Adherence to Antibiotic Prescription Guidelines in Four Community Hospitals in Germany
Abstract
:1. Introduction
2. Results
2.1. Demographic Data
2.2. Urinary Tract Infections
2.3. Blood Stream Infections
2.4. Use of Antibiotics and Adherence to Guidelines
2.5. Multivariable Analysis
2.5.1. First-Line Antibiotic Treatment Adherence to Guidelines
2.5.2. Antibiotic Treatment Adherence to Guidelines Depending on Microbiological Proof
3. Discussion
3.1. Microbiological Findings UTI
3.2. Microbiological Findings BSI
3.3. Guideline Adherence
4. Limitations
4.1. Heterogeneity of Facilities and Generalization of Results
4.2. Insufficient Diagnostics
4.3. Selection Bias
4.4. Recall Bias
4.5. Information and Observer Bias
5. Material and Methods
5.1. Design
5.2. Patients
5.3. Ethics
5.4. Demographic Data
- Age;
- Gender;
- Duration of inpatient stay;
- ICD-10 main diagnosis;
- ICD-10 codes of secondary diagnoses by organ systems;
- The Charlson comorbidity score [41].
5.5. Data on Infections
- The type of infection (UTI and/or BSI);
- Its causative pathogen;
- The clinical outcome of the patient.
5.6. Data on Antimicrobial Therapy
- Type of substance(s);
- Timely administration (during visit of the emergency department);
- Appropriateness of substance in terms of pathogen and type of infection;
- Dosage, duration, and route administration according to guidelines;
- Possibility of therapy modification (de-escalation or escalation) according to microbiological findings.
5.7. Adherence to Guidelines
5.8. Statistics
5.9. Microbiologal Diagnostics
5.9.1. Urine Samples
5.9.2. Blood Cultures
5.9.3. Screening for Multidrug-Resistant Organisms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ICD10-Code | Disease |
---|---|
N39.0 | UTI |
N39.01 | Acute cystitis without hematuria |
N39.02 | Acute cystitis with hematuria |
N39.03 | Chronic or recurrent cystitis |
A41 | BSI |
A41.0 | Septicemia without mention of focus |
A41.1 | Septicemia due to Gram-positive bacteria |
A41.2 | Septicemia due to Gram-negative bacteria |
A41.5 | Methicillin-resistant Staphylococcus aureus (MRSA) septicemia |
A41.8 | Other specified septicemias |
A41.9 | Unspecified septicemia |
A41.51 | Sepsis due to MRSA |
A41.58 | Other specified MRSA infections |
Parameter | Total | Hospital 1 | Hospital 2 | Hospital 3 | Hospital 4 | p-Value |
---|---|---|---|---|---|---|
n (%) | n (%) | n (%) | n (%) | n (%) | ||
Patients | 586 (100%) | 128 (100%) | 123 (100%) | 312 (100%) | 23 (100%) | |
Age (years) | 82 (71–88) | 83.5 (76–89) | 83 (74–88) | 81 (69–87) | 81 (75–86) | 0.055 |
Sex (% female) | 355 (60.6%) | 80 (62.5%) | 70 (56.9%) | 193 (61.9%) | 12 (52.2%) | |
