Is Antimicrobial Stewardship Policy Effectively Implemented in Polish Hospitals? Results from Antibiotic Consumption Surveillance before and during the COVID-19 Pandemic
Abstract
:1. Introduction
2. Results
2.1. Non-ICU Patients
2.2. ICU Patients
2.3. Antibiotic Consumption
3. Discussion
4. Materials and Methods
4.1. Study Design and Study Population
4.2. Antibiotic Consumption Measure
4.3. Statistical Analysis
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Tsang, H.F.; Chan, L.W.C.; Cho, W.C.S.; Yu, A.C.S.; Yim, A.K.Y.; Chan, A.K.C.; Ng, L.P.W.; Wong, Y.K.E.; Pei, X.M.; Li, M.J.W.; et al. An update on COVID-19 pandemic: The epidemiology, pathogenesis, prevention and treatment strategies. Expert Rev. Anti Infect. Ther. 2021, 19, 877–888. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.U.; Kim, M.J.; Ra, S.H.; Lee, J.; Bae, S.; Jung, J.; Kim, S.-H. Clinical characteristics of asymptomatic and symptomatic patients with mild COVID-19. Clin. Microbiol. Infect. 2020, 26, 948.e1–948.e3. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Cheng, X.; Feng, X.; Wan, H.; Chen, S.; Xiong, M. Clinical Symptom Differences Between Mild and Severe COVID-19 Patients in China: A Meta-Analysis. Front. Public Health 2021, 8, 561264. [Google Scholar] [CrossRef] [PubMed]
- Siewierska, M.; Gajda, M.; Opalska, A.; Brudło, M.; Krzyściak, P.; Gryglewska, B.; Różańska, A.; Wójkowska-Mach, J. Hospital antibiotic consumption-an interrupted time series analysis of the early and late phases of the COVID-19 pandemic in Poland, a retrospective study. Pharmacol. Rep. 2023, 75, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ha, S.; Botten, J.W.; Xu, K.; Zhang, N.; An, Z.; Strohl, W.R.; Shiver, J.W.; Fu, T.M. SARS-CoV-2 Omicron: Viral Evolution, Immune Evasion, and Alternative Durable Therapeutic Strategies. Viruses 2024, 16, 697. [Google Scholar] [CrossRef]
- Update to living WHO guideline on drugs for covid-19. BMJ 2023, 383, 2622. [CrossRef]
- Furtado RH, M.; Berwanger, O.; Fonseca, H.A.; Corrêa, T.D.; Ferraz, L.R.; Lapa, M.G.; Zampieri, F.G.; Veiga, V.C.; Azevedo, L.C.P.; Rosa, R.G.; et al. Azithromycin in addition to standard of care versus standard of care alone in the treatment of patients admitted to the hospital with severe COVID-19 in Brazil (COALITION II): A randomised clinical trial. Lancet 2020, 396, 959–967. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/roactemra (accessed on 16 May 2024).
- Granholm, A.; Munch, M.W.; Myatra, S.N.; Vijayaraghavan, B.K.T.; Cronhjort, M.; Wahlin, R.R.; Jakob, S.M.; Cioccari, L.; Kjær, M.-B.N.; Vesterlund, G.K.; et al. Higher vs Lower Doses of Dexamethasone in Patients with COVID-19 and Severe Hypoxia (COVID STEROID 2) trial: Protocol for a secondary Bayesian analysis. Acta Anaesthesiol. Scand. 2021, 65, 702–710. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Clinical Management of COVID-19. Interim Guidance 27 May 2020, WHO 2020. Available online: https://iris.who.int/handle/10665/332196 (accessed on 1 December 2023).
