Scholar] [CrossRef]
- Flamm, R.K.; Shortridge, D.; Castanheira, M.; Sader, H.S.; Pfaller, M.A. In Vitro Activity of Minocycline against U.S. Isolates of Acinetobacter baumannii-Acinetobacter calcoaceticus Species Complex, Stenotrophomonas maltophilia, and Burkholderia cepacia Complex: Results from the SENTRY Antimicrobial Surveillance Program, 2014 to 2018. Antimicrob. Agents Chemother. 2019, 63, e01154-19. [Google Scholar] [PubMed]
- Lodise, T.P.; Van Wart, S.; Sund, Z.M.; Bressler, A.M.; Khan, A.; Makley, A.T.; Hamad, Y.; Salata, R.A.; Silveira, F.P.; Sims, M.D.; et al. Pharmacokinetic and Pharmacodynamic Profiling of Minocycline for Injection following a Single Infusion in Critically Ill Adults in a Phase IV Open-Label Multicenter Study (ACUMIN). Antimicrob. Agents Chemother. 2021, 65, e01809-20. [Google Scholar] [CrossRef] [PubMed]
- De Pascale, G.; Lisi, L.; Ciotti, G.M.P.; Vallecoccia, M.S.; Cutuli, S.L.; Cascarano, L.; Gelormini, C.; Bello, G.; Montini, L.; Carelli, S.; et al. Pharmacokinetics of high-dose tigecycline in critically ill patients with severe infections. Ann. Intensive Care. 2020, 10, 94. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Wang, Y.; Ma, X.; He, Y.; Zhao, J.; Guan, J.; Li, Y.; Gao, Z. In vitro and in vivo efficacy of cefiderocol plus tigecycline, colistin, or meropenem against carbapenem-resistant Acinetobacter baumannii. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 1451–1457. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Vouloumanou, E.K.; Samonis, G.; Vardakas, K.Z. Fosfomycin. Clin. Microbiol. Rev. 2016, 29, 321–347. [Google Scholar] [CrossRef] [PubMed]
- Guastalegname, M.; Trecarichi, E.M.; Russo, A. Intravenous fosfomycin: The underdog player in the treatment of carbapenem-resistant Acinetobacter baumannii infections. Clin. Infect. Dis. 2023, 77, 1736–1737. [Google Scholar] [CrossRef]
- Russo, A.; Bassetti, M.; Bellelli, V.; Bianchi, L.; Marincola Cattaneo, F.; Mazzocchetti, S.; Paciacconi, E.; Cottini, F.; Schiattarella, A.; Tufaro, G.; et al. Efficacy of a Fosfomycin-Containing Regimen for Treatment of Severe Pneumonia Caused by Multidrug-Resistant Acinetobacter baumannii: A Prospective, Observational Study. Infect. Dis. Ther. 2021, 10, 187–200. [Google Scholar] [CrossRef]
- Assimakopoulos, S.F.; Karamouzos, V.; Eleftheriotis, G.; Lagadinou, M.; Bartzavali, C.; Kolonitsiou, F.; Paliogianni, F.; Fligou, F.; Marangos, M. Efficacy of Fosfomycin-Containing Regimens for Treatment of Bacteremia Due to Pan-Drug Resistant Acinetobacter baumannii in Critically Ill Patients: A Case Series Study. Pathogens 2023, 12, 286. [Google Scholar] [CrossRef]
- Palombo, M.; Bovo, F.; Amadesi, S.; Gaibani, P. Synergistic Activity of Cefiderocol in Combination with Piperacillin-Tazobactam, Fosfomycin, Ampicillin-Sulbactam, Imipenem-Relebactam and Ceftazidime-Avibactam against Carbapenem-Resistant Gram-Negative Bacteria. Antibiotics 2023, 12, 858. [Google Scholar] [CrossRef]
- Mohd Sazlly Lim, S.; Heffernan, A.; Naicker, S.; Wallis, S.; Roberts, J.A.; Sime, F.B. Evaluation of Fosfomycin-Sulbactam Combination Therapy against Carbapenem-Resistant Acinetobacter baumannii Isolates in a Hollow-Fibre Infection Model. Antibiotics 2022, 11, 1578. [Google Scholar] [CrossRef] [PubMed]
- Koomanachai, P.; Crandon, J.L.; Kuti, J.L.; Nicolau, D.P. Comparative pharmacodynamics for intravenous antibiotics against Gram-negative bacteria in Europe between 2002 and 2006, a report from the OPTAMA program. Int. J. Antimicrob. Agents. 2009, 33, 348–353. [Google Scholar] [CrossRef] [PubMed]
- Bavaro, D.F.; Belati, A.; Diella, L.; Stufano, M.; Romanelli, F.; Scalone, L.; Stolfa, S.; Ronga, L.; Maurmo, L.; Dell’aera, M.; et al. Cefiderocol-Based Combination Therapy for “Difficult-to-Treat” Gram-Negative Severe Infections: Real-Life Case Series and Future Perspectives. Antibiotics 2021, 10, 652. [Google Scholar] [CrossRef]
- Holger, D.J.; Kunz Coyne, A.J.; Zhao, J.J.; Sandhu, A.; Salimnia, H.; Rybak, M.J. Novel Combination Therapy for Extensively Drug-Resistant Acinetobacter baumannii Necrotizing Pneumonia Complicated by Empyema: A Case Report. Open Forum Infect. Dis. 2022, 9, ofac092. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Novoa, J.M.; Quiros, Y.; Vicente, L.; Morales, A.I.; Lopez-Hernandez, F.J. New insights into the mechanism of aminoglycoside nephrotoxicity: An integrative point of view. Kidney Int. 2011, 79, 33–45. [Google Scholar] [CrossRef] [PubMed]