Length of stay (days), median (IQR) | 6 (4–9) | 6 (4–8) | 7 (4–9) | 6 (3–9) | 6 (4–8) | 0.236 |
Original Charlson comorbidity score, median (IQR) | 1 (0–3) | 1 (1–3) | 1 (0–2) | 1 (0–3) | 1 (0–2) | 0.088 |
Intensive care unit | 69 (11.8%) | 9 (7%) | 26 (21.1%) | 34 (10.9%) | 0 (0%) | |
No infection | 61 (10.4%) | 13 (10.2%) | 20 (16.3%) | 27 (8.7%) | 1 (4.3%) | <0.001 |
Urinary tract infection (UTI) (only) | 342 (58.4%) | 61 (47.7%) | 60 (48.8%) | 200 (64.1%) | 21 (91.3%) | |
Bloodstream infection (BSI) (only) | 81 (13.8%) | 21 (16.4%) | 24 (19.5%) | 36 (11.5%) | 0 (0%) | |
UTI and BSI | 102 (17.4%) | 33 (25.8%) | 19 (15.4%) | 49 (15.7%) | 1 (4.3%) | |
Hospital acquired | 56 (9.6%) | 18 (14.1%) | 9 (7.3%) | 26 (8.3%) | 3 (13%) | 0.205 |
Microbiology results available | 362 (61.8%) | 83 (64.8%) | 76 (61.8%) | 181 (58%) | 22 (95.7%) | 0.004 |
Antibiotic therapy | 542 (92.5%) | 124 (96.9%) | 113 (91.9%) | 283 (90.7%) | 22 (95.7%) | 0.146 |
Intravenous administration | 367 (62.6%) | 110 (85.9%) | 80 (65%) | 160 (51.3%) | 17 (73.9%) | <0.001 |
Sequential administration | 129 (22%) | 8 (6.3%) | 11 (8.9%) | 107 (34.3%) | 3 (13%) | |
Oral administration | 80 (13.7%) | 9 (7%) | 23 (18.7%) | 45 (14.4%) | 3 (13%) | |
No antibiotics administered | 10 (1.7%) | 1 (0.8%) | 9 (7.3%) | 0 (0%) | 0 (0%) | |
Choice of first-line substance | 238 (40.6%) | 56 (43.8%) | 34 (27.6%) | 138 (44.2%) | 10 (43.5%) | 0.012 |
Orientation on microbiology results | 120 (20.5%) | 14 (10.9%) | 16 (13%) | 79 (25.3%) | 11 (47.8%) | <0.001 |
De-escalation of therapy | 115 (19.6%) | 6 (4.7%) | 10 (8.1%) | 98 (31.4%) | 1 (4.3%) | <0.001 |
Escalation of therapy | 63 (10.8%) | 10 (7.8%) | 16 (13%) | 34 (10.9%) | 3 (13%) | 0.585 |
Blood transfusion | 17 (2.9%) | 5 (3.9%) | 3 (2.4%) | 9 (2.9%) | 0 (0%) | 0.743 |
Parenteral nutrition | 15 (2.6%) | 3 (2.3%) | 8 (6.5%) | 3 (1%) | 1 (4.3%) | 0.011 |
Immunosuppression | 17 (2.9%) | 2 (1.6%) | 3 (2.4%) | 11 (3.5%) | 1 (4.3%) | 0.680 |
Chemotherapy | 23 (3.9%) | 1 (0.8%) | 1 (0.8%) | 20 (6.4%) | 1 (4.3%) | 0.009 |
MDO colonization | 46 (7.8%) | 13 (10.2%) | 3 (2.4%) | 30 (9.6%) | 0 (0%) | 0.026 |
MDO infection | 27 (4.6%) | 9 (7%) | 2 (1.6%) | 16 (5.1%) | 0 (0%) | 0.139 |
Death | 45 (7.7%) | 6 (4.7%) | 12 (9.8%) | 26 (8.3%) | 1 (4.3%) | 0.405 |
Outcome of first-line antibiotic treatment adherence to guidelines | 238 (40.6%) | 56 (43.8%) | 34 (27.6%) | 138 (44.2%) | 10 (43.5%) | 0.012 |
Pathogen | n |
---|---|
Escherichia coli (third-generation cephalosporin-resistant) | 151 (6) |
Klebsiella pneumoniae | 23 |
Proteus mirabilis | 21 |
Proteus vulgaris | 7 |
Citrobacter koseri | 5 |
Klebsiella oxytoca | 4 |
