Efficacy and Safety of Ceftazidime–Avibactam Alone versus Ceftazidime–Avibactam Plus Fosfomycin for the Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Multicentric Retrospective Study from the SUSANA Cohort
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Ethical Committee
4.2. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Torres, A.; Niederman, M.S. International ERS/ESICM/ESCMID/ALAT Guidelines for the Management of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia. Eur. Respir. J. 2017, 50, 1700582. [Google Scholar] [CrossRef]
- American Thoracic Society; Infectious Diseases Society of America. Guidelines for the Management of Adults with Hospital-Acquired, Ventilator-Associated, and Healthcare-Associated Pneumonia. Am. J. Respir. Crit. Care Med. 2005, 171, 388–416. [Google Scholar] [CrossRef]
- Luyt, C.-E.; Hékimian, G. Microbial Cause of ICU-Acquired Pneumonia: Hospital-Acquired Pneumonia versus Ventilator-Associated Pneumonia. Curr. Opin. Crit. Care 2018, 24, 332–338. [Google Scholar] [CrossRef]
- Papazian, L.; Klompas, M. Ventilator-Associated Pneumonia in Adults: A Narrative Review. Intensive Care Med. 2020, 46, 888–906. [Google Scholar] [CrossRef]
- Nair, G.B.; Niederman, M.S. Ventilator-Associated Pneumonia: Present Understanding and Ongoing Debates. Intensive Care Med. 2015, 41, 34–48. [Google Scholar] [CrossRef]
- European Centre for Disease Prevention and Control. Available online: https://www.ecdc.europa.eu/en/antimicrobial-resistance (accessed on 23 April 2024).
- Giovagnorio, F.; De Vito, A. Resistance in Pseudomonas Aeruginosa: A Narrative Review of Antibiogram Interpretation and Emerging Treatments. Antibiotics 2023, 12, 1621. [Google Scholar] [CrossRef]
- Boyd, S.E.; Livermore, D.M. Metallo-β-Lactamases: Structure, Function, Epidemiology, Treatment Options, and the Development Pipeline. Antimicrob. Agents Chemother. 2020, 64, e00397-20. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, e00115-18. [Google Scholar] [CrossRef]
- García, L.Y.; Lorenzo, R.M.; Sagasti, F.M.; Sesmero, J.M. Real-Life Experience with Cefiderocol for the Treatment of Difficult-to-Treat Gram-Negative Infections. Infect. Dis. Trop. Med. 2023, 9, e1157. [Google Scholar]
- European Medicine Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/zavicefta (accessed on 23 April 2024).
- Pfizer. Available online: https://www.pfizerpiindex.co.uk/zavicefta#pi-1 (accessed on 23 April 2024).
- Nicolau, D.P.; Siew, L. Phase 1 Study Assessing the Steady-State Concentration of Ceftazidime and Avibactam in Plasma and Epithelial Lining Fluid Following Two Dosing Regimens. J. Antimicrob. Chemother. 2015, 70, 2862–2869. [Google Scholar] [CrossRef]
- Wenzler, E.; Gotfried, M.H. Meropenem-RPX7009 Concentrations in Plasma, Epithelial Lining Fluid, and Alveolar Macrophages of Healthy Adult Subjects. Antimicrob. Agents Chemother. 2015, 59, 7232–7239. [Google Scholar] [CrossRef]
- Rizk, M.L.; Rhee, E.G. Intrapulmonary Pharmacokinetics of Relebactam, a Novel β-Lactamase Inhibitor, Dosed in Combination with Imipenem-Cilastatin in Healthy Subjects. Antimicrob. Agents Chemother. 2018, 62, e01411-17. [Google Scholar] [CrossRef]
- Katsube, T.; Nicolau, D.P. Intrapulmonary Pharmacokinetic Profile of Cefiderocol in Mechanically Ventilated Patients with Pneumonia. J. Antimicrob. Chemother. 2021, 76, 2902–2905. [Google Scholar] [CrossRef]
- Antonello, R.M.; Principe, L. Fosfomycin as Partner Drug for Systemic Infection Management. A Systematic Review of Its Synergistic Properties from In Vitro and In Vivo Studies. Antibiotics 2020, 9, 500. [Google Scholar] [CrossRef]