- Najmeddin, F.; Shahrami, B.; Azadbakht, S.; Dianatkhah, M.; Rouini, M.R.; Najafi, A.; Ahmadi, A.; Sharifnia, H.; Mojtahedzadeh, M. Evaluation of Epithelial Lining Fluid Concentration of Amikacin in Critically Ill Patients With Ventilator-Associated Pneumonia. J. Intensive Care Med. 2020, 35, 400–404. [Google Scholar] [CrossRef] [PubMed]
- Mohammadi, M.; Khayat, H.; Sayehmiri, K.; Soroush, S.; Sayehmiri, F.; Delfani, S.; Bogdanovic, L.; Taherikalani, M. Synergistic Effect of Colistin and Rifampin Against Multidrug Resistant Acinetobacter baumannii: A Systematic Review and Meta-Analysis. Open Microbiol. J. 2017, 11, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Tripodi, M.F.; Durante-Mangoni, E.; Fortunato, R.; Utili, R.; Zarrilli, R. Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. Int. J. Antimicrob. Agents. 2007, 30, 537–540. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yang, Y.; Xiang, K.; Li, D.; Liu, H. Combined Rifampin and Sulbactam Therapy for Multidrug-Resistant Acinetobacter baumannii Ventilator-Associated Pneumonia in Pediatric Patients. J. Anesth. Perioper. Med. 2018, 5, 176–185. [Google Scholar] [CrossRef]
- Trebosc, V.; Kemmer, C.; Lociuro, S.; Gitzinger, M.; Dale, G.E. Rifabutin for infusion (BV100) for the treatment of severe carbapenem-resistant Acinetobacter baumannii infections. Drug Discov. Today. 2021, 26, 2099–2104. [Google Scholar] [CrossRef]
- Falagas, M.E.; Vardakas, K.Z.; Roussos, N.S. Trimethoprim/sulfamethoxazole for Acinetobacter spp.: A review of current microbiological and clinical evidence. Int. J. Antimicrob. Agents 2015, 46, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Raz-Pasteur, A.; Liron, Y.; Amir-Ronen, R.; Abdelgani, S.; Ohanyan, A.; Geffen, Y.; Paul, M. Trimethoprim-sulfamethoxazole vs. colistin or ampicillin-sulbactam for the treatment of carbapenem-resistant Acinetobacter baumannii: A retrospective matched cohort study. J. Glob. Antimicrob. Resist. 2019, 17, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Gullì, S.P.; D’Avino, A.; Borrazzo, C.; Carannante, N.; Dezza, F.C.; Covino, S.; Polistina, G.; Fiorentino, G.; Trecarichi, E.M.; et al. Intravenous fosfomycin for treatment of severe infections caused by carbapenem-resistant Acinetobacter baumannii: A multicenter clinical experience. Int. J. Antimicrob. Agents 2024, 107190. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Carvalhaes, C.G.; Streit, J.M.; Castanheira, M.; Flamm, R.K. Antimicrobial activity of cefoperazone-sulbactam tested against Gram-Negative organisms from Europe, Asia-Pacific, and Latin America. Int. J. Infect. Dis. 2020, 91, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Tuon, F.F.; Yamada, C.H.; de Andrade, A.P.; Arend, L.N.V.S.; Dos Santos Oliveira, D.; Telles, J.P. Oral doxycycline to carbapenem-resistant Acinetobacter baumannii infection as a polymyxin-sparing strategy: Results from a retrospective cohort. Braz. J. Microbiol. 2023, 54, 1795–1802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
ESCMID Guidelines (April 2022) | IDSA Guidance (July 2023) | |
---|---|---|
Combination antibiotic regimen | For severe and high-risk CRAB infection | For moderate–severe CRAB infection |
Ampicillin/sulbactam | For patients with CRAB susceptible to sulbactam and HAP/VAP (1 g sulbactam component q6h) | Back-bone treatment for all CRAB infection (6–9 g sulbactam component daily) |
Polymyxins | Either colistin or polymyxin B: for patients with CRAB resistant to sulbactam susceptible to polymyxins; in combination with one other in vitro active agent for severe, susceptible to polymyxins, CRAB infection | Polymyxin B in combination with at least one other agent for the treatment of CRAB infections (Colistin only for CRAB UTIs) |