Serratia marcescens | 2 |
Enterobacter cloacae | 2 |
Citrobacter freundii | 2 |
Citrobacter braakii | 1 |
Raoultella ornithinolytica | 1 |
Morganella morganii | 1 |
Providencia stuartii | 1 |
Enterococcus faecalis | 26 |
Enterococcus faecium (vancomycin-resistant) | 6 (2) |
Enterococcus hirae | 2 |
Pseudomonas aeruginosa | 13 |
Acinetobacter baumannii | 1 |
Achromobacter xylosoxidans | 1 |
Staphylococcus epidermidis | 2 |
Staphylococcus capitis | 2 |
Staphylococcus hominis | 1 |
Staphylococcus pettenkoferi | 1 |
Staphylococcus saprophyticus | 1 |
Staphylococcus aureus (methicillin-resistant) | 1 (0) |
Streptococcus agalactiae | 1 |
Streptococcus mitis | 1 |
Streptococcus oralis | 1 |
Aerococcus urinae | 1 |
Culture negative | 339 |
Pathogen | n |
---|---|
Escherichia coli (third-generation cephalosporin-resistant) | 72 (1) |
Klebsiella oxytoca | 17 |
Klebsiella pneumoniae | 4 |
Enterobacter cloacae | 3 |
Providencia stuartii | 2 |
Proteus mirabilis | 1 |
Klebsiella aerogenes | 1 |
Pseudomonas aeruginosa | 3 |
Enterococcus faecalis | 3 |
Enterococcus hirae | 2 |
Enterococcus faecium (vancomycin-resistant) | 1 (1) |
Streptococcus agalactiae | 7 |
Streptococcus parasanguinis | 1 |
Staphylococcus aureus (methicillin-resistant) | 6 (0) |
Staphylococcus epidermidis | 6 |
Staphylococcus hominis | 6 |
Staphylococcus capitis | 1 |
Staphylococcus pettenkoferi | 1 |
Staphylococcus schleiferi | 1 |
Staphylococcus saprophyticus | 1 |
Chlamydia pneumoniae | 1 |
Legionella pneumophila | 1 |
Candida albicans | 1 |
Cutibacterium avium | 1 |
Clostridium perfringens | 1 |
Culture negative | 468 |
Substance | n |
---|---|
Ceftriaxone | 245 |
Cefpodoxime | 74 |
Ampicillin/Sulbactam | 52 |
Ciprofloxacin | 55 |
Piperacillin/Tazobactam | 55 |
Fosfomycin (powder = oral formulation only) | 22 |
Meropenem | 13 |
Linezolid | 13 |
Levofloxacin | 12 |
Metronidazole | 10 |
Sulfamethoxazole/Trimethoprim | 10 |
Cefuroxime | 9 |
Nitrofurantoin | 8 |
Amoxicillin/Clavulanic acid | 7 |
Claritromycin | 4 |
Vancomycin | 4 |
Azithromycin | 3 |
Doxycycline | 3 |
Amoxicillin | 3 |
Moxifloxacin | 2 |
Flucloxacillin | 1 |
Erythromycin | 1 |
Sultamicillin | 1 |
Ceftazidime | 1 |
Substance | n |
---|---|
Ceftriaxone | 91 |
Piperacillin/Tazobactam | 55 |
Ampicillin/Sulbactam | 32 |
Metronidazole | 19 |
Meropenem | 16 |
Cefpodoxime | 12 |
Ciprofloxacin | 10 |
Vancomycin | 10 |
Linezolid | 5 |
Levofloxacin | 5 |
Claritromycin | 5 |
Cefuroxime | 4 |
Flucloxacillin | 3 |
Nitrofurantoin | 2 |
Amoxicillin/Clavulanic acid | 2 |
Clindamycin | 2 |
Azithromycin | 1 |
Sulfamethoxazole/Trimethoprim | 1 |
Moxifloxacin | 1 |
Erythromycin | 1 |
Ampicillin | 1 |
Doxycycline | 1 |