- Avery, L.M.; Sutherland, C.A. In Vitro Investigation of Synergy among Fosfomycin and Parenteral Antimicrobials against Carbapenemase-Producing Enterobacteriaceae. Diagn. Microbiol. Infect. Dis. 2019, 95, 216–220. [Google Scholar] [CrossRef]
- Mikhail, S.; Singh, N.B. Evaluation of the Synergy of Ceftazidime-Avibactam in Combination with Meropenem, Amikacin, Aztreonam, Colistin, or Fosfomycin against Well-Characterized Multidrug-Resistant Klebsiella Pneumoniae and Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2019, 63, e00779-19. [Google Scholar] [CrossRef]
- Papp-Wallace, K.M.; Zeiser, E.T. Ceftazidime-Avibactam in Combination With Fosfomycin: A Novel Therapeutic Strategy Against Multidrug-Resistant Pseudomonas Aeruginosa. J. Infect. Dis. 2019, 220, 666–676. [Google Scholar] [CrossRef]
- Ojdana, D.; Gutowska, A. Activity of Ceftazidime-Avibactam Alone and in Combination with Ertapenem, Fosfomycin, and Tigecycline Against Carbapenemase-Producing Klebsiella Pneumoniae. Microb. Drug Resist. 2019, 25, 1357–1364. [Google Scholar] [CrossRef]
- Avery, L.M.; Sutherland, C.A. Prevalence of in Vitro Synergistic Antibiotic Interaction between Fosfomycin and Nonsusceptible Antimicrobials in Carbapenem-Resistant Pseudomonas Aeruginosa. J. Med. Microbiol. 2019, 68, 893–897. [Google Scholar] [CrossRef]
- Kroemer, N.; Martens, M. Evaluation of in Vitro Pharmacodynamic Drug Interactions of Ceftazidime/Avibactam and Fosfomycin in Escherichia Coli. J. Antimicrob. Chemother. 2023, 78, 2524–2534. [Google Scholar] [CrossRef]
- Wilson, G.M.; Fitzpatrick, M. Meta-Analysis of Clinical Outcomes Using Ceftazidime/Avibactam, Ceftolozane/Tazobactam, and Meropenem/Vaborbactam for the Treatment of Multidrug-Resistant Gram-Negative Infections. Open Forum. Infect. Dis. 2021, 8, ofaa651. [Google Scholar] [CrossRef]
- Meschiari, M.; Faltoni, M. Intravenous fosfomycin in combination regimens as a treatment option for difficult-to-treat infections due to multidrug-resistant gram-negative organisms: A real-life experience. Int. J. Antimicrob. Agents 2024, 63, 107134. [Google Scholar] [CrossRef]
- Aslan, A.T.; Ezure, Y. In Vitro, in Vivo and Clinical Studies Comparing the Efficacy of Ceftazidime-Avibactam Monotherapy with Ceftazidime-Avibactam-Containing Combination Regimens against Carbapenem-Resistant Enterobacterales and Multidrug-Resistant Pseudomonas Aeruginosa Isolates or Infections: A Scoping Review. Front. Med. 2023, 10, 1249030. [Google Scholar] [CrossRef]
- Oliva, A.; Volpicelli, L. Effect of Ceftazidime/Avibactam plus Fosfomycin Combination on 30 Day Mortality in Patients with Bloodstream Infections Caused by KPC-Producing Klebsiella Pneumoniae: Results from a Multicentre Retrospective Study. JAC Antimicrob. Resist. 2022, 4, dlac121. [Google Scholar] [CrossRef]
- Tumbarello, M.; Raffaelli, F. Ceftazidime-Avibactam Use for Klebsiella Pneumoniae Carbapenemase–Producing K. Pneumoniae Infections: A Retrospective Observational Multicenter Study. Clin. Infect. Dis. 2021, 73, 1664–1676. [Google Scholar] [CrossRef]
- Zheng, G.; Zhang, J. Ceftazidime-Avibactam in Combination with In Vitro Non-Susceptible Antimicrobials Versus Ceftazidime-Avibactam in Monotherapy in Critically Ill Patients with Carbapenem-Resistant Klebsiella Pneumoniae Infection: A Retrospective Cohort Study. Infect. Dis. Ther. 2021, 10, 1699–1713. [Google Scholar] [CrossRef]
- Winkler, M.L.; Papp-Wallace, K.M. Unexpected Challenges in Treating Multidrug-Resistant Gram-Negative Bacteria: Resistance to Ceftazidime-Avibactam in Archived Isolates of Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 2015, 59, 1020–1029. [Google Scholar] [CrossRef]