Tetracycline derivatives | High-dose tigecycline: for patients with CRAB resistant to sulbactam susceptible to tigecycline; in combination with one other in vitro active agent for severe, susceptible to tigecycline, CRAB infection | High-dose minocycline (preferred option) or high-dose tigecycline in combination with at least one other agent for the treatment of CRAB infections |
Cefiderocol | Not recommended | In combination with at least one other agent for the treatment of CRAB infections refractory to other antibiotics (or when the use of other antibiotics is precluded) |
Aminoglycosides | In combination with one other in vitro active agent for severe, susceptible to aminoglycosides, CRAB infection | Not recommended |
High-dose extended-infusion meropenem | In combination with one other in vitro active agent for severe CRAB infections with a meropenem MIC < 8 mg/L | Not recommended |
Pascale et al. [32] Multicentre (January 2020–April 2021) | Mazzitelli et al. [33] Single-Centre (August 2020–July 2022) | Falcone et al. [10] Single-Centre (January 2020–August 2021) | Russo et al. [11] Single-Centre (March 2020–August 2022) | |
---|---|---|---|---|
Population: antibiotic-based regimen groups | 107 patients: 42 CFD 65 COL | 111 patients: 60 CFD 51 COL | 124 patients: 47 CFD 77 COL | 73 patients: 19 CFD 54 COL |
COVID-19 coinfection | 100% | 32% | 38.7% | 100% |
Site of infection | BSI (58%) LRTI (41%) Others (1%) | BSI (47.7%) Pneumonia (52.3%) | BSI (57.4%) VAP (25.5%) Others (17%) | VAP and concomitant BSI (100%) |
Patients received CFD in combination | 0 | 30 (50%) | 33 (70%) | 19 (100%) |
Main agents co-administered with CFD | / | TGC (18/30) MEM (13/30) FOS (8/30) | TGC (21/33) FOS (8/33) | FOS (7/19) FOS + TGC (7/19) TGC (1/19) |
28–30 day all-cause mortality: CFD group vs. COL group | 23 (55%) vs. 38 (58%) (p-value: 0.7) | 26 (51%) vs. 22 (37%) (p-value: 0.13) | 16 (34%) vs. 43 (56%) (p-value: 0.018) | 6 (31.5%) vs. 53 (98%) (p-value < 0.001) |
Potential Role | Main Mechanisms of Action | Main Mechanisms of Resistance | Evidences (or Available Data) | Limits | Studies to Be Prioritized | |
---|---|---|---|---|---|---|
Sulbactam/ durlobactam | Back-bone agent in combination treatment | Inhibition of penicillin binding proteins 1 and 3 (involved in synthesis of bacterial peptidoglycan)/Uses a reversible mechanism of inhibition through β-lactamase active site carbamoylation | Single amino acid changes near the active site serine of PBP3 (S336), the target of sulbactam | RCT: non-inferior to COL (both co-administered with IPM-CLN) [17] | Efficacy as monotherapy not known | RCTs finding the best partner-agent |
Cefiderocol | Back-bone agent in combination treatment | Utilizes the siderophore–iron complex pathway to penetrate the outer membrane of Gram-negative organisms in addition to normal passive diffusion through membrane porins | Alterations of the intrinsic AmpC and siderophore receptors | Metanalysis: lower risk of mortality rate compared to COL-based regimen [34] | Unsatisfactory efficacy as monotherapy when compared to COL [22] and MEM [23] | -RCTs confirming the role as back-bone agent; -RCTs finding the best partner-agent |
Polymyxins | COL (or PB): alternative agent (when no other options are available) | Binds with the anionic LPS molecules by displacing Mg2+ and Ca2+ from the outer cell membrane of Gram-negative bacteria, leading to permeability changes in the cell envelope and leakage of cell contents | Complete loss of Lipopolysaccharide production | Large clinical experience as back-bone agent [36]. (Data on combination with NBLs are missing. ) | -Nefrotoxicity [40]; -suboptimal lung penetration [38]; -suboptimal plasma concentrations [38]. | Accelerate studies on safer polymyxin with lung improved activity |
Tetracycline derivatives | High-dose TGC (or MNC): partner-agent in combination treatment | Inhibit the 30S ribosomal subunit and thereby inhibit protein synthesis | (i) Efflux dependent on ATP, (ii) inactivation of tetracyclines by enzymes, and (iii) ribosomal protection proteins (RPPs) | TGC + CFD: -in vitro synergism [47]. (one of the most frequently used combination in observational studies [34]) | Suboptimal exposures in serum, lung and urine [5] | RCTs comparing TGC and FOS as partner-agent |