Ceftazidime | 1 |
Penicillin G | 1 |
References
- WHO. Antimicrobial Resistance; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Meinen, A.; Tomczyk, S.; Wiegand, F.N.; Abu Sin, M.; Eckmanns, T.; Haller, S. Antimicrobial Resistance in Germany and Europe—A Systematic Review on the Increasing Threat Accelerated by Climate Change. J. Health Monit. 2023, 8, 93–108. [Google Scholar] [CrossRef] [PubMed]
- Schuts, E.C.; Hulscher, M.E.J.L.; Mouton, J.W.; Verduin, C.M.; Stuart, J.W.T.C.; Overdiek, H.W.P.M.; van der Linden, P.D.; Natsch, S.; Hertogh, C.M.P.M.; Wolfs, T.F.W.; et al. Current Evidence on Hospital Antimicrobial Stewardship Objectives: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2016, 16, 847–856. [Google Scholar] [CrossRef]
- van Driel, A.A.; Mulder, M.; Stobberingh, E.E.; Verbon, A. Adherence to and Usefulness of the National Treatment Guideline for Urinary Tract Infections (UTI) in a Risk Area. BMC Prim. Care 2022, 23, 224. [Google Scholar] [CrossRef] [PubMed]
- Dicheva, S.; Behrend, M.; Glaeske, G.; Schicktanz, C. Harnwegsinfekte bei Frauen. In BARMER GEK Arzneimittelreport 2015; Schriftenreihe zur Gesundheitsanalyse; Asgard Verlagsservice GmbH: Berlin, Germany, 2015; Volume 32, pp. 107–137. ISBN 978-394-74497-2. [Google Scholar]
- Peng, Z.; Hayen, A.; Hall, J.; Liu, B. Microbiology Testing and Antibiotic Treatment for Urinary Tract Infections in General Practice: A Nationwide Observational Study. Infection 2021, 49, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Nationales Referenzzentrum für Surveillance von nosokomialen Infektionen German National Point Prevalence Survey of Healthcare-Associated Infections and Antimicrobial Usage 2016. National Reference Center for Surveillance of Nosocomial Infections (NRZ). PPS 2016 Abschlussbericht. 2017. Available online: https://www.nrz-hygiene.de/files/Projekte/PPS%202016/PPS_2016_Abschlussbericht_20.07.2017.pdf (accessed on 13 July 2023).
- Fleischmann-Struzek, C.; Rose, N.; Freytag, A.; Spoden, M.; Prescott, H.C.; Schettler, A.; Wedekind, L.; Ditscheid, B.; Storch, J.; Born, S.; et al. Epidemiology and Costs of Postsepsis Morbidity, Nursing Care Dependency, and Mortality in Germany, 2013 to 2017. JAMA Netw. Open 2021, 4, e2134290. [Google Scholar] [CrossRef] [PubMed]
- Wagenlehner, F.; Schmiemann, G. S3-Leitlinie Epidemiologie, Diagnostik, Therapie, Prävention und Management unkomplizierter, bakterieller, ambulant erworbener Harnwegsinfektionen bei erwachsenen Patienten 2017. AWMF. S3-Leitlinie Harnwegsinfektionen. 2017. Available online: https://register.awmf.org/assets/guidelines/043-044k_S3_Harnwegsinfektionen_2017-05.pdf (accessed on 3 February 2023).