- Rawson, T.M.; Moore, L.S.P.; Zhu, N.; Ranganathan, N.; Skolimowska, K.; Gilchrist, M.; Satta, G.; Cooke, G.; Holmes, A. Bacterial and Fungal Coinfection in Individuals with Coronavirus: A Rapid Review to Support COVID-19 Antimicrobial Prescribing. Clin. Infect. Dis. 2020, 71, 2459–2468. [Google Scholar] [CrossRef] [PubMed]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Mohsen, S.; Dickinson, J.A.; Somayaji, R. Update on the adverse effects of antimicrobial therapies in community practice. Can. Fam. Physician 2020, 66, 651–659. [Google Scholar] [PubMed]
- WHO Regional Office for Europe/European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2022–2020 Data; WHO Regional Office for Europe: Copenhagen, Denmark, 2022. [Google Scholar]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Pałka, A.; Kujawska, A.; Hareza, D.A.; Gajda, M.; Wordliczek, J.; Jachowicz-Matczak, E.; Owsianka, I.; Żółtowska, B.; Chmielarczyk, A.; Romaniszyn, D.; et al. Secondary bacterial infections & extensively drug-resistant bacteria among COVID-19 hospitalized patients at the University Hospital in Kraków. Ann. Clin. Microbiol. Antimicrob. 2023, 22, 77. [Google Scholar] [CrossRef]
- Llor, C.; Bjerrum, L. Antimicrobial resistance: Risk associated with antibiotic overuse and initiatives to reduce the problem. Ther. Adv. Drug Saf. 2014, 5, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Chedid, M.; Waked, R.; Haddad, E.; Chetata, N.; Saliba, G.; Choucair, J. Antibiotics in treatment of COVID-19 complications: A review of frequency, indications, and efficacy. J. Infect. Public Health 2021, 14, 570–576. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Shen, L.; Yin, J.; Zhou, L.; Sun, Q. Antibiotic use in township hospitals during the COVID-19 pandemic in Shandong, China. Antimicrob. Resist. Infect. Control 2022, 11, 164. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Antimicrobial Consumption in the EU/EEA (ESAC-Net)—Annual Epidemiological Report 2020; ECDC: Stockholm, Sweden, 2021. [Google Scholar]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance in the EU/EEA (EARS-Net)—Annual Epidemiological Report 2020; ECDC: Stockholm, Sweden, 2022. [Google Scholar]
- Jachowicz, E.; Różańska, A.; Pobiega, M.; Topolski, M.; Wójkowska-Mach, J. Consumption of Antibiotics and Epidemiology of Clostridioides difficile in the European Union in 2016-Opportunity for Practical Application of Aggregate ECDC Data. Antibiotics 2020, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Ziółkowski, G.; Pawłowska, I.; Krawczyk, L.; Wojkowska-Mach, J. Antibiotic consumption versus the prevalence of multidrug-resistant Acinetobacter baumannii and Clostridium difficile infections at an ICU from 2014–2015. J. Infect. Public Health 2018, 11, 626–630. [Google Scholar] [CrossRef] [PubMed]
- Trejnowska, E.; Deptuła, A.; Tarczyńska-Słomian, M.; Knapik, P.; Jankowski, M.; Misiewska-Kaczur, A.; Tamowicz, B.; Śmiechowicz, J.; Antończyk, R.; Armatowicz, P.; et al. Surveillance of Antibiotic Prescribing in Intensive Care Units in Poland. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 5670238. [Google Scholar] [CrossRef] [PubMed]
- Meyer, E.; Gastmeier, P.; Deja, M.; Schwab, F. Antibiotic consumption and resistance: Data from Europe and Germany. Int. J. Med. Microbiol. 2013, 303, 388–395. [Google Scholar] [CrossRef]
- Hanberger, H.; Erlandsson, M.; Burman, L.G.; Cars, O.; Gill, H.; Lindgren, S.; Nilsson, L.E.; Olsson-liljequist, B.; Walther, S.; The Icu-strama Study Group. High antibiotic susceptibility among bacterial pathogens in Swedish ICUs. Report from a nation-wide surveillance program using TA90 as a novel index of susceptibility. Scand. J. Infect. Dis. 2004, 36, 24–30. [Google Scholar] [CrossRef]
- Singh, P.; Gupta, D.K.; Bindra, A.; Trikha, A.; Lathwal, A.; Malhotra, R.; Walia, K.; Mathur, P. Antimicrobial consumption in intensive care unit patients at level 1 trauma centre in India. Indian J. Med. Microbiol. 2022, 40, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Balkhy, H.H.; El-Saed, A.; El-Metwally, A.; Arabi, Y.M.; Aljohany, S.M.; Al Zaibag, M.; Baharoon, S.; Alothman, A.F. Antimicrobial consumption in five adult intensive care units: A 33-month surveillance study. Antimicrob Resist. Infect. Control 2018, 7, 156. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control. Healthcare-associated infections acquired in intensive care units. In Annual Epidemiological Report for 2017; ECDC: Stockholm, Sweden, 2019. [Google Scholar]
- Proud, E.; Mueller, T.; Gronkowski, K.; Kurdi, A.; Platt, N.; Morrison, A.; Bennie, M.; Malcolm, W. Analysis of the use of antibiotics by AWaRe categories during the COVID-19 pandemic in hospitals across Scotland: A national population-based study. Eur. J. Hosp. Pharm. 2024. ahead of print. [Google Scholar] [CrossRef]
- Martin-Loeches, I.; Leone, M.; Einav, S. Antibiotic prophylaxis in the ICU: To be or not to be administered for patients undergoing procedures? Intensive Care Med. 2020, 46, 364–367. [Google Scholar] [CrossRef]
- Chong, W.H.; Saha, B.K.; Ramani, A.; Chopra, A. State-of-the-art review of secondary pulmonary infections in patients with COVID-19 pneumonia. Infection 2021, 49, 591–605. [Google Scholar] [CrossRef]
- Alshaikh, F.S.; Godman, B.; Sindi, O.N.; Seaton, R.A.; Kurdi, A. Prevalence of bacterial coinfection and patterns of antibiotics prescribing in patients with COVID-19: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0272375. [Google Scholar] [CrossRef] [PubMed]
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef]
- Clinical Management of COVID-19: Living Guideline, 13 January 2023; World Health Organization: Geneva, Switzerland, 2023; Available online: https://iris.who.int/handle/10665/365580 (accessed on 1 December 2023).