- Gatti, M.; Pascale, R. A Descriptive Pharmacokinetic/Pharmacodynamic Analysis of Continuous Infusion Ceftazidime-Avibactam in a Case Series of Critically Ill Renal Patients Treated for Documented Carbapenem-Resistant Gram-Negative Bloodstream Infections and/or Ventilator-Associated Pneumonia. Int. J. Antimicrob. Agents 2023, 61, 106699. [Google Scholar] [CrossRef]
- Venuti, F.; Trunfio, M. Extended and Continuous Infusion of Novel Protected β-Lactam Antibiotics: A Narrative Review. Drugs 2023, 83, 967–983. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, F. Clinical Efficacy of Ceftazidime/Avibactam Combination Therapy for Severe Hospital-Acquired Pulmonary Infections Caused by Carbapenem-Resistant and Difficult-to-Treat Pseudomonas Aeruginosa. Int. J. Antimicrob. Agents 2024, 63, 107021. [Google Scholar] [CrossRef]
- Goncette, V.; Layios, N. Continuous Infusion, Therapeutic Drug Monitoring and Outpatient Parenteral Antimicrobial Therapy with Ceftazidime/Avibactam: A Retrospective Cohort Study. J. Glob. Antimicrob. Resist. 2021, 26, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Lodise, T.P.; Smith, N.M. Determining the Optimal Dosing of a Novel Combination Regimen of Ceftazidime/Avibactam with Aztreonam against NDM-1-Producing Enterobacteriaceae Using a Hollow-Fibre Infection Model. J. Antimicrob. Chemother. 2020, 75, 2622–2632. [Google Scholar] [CrossRef] [PubMed]
- Shields, R.K.; Nguyen, M.H. Pneumonia and Renal Replacement Therapy Are Risk Factors for Ceftazidime-Avibactam Treatment Failures and Resistance among Patients with Carbapenem-Resistant Enterobacteriaceae Infections. Antimicrob. Agents Chemother. 2018, 62, e02497-17. [Google Scholar] [CrossRef]
- Vena, A.; Giacobbe, D. Clinical Experience with Ceftazidime-Avibactam for the Treatment of Infections Due to Multidrug-Resistant Gram-Negative Bacteria Other than Carbapenem-Resistant Enterobacterales. Antibiotics 2020, 9, 71. [Google Scholar] [CrossRef]
- Tamma, P.D.; Aitken, S.L. Infectious Diseases Society of America 2023 Guidance on the Treatment of Antimicrobial Resistant Gram-Negative Infections. Clin. Infect. Dis. 2023, 7, 18. [Google Scholar] [CrossRef]
Clinical Variables | Total N = 75 | CZA N = 34 (45.3%) | CZA+FOS N = 41 (54.7%) | p-Value |
---|---|---|---|---|
Males, n (%) | 61 (81.3) | 32 (94.1) | 29 (70.7) | 0.01 |
Age, years, Median (IQR) | 65 (57–73) | 68 (59–79) | 62 (54–72) | 0.06 |
CCI, Median (IQR) | 4 (2–6) | 4 (3–6) | 4 (2–5) | 0.28 |
ICU hospitalization, n (%) | 47 (62.7) | 19 (55.9) | 28 (68.3) | 0.27 |
Septic shock, n (%) Missing data, n (%) | 18 (24.0) 12 (16.0) | 7 (20.6) 4 (11.8) | 11 (26.8) 8 (19.5) | 0.45 |
Continuous venovenous hemodialysis, n (%) | 10 (13.3) | 5 (14.7) | 5 (12.2) | 0.75 |
Prolonged infusion, n (%) | 42 (56.0) | 29 (85.3) | 13 (31.7) | <0.0001 |
Treatment duration, days, Median (IQR) | 12 (10–16) | 11 (10–14) | 13 (10–17) | 0.24 |
Microbiological features | ||||
Patients with isolates from low pulmonary specimen (BAS/BAL), n (%) | 54 (72.4) | 22 (64.7) | 32 (78.0) | 0.20 |
Polymicrobial infections among patients with isolates (BAS/BAL), n (%) | 3 (5.6) | 2 (9.1) | 1 (3.1) | 0.56 |
Patients with isolates only from blood samples, n (%) | 9 (12.0) | 6 (17.6) | 3 (7.3) | 0.17 |
Patients with no microorganism detected *, n (%) | 12 (16.0) | 6 (17.6) | 6 (14.6) | 0.72 |
Patients with Gram-negative microorganism detected *, n (%) | 63 (84.0) | 28 (82.4) | 35 (85.4) | 0.72 |