- Schito, G.C.; Naber, K.G.; Botto, H.; Palou, J.; Mazzei, T.; Gualco, L.; Marchese, A. The ARESC Study: An International Survey on the Antimicrobial Resistance of Pathogens Involved in Uncomplicated Urinary Tract Infections. Int. J. Antimicrob. Agents 2009, 34, 407–413. [Google Scholar] [CrossRef] [PubMed]
- Flores-Mireles, A.L.; Walker, J.N.; Caparon, M.; Hultgren, S.J. Urinary Tract Infections: Epidemiology, Mechanisms of Infection and Treatment Options. Nat. Rev. Microbiol. 2015, 13, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Chardavoyne, P.; Kasmire, K. Appropriateness of Antibiotic Prescriptions for Urinary Tract Infections. WestJEM 2020, 21, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Alkhawaldeh, R.; Abu Farha, R.; Abu Hammour, K.; Alefishat, E. The Appropriateness of Empiric Treatment of Urinary Tract Infections in a Tertiary Teaching Hospital in Joran: A Cross-Sectional Study. Antibiotics 2022, 11, 629. [Google Scholar] [CrossRef]
- Timsit, J.-F.; Ruppé, E.; Barbier, F.; Tabah, A.; Bassetti, M. Bloodstream Infections in Critically Ill Patients: An Expert Statement. Intensive Care Med. 2020, 46, 266–284. [Google Scholar] [CrossRef]
- Diekema, D.J.; Hsueh, P.-R.; Mendes, R.E.; Pfaller, M.A.; Rolston, K.V.; Sader, H.S.; Jones, R.N. The Microbiology of Bloodstream Infection: 20-Year Trends from the SENTRY Antimicrobial Surveillance Program. Antimicrob. Agents Chemother. 2019, 63, e00355-19. [Google Scholar] [CrossRef] [PubMed]
- Davey, P.; Marwick, C.A.; Scott, C.L.; Charani, E.; McNeil, K.; Brown, E.; Gould, I.M.; Ramsay, C.R.; Michie, S. Interventions to Improve Antibiotic Prescribing Practices for Hospital Inpatients. Cochrane Database Syst. Rev. 2017, 2017, CD003543. [Google Scholar] [CrossRef] [PubMed]
- Nathwani, D.; Varghese, D.; Stephens, J.; Ansari, W.; Martin, S.; Charbonneau, C. Value of Hospital Antimicrobial Stewardship Programs [ASPs]: A Systematic Review. Antimicrob. Resist. Infect. Control 2019, 8, 35. [Google Scholar] [CrossRef] [PubMed]
- Karanika, S.; Paudel, S.; Grigoras, C.; Kalbasi, A.; Mylonakis, E. Systematic Review and Meta-Analysis of Clinical and Economic Outcomes from the Implementation of Hospital-Based Antimicrobial Stewardship Programs. Antimicrob. Agents Chemother. 2016, 60, 4840–4852. [Google Scholar] [CrossRef] [PubMed]
- Philips, H.; Huibers, L.; Holm Hansen, E.; Bondo Christensen, M.; Leutgeb, R.; Klemenc-Ketis, Z.; Chmiel, C.; Muñoz, M.-A.; Kosiek, K.; Remmen, R. Guidelines Adherence to Lower Urinary Tract Infection Treatment in Out-of-Hours Primary Care in European Countries. Qual. Prim. Care 2014, 22, 221–231. [Google Scholar] [PubMed]
- Dik, J.-W.H.; Sinha, B.; Friedrich, A.W.; Lo-Ten-Foe, J.R.; Hendrix, R.; Köck, R.; Bijker, B.; Postma, M.J.; Freitag, M.H.; Glaeske, G.; et al. Cross-Border Comparison of Antibiotic Prescriptions among Children and Adolescents between the North of the Netherlands and the North-West of Germany. Antimicrob. Resist. Infect. Control 2016, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Kranz, J.; Schlager, D.; Mühlstädt, S.; Nagler, J.; Wagenlehner, F.M.E.; Schneidewind, L. Barrieren der Leitlinienadhärenz: Identifizierung von Barrieren der Leitlinienadhärenz am Beispiel einer Umfrage zur AWMF-S3-Leitlinie Epidemiologie, Diagnostik, Therapie und Management unkomplizierter bakterieller ambulant erworbener Harnwegsinfektionen bei erwachsenen Patienten. Urologe 2019, 58, 1019–1028. [Google Scholar] [CrossRef]