Fosfomycin | Partner-agent in combination treatment | Inhibition of bacterial cell wall peptidoglycan synthesis at an earlier stage than betalactams. | (i) fosfomycin efflux MFS transporter AbaF encoded; (ii) fosfomycin resistance glutathione transferases | -Retrospective study: associated with 30-day survival in combination with CFD [11]; -In vitro synergism with CFD [52] and SUL [53]; (the most commonly used agent in combination with CFD in observational studies [34]) | -Data coming from the observational study included regimens of more than 2 agents [11] -A. baumannii is intrinsically resistant to the drug [48] | RCTs comparing TGC and FOS as partner-agent |
High-dose extended- infusion meropenem | Partner-agent in PDR-CRAB infections (to be spared in treatment of strains sensitives to NBLs) | Binds penicillin-binding protein (PBP) in the bacterial cell wall and inhibits peptidoglycan cross-linking associated with cell wall synthesis | Production of enzymes such as beta-lactamases | In vitro synergism against CFD-resistant strains [47]. (Combined with SUL-DUR: a single case report of PDR-CRAB cured, with in vitro synergistic effect [56]) | -Suboptimal cumulative fraction of response [54]; -possible increase in side effects rate if co-administered with other BLs | -In vitro studies on synergism with NBLs; -Clinical studies on PDR-CRAB infections |
Aminoglycosides | Alternative partner-agent for few selected cases | Bind to the 30S subunit of ribosomes, inhibiting protein synthesis in bacteria. | Enzymatic modification primarily through N-acetylation, O-nucleotidylation, or O-phosphorylation at different locations of the aminoglycoside molecule. | Currently recommended as a combination treatment for susceptible CRAB isolates [7]. (Data on combination with NBLs are missing) | -Resistance rate among CRAB isolates > 80%; -suboptimal concentration in lung [37]; -high rate side effects [57] | / |
Rifamycins | Alternative partner-agent | Inhibit bacterial DNA-dependent RNA polymerase | Mutations in the rpoB gene, which encodes rifamycin sensitive beta-subunit of RNA polymerase and averts RNA elongation just after adding the first nucleotides | RFM + SUL: -in vitro synergism [60]; (a case series on 12 pediatric patients reported clinical efficacy in VAP due to XDR-A. baumannii [61]) | Synergism seems to depend by rifampicin MICs, but MICs data are scant [59] | -Accelerate clinical studies on rifabutin iv formulation; -in vitro studies on synergism between RFM and NBLs |
Trimethoprim/ sulfamethoxazole | Alternative partner-agent | Trimethoprim is a dihydrofolate reductase (DHFR) inhibitor (blocking tetrahydrofolic acid formation by dihydrofolic acid), while sulfonamides are known dihydropteroate synthase (DHPS) inhibitors | Trimethoprim-resistant dihydrofolate reductases | (Successfully administered in combination with CFD in sporadic cases [11]) | Resistance rate among CRAB isolates > 80% [63] | In vitro studies on synergism with NBLs |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serapide, F.; Guastalegname, M.; Gullì, S.P.; Lionello, R.; Bruni, A.; Garofalo, E.; Longhini, F.; Trecarichi, E.M.; Russo, A. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics 2024, 13, 506. https://doi.org/10.3390/antibiotics13060506
Serapide F, Guastalegname M, Gullì SP, Lionello R, Bruni A, Garofalo E, Longhini F, Trecarichi EM, Russo A. Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics. 2024; 13(6):506. https://doi.org/10.3390/antibiotics13060506
Chicago/Turabian StyleSerapide, Francesca, Maurizio Guastalegname, Sara Palma Gullì, Rosaria Lionello, Andrea Bruni, Eugenio Garofalo, Federico Longhini, Enrico Maria Trecarichi, and Alessandro Russo. 2024. "Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence" Antibiotics 13, no. 6: 506. https://doi.org/10.3390/antibiotics13060506
APA StyleSerapide, F., Guastalegname, M., Gullì, S. P., Lionello, R., Bruni, A., Garofalo, E., Longhini, F., Trecarichi, E. M., & Russo, A. (2024). Antibiotic Treatment of Carbapenem-Resistant Acinetobacter baumannii Infections in View of the Newly Developed β-Lactams: A Narrative Review of the Existing Evidence. Antibiotics, 13(6), 506. https://doi.org/10.3390/antibiotics13060506