Klebsiella (31 pneumoniae + 1 aerogenes), n (%) | 32 (50.8) | 13 (46.4) | 19 (54.3) | 0.26 |
Pseudomonas aeruginosa ^, n (%) | 28 (44.4) | 12 (42.9) | 16 (45.7) | |
Klebsiella pneumoniae + Pseudomonas aeruginosa ^^ | 2 (3.2) | 2 (7.1) | 0 | |
Escherichia coli, n (%) | 1 (1.6) | 1 (3.6) | 0 | |
Carbapenem resistant *, n (%) | 43 (57.2) | 17 (60.7) | 26 (74.3) | 0.03 |
-KPC producers **, n (%) | 19 (44.2) | 8 (47.1) | 11 (42.3) | 0.66 |
-OXA-48 like producers *, n (%) * | 2 (4.6) | 0 | 2 (7.7) | |
-KPC + OXA-48 like producers **, n (%) | 6 (14.0) | 2 (11.8) | 4 (15.4) | |
-Other or unknown **, n (%) | 16 (37.2) | 7 (41.2) | 9 (34.6) |
Survival N (% of Total) | p-Value * | |
---|---|---|
Overall | 56 (74.7) | - |
Treatment CZA CZA+fosfomycin | 26 (76.5) 30 (73.2) | 0.78 |
Sex Male Female | 45 (73.8) 11 (78.6) | 0.67 |
ICU hospitalization No Yes | 27 (96.4) 29 (61.7) | 0.01 |
Septic shock No Yes Missing data | 35 (77.8) 12 (66.7) 9 (75.0) | 0.35 0.82 |
CVVH No Yes | 51 (78.5) 5 (50.0) | 0.05 |
Prolonged infusion No Yes | 21 (63.6) 35 (83.3) | 0.06 |
Carbapenem-resistant * No Yes Missing Not applicable (n = 12) | 11 (73.3) 32 (72.7) 5 (100) 9 (75.0) | 0.81 n.e. 0.93 |
Klebsiella pneumoniae ** No Yes | 22 (75.9) 25 (73.5) | 0.79 |
Pseudomonas aeruginosa ** No Yes | 24 (72.7) 23 (76.7) | 0.69 |
Un-Adjusted | Adjusted | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
CZA+fosfomycin, ref. CZA monotherapy | 1.14 | 0.46–2.83 | 0.78 | 0.32 | 0.07–1.39 | 0.128 |
Un-Adjusted | Adjusted | |||||
---|---|---|---|---|---|---|
HR | 95% CI | p-Value | HR | 95% CI | p-Value | |
Prolonged infusion ref. Standard infusion | 0.41 | 0.16–1.04 | 0.06 | 0.34 | 0.14–0.96 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fois, M.; De Vito, A.; Cherchi, F.; Ricci, E.; Pontolillo, M.; Falasca, K.; Corti, N.; Comelli, A.; Bandera, A.; Molteni, C.; et al. Efficacy and Safety of Ceftazidime–Avibactam Alone versus Ceftazidime–Avibactam Plus Fosfomycin for the Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Multicentric Retrospective Study from the SUSANA Cohort. Antibiotics 2024, 13, 616. https://doi.org/10.3390/antibiotics13070616
Fois M, De Vito A, Cherchi F, Ricci E, Pontolillo M, Falasca K, Corti N, Comelli A, Bandera A, Molteni C, et al. Efficacy and Safety of Ceftazidime–Avibactam Alone versus Ceftazidime–Avibactam Plus Fosfomycin for the Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Multicentric Retrospective Study from the SUSANA Cohort. Antibiotics. 2024; 13(7):616. https://doi.org/10.3390/antibiotics13070616
Chicago/Turabian StyleFois, Marco, Andrea De Vito, Francesca Cherchi, Elena Ricci, Michela Pontolillo, Katia Falasca, Nicolò Corti, Agnese Comelli, Alessandra Bandera, Chiara Molteni, and et al. 2024. "Efficacy and Safety of Ceftazidime–Avibactam Alone versus Ceftazidime–Avibactam Plus Fosfomycin for the Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Multicentric Retrospective Study from the SUSANA Cohort" Antibiotics 13, no. 7: 616. https://doi.org/10.3390/antibiotics13070616
APA StyleFois, M., De Vito, A., Cherchi, F., Ricci, E., Pontolillo, M., Falasca, K., Corti, N., Comelli, A., Bandera, A., Molteni, C., Piconi, S., Colucci, F., Maggi, P., Boscia, V., Fugooah, A., Benedetti, S., De Socio, G. V., Bonfanti, P., & Madeddu, G. (2024). Efficacy and Safety of Ceftazidime–Avibactam Alone versus Ceftazidime–Avibactam Plus Fosfomycin for the Treatment of Hospital-Acquired Pneumonia and Ventilator-Associated Pneumonia: A Multicentric Retrospective Study from the SUSANA Cohort. Antibiotics, 13(7), 616. https://doi.org/10.3390/antibiotics13070616