- Neugebauer, M.; Ebert, M.; Vogelmann, R. A Clinical Decision Support System Improves Antibiotic Therapy for Upper Urinary Tract Infection in a Randomized Single-Blinded Study. BMC Health Serv. Res. 2020, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Zilinskas, G.; Tamasauskiene, L.; Tamasauskas, D. Analysis of Citizens’ Subjective Perception of Safe Antibiotic Use in European Union Countries. J. Infect. Public Health 2019, 12, 229–235. [Google Scholar] [CrossRef]
- Spoorenberg, V.; Hulscher, M.E.J.L.; Akkermans, R.P.; Prins, J.M.; Geerlings, S.E. Appropriate Antibiotic Use for Patients with Urinary Tract Infections Reduces Length of Hospital Stay. Clin. Infect. Dis. 2014, 58, 164–169. [Google Scholar] [CrossRef]
- Zatorski, C.; Zocchi, M.; Cosgrove, S.E.; Rand, C.; Brooks, G.; May, L. A Single Center Observational Study on Emergency Department Clinician Non-Adherence to Clinical Practice Guidelines for Treatment of Uncomplicated Urinary Tract Infections. BMC Infect. Dis. 2016, 16, 638. [Google Scholar] [CrossRef]
- Plate, A.; Kronenberg, A.; Risch, M.; Mueller, Y.; Di Gangi, S.; Rosemann, T.; Senn, O. Treatment of Urinary Tract Infections in Swiss Primary Care: Quality and Determinants of Antibiotic Prescribing. BMC Fam. Pract. 2020, 21, 125. [Google Scholar] [CrossRef]
- Federal Office of Public Health FOPH; Federal Food Safety and Veterinary Office FSVO; Federal Office for Agriculture FOAG; Federal Office for the Environment FOEN. Available online: https://www.use-wisely-take-precisely.ch/ (accessed on 2 February 2024).
- Bundesamt für Gesundheit (BAG); Bundesamt für Landwirtschaft BLW; Bundesamt für Lebensmittelsicherheit und Veterinärwesen BLV; Bundesamt für Umwelt BAFU Nutze Sie Richtig, Es Ist Wichtig. Available online: https://www.richtig-ist-wichtig.ch/ (accessed on 2 February 2024).
- Schmiemann, G.; Hoffmann, F.; Hamprecht, A.; Jobski, K. Patterns and Trends of Antibacterial Treatment in Patients with Urinary Tract Infections, 2015–2019: An Analysis of Health Insurance Data. BMC Prim. Care 2022, 23, 204. [Google Scholar] [CrossRef]
- Van Buul, L.W.; Van Der Steen, J.T.; Doncker, S.M.; Achterberg, W.P.; Schellevis, F.G.; Veenhuizen, R.B.; Hertogh, C.M. Factors Influencing Antibiotic Prescribing in Long-Term Care Facilities: A Qualitative in-Depth Study. BMC Geriatr. 2014, 14, 136. [Google Scholar] [CrossRef] [PubMed]
- Hummers-Pradier, E. Management of Urinary Tract Infections in Female General Practice Patients. Fam. Pract. 2004, 22, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Lelie- van der Zande, R.; Bouvy, M.; Teichert, M. Adherence to Guideline Recommendations for Urinary Tract Infections in Adult Women: A Cross-Sectional Study. Prim. Health Care Res. Dev. 2021, 22, e11. [Google Scholar] [CrossRef] [PubMed]
- Berninghausen, C.; Schwab, F.; Gropmann, A.; Leidel, B.A.; Somasundaram, R.; Hottenbacher, L.; Gastmeier, P.; Hansen, S. Deficits in Blood Culture Collection in the Emergency Department If Sepsis Is Suspected: Results of a Retrospective Cohort Study. Infection 2024. [Google Scholar] [CrossRef]
- Schelhase, T. Statistische Krankenhausdaten: Diagnosedaten der Krankenhauspatienten 2017. In Krankenhaus-Report 2019; Klauber, J., Geraedts, M., Friedrich, J., Wasem, J., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2019; pp. 271–296. ISBN 978-3-662-58224-4. [Google Scholar]
- De Cruppé, W.; Geraedts, M. Hospital Choice in Germany from the Patient’s Perspective: A Cross-Sectional Study. BMC Health Serv. Res. 2017, 17, 720. [Google Scholar] [CrossRef]
- Palacios-Ceña, D.; Florencio, L.L.; Hernández-Barrera, V.; Fernandez-de-las-Peñas, C.; De Miguel-Diez, J.; Martínez-Hernández, D.; Carabantes-Alarcón, D.; Jimenez-García, R.; Lopez-de-Andres, A.; Lopez-Herranz, M. Trends in Incidence and Outcomes of Hospitalizations for Urinary Tract Infection among Older People in Spain (2001–2018). JCM 2021, 10, 2332. [Google Scholar] [CrossRef]
- Fleischmann-Struzek, C.; Mikolajetz, A.; Schwarzkopf, D.; Cohen, J.; Hartog, C.S.; Pletz, M.; Gastmeier, P.; Reinhart, K. Challenges in Assessing the Burden of Sepsis and Understanding the Inequalities of Sepsis Outcomes between National Health Systems: Secular Trends in Sepsis and Infection Incidence and Mortality in Germany. Intensive Care Med. 2018, 44, 1826–1835. [Google Scholar] [CrossRef]
- Bavaro, D.F.; Diella, L.; Belati, A.; De Gennaro, N.; Fiordelisi, D.; Papagni, R.; Guido, G.; De Vita, E.; Frallonardo, L.; Camporeale, M.; et al. Impact of a Multistep Bundles Intervention in the Management and Outcome of Gram-Negative Bloodstream Infections: A Single-Center “Proof-of-Concept” Study. Open Forum Infect. Dis. 2022, 9, ofac488. [Google Scholar] [CrossRef] [PubMed]
- Deutschen Institut für Medizinische Dokumentation und Information ICD-10-GM Version 2019 Alphabetisches Verzeichnis 2019; Deutsches Institut für Medizinische Dokumentation und Information: Cologne, Germany, 2019.
- Deutschen Institut für Medizinische Dokumentation und Information ICD-10-GM Version 2020 Alphabetisches Verzeichnis 2020; Deutsches Institut für Medizinische Dokumentation und Information: Cologne, Germany, 2020.
- Prommik, P.; Tootsi, K.; Saluse, T.; Strauss, E.; Kolk, H.; Märtson, A. Simple Excel and ICD-10 Based Dataset Calculator for the Charlson and Elixhauser Comorbidity Indices. BMC Med Res. Methodol. 2022, 22, 4. [Google Scholar] [CrossRef] [PubMed]
- Gupta, K.; Hooton, T.M.; Naber, K.G.; Wullt, B.; Colgan, R.; Miller, L.G.; Moran, G.J.; Nicolle, L.E.; Raz, R.; Schaeffer, A.J.; et al. International Clinical Practice Guidelines for the Treatment of Acute Uncomplicated Cystitis and Pyelonephritis in Women: A 2010 Update by the Infectious Diseases Society of America and the European Society for Microbiology and Infectious Diseases. Clin. Infect. Dis. 2011, 52, e103–e120. [Google Scholar] [CrossRef] [PubMed]
- Brunkhorst, F.; Weigand, M.; Pletz, M. S3-Leitlinie Sepsis—Prävention, Diagnose, Therapie und Nachsorge 2018. Med. Klin. Intensivmed. Notfmed. 2020, 115, 37–109. [Google Scholar] [CrossRef] [PubMed]
- DIN EN ISO 15189; Medical Laboratories—Requirements for Quality and Competence. Deutsches Institut für Normung e.V. (DIN): Berlin, Germany, 2014.
Parameter | Odds Ratio | 95%CI | p-Value Type I | p-Value Type III |
---|---|---|---|---|
(Intercept) | 0.27 | 0.14–0.53 | <0.001 | <0.001 |
Hospital 4 | 0.97 | 0.95–0.99 | 0.001 | <0.001 |
Hospital 3 | 1.14 | 1.09–1.2 | <0.001 | |
Hospital 2 | 0.57 | 0.54–0.6 | <0.001 | |
Hospital 1 | 1 = ref | |||
Age | 1.01 | 1–1.02 | 0.007 | 0.007 |
Female | 0.66 | 0.49–0.88 | 0.005 | 0.005 |
Male | 1 = ref | |||
Preexisting respiratory conditions (n = 161) | 1.52 | 1.07–2.16 | 0.020 | 0.020 |
Preexisting gastrointestinal conditions (n = 232) | 1.27 | 1.04–1.54 | 0.017 | 0.017 |
Preexisting liver and pancreas conditions (n = 147) | 1.46 | 1.15–1.84 | 0.002 | 0.002 |
Preexisting psychiatric conditions (n = 247) | 1.19 | 1–1.42 | 0.051 | 0.051 |
Parameter | Odds Ratio | 95%CI | p-Value Type I | p-Value Type III |
---|---|---|---|---|
Model without age and sex | ||||
(Intercept) | 0.22 | 0.17–0.29 | <0.001 | 0.492 |
Hospital 4 | 5.49 | 4.59–6.57 | <0.001 | <0.001 |
Hospital 3 | 5.04 | 4.12–6.18 | <0.001 | |
Hospital 2 | 1.47 | 1.28–1.68 | <0.001 | |
Hospital 1 | 1 = ref | |||
Preexisting urogenital condition | 1.59 | 1.35–1.87 | <0.001 | <0.001 |
Multidrug-resistant organisms (MDROs) tested | 0.50 | 0.31–0.83 | 0.006 | 0.006 |
Parenteral nutrition | 5.26 | 2.64–10.46 | <0.001 | <0.001 |
Model with age, sex and length of stay | ||||
(Intercept) | 0.35 | 0.15–0.83 | <0.017 | 0.019 |
Hospital 4 | 5.10 | 3.91–6.65 | <0.001 | <0.001 |
Hospital 3 | 5.22 | 4.53–6.00 | <0.001 | |
Hospital 2 | 1.51 | 1.35–1.70 | <0.001 | |
Hospital 1 | 1 = ref | |||
Age | 1.00. | 0.99–1.01 | 0.671 | 0.671 |
Female | 1.02 | 0.79–1.31 | 0.871 | 0.871 |
Male | 1 = ref | |||
Length of stay | 0.96 | 0.89–1.03 | 0.215 | 0.215 |
Preexisting urogenital condition | 1.64 | 1.48–1.82 | <0.001 | <0.001 |
MDRO status taken | 0.54 | 0.30–0.97 | 0.038 | 0.038 |
Parenteral nutrition | 9.76 | 4.87–19.42 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biniek, J.P.; Schwab, F.; Graf, K.; Vonberg, R.-P. Adherence to Antibiotic Prescription Guidelines in Four Community Hospitals in Germany. Antibiotics 2024, 13, 635. https://doi.org/10.3390/antibiotics13070635
Biniek JP, Schwab F, Graf K, Vonberg R-P. Adherence to Antibiotic Prescription Guidelines in Four Community Hospitals in Germany. Antibiotics. 2024; 13(7):635. https://doi.org/10.3390/antibiotics13070635
Chicago/Turabian StyleBiniek, Joachim Peter, Frank Schwab, Karolin Graf, and Ralf-Peter Vonberg. 2024. "Adherence to Antibiotic Prescription Guidelines in Four Community Hospitals in Germany" Antibiotics 13, no. 7: 635. https://doi.org/10.3390/antibiotics13070635
APA StyleBiniek, J. P., Schwab, F., Graf, K., & Vonberg, R. -P. (2024). Adherence to Antibiotic Prescription Guidelines in Four Community Hospitals in Germany. Antibiotics, 13(7), 635. https://doi.org/10.3390/antibiotics13070635