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef]
- International Language for Drug Utilization Research. Available online: https://atcddd.fhi.no/ (accessed on 1 December 2023).
- AWaRe Classification of Antibiotics for Evaluation and Monitoring of Use. 2023. Available online: https://www.who.int/publications/i/item/WHO-MHP-HPS-EML-2023.04 (accessed on 4 July 2024).
Hospitalization | 2019 | 2020 | ||
---|---|---|---|---|
Non-COVID-19 Patients | COVID-19 Patients | |||
Patients in Non-Intensive Care Unit | N = 53,815 | N = 22,303 | N = 2943 | |
Age [years] | Median (Q1; Q3) | 51.00 (32.00–68.00) | 57.00 (36.00–70.00) | 63.00 (50.00–75.00) |
p < 0.001 | p < 0.001 | |||
Male, yes | N (%) | 23,284 (43.27) | 9238 (41.42) | 1543 (52.43) |
p < 0.001 | p < 0.001 | |||
Inpatient care > 48 h, yes | N (%) | 30,785 (57.21) | 16,828 (75.45) | 2892 (98.27) |
p < 0.001 | p < 0.001 | |||
Length of stay [days] | Median (Q1; Q3) | 3.00 (1.00–7.00) | 4.00 (2.00–8.00) | 16.00 (11.00–24.00) |
p < 0.001 | p < 0.001 | |||
Steroid use | N (%) | 9029 (16.78) | 5804 (26.02) | 1426 (48.45) |
p < 0.001 | p < 0.001 | |||
IV steroid therapy [DOT] | Median (Q1; Q3) | 0.00 (0.0–0.0) | 0.00 (0.00–1.00) | 0.00 (0.00–8.00) |
p < 0.001 | p < 0.001 | |||
Patients in Intensive Care Unit | N = 796 | N = 299 | N = 483 | |
Age [years] | Median (Q1; Q3) | 66.00 (54.00–76.00) | 64.00 (49.00–72.50) | 66.00 (57.00–74.00) |
p = 0.002 | p = 0.692 | |||
Male, yes | N (%) | 479 (60.18) | 184 (61.54) | 341 (70.60) |
p = 0.733 | p < 0.001 | |||
Inpatient care > 48 h, yes | N (%) | 742 (93.21) | 267 (89.30) | 469 (97.10) |
p = 0.043 | p = 0.002 | |||
Length of stay [days] | Median (Q1; Q3) | 21.00 (8.00–39.00) | 13.00 (3.50–28.50) | 21.00 (12.00–35.00) |
p < 0.001 | p = 0.278 | |||
Intensive care LOS [days] | Median (Q1; Q3) | 9.00 (3.00–20.00) | 5.00 (2.00–15.50) | 11.00 (6.00–18.00) |
p < 0.001 | p < 0.001 | |||
Steroid use | N (%) | 508 (63.82) | 179 (59.87) | 450 (93.17) |
p = 0.256 | p < 0.001 | |||
IV steroid therapy [DOT] | Median (Q1; Q3) | 1.00 (0.00–5.00) | 1.00 (0.00–3.00) | 10.00 (5.00–13.00) |
p = 0.072 | p < 0.001 |
Non-ICU Patients | 2019, DOT | 2020 Non-COVID-19 Patients, DOT | 2020 COVID-19 Patients, DOT | |||||
---|---|---|---|---|---|---|---|---|
ABX Group | N (%) | Per 100 pds | N (%) | Per 100 pds | OR (95%CI), p-Value * | N (%) | Per 100 pds | OR (95%CI), p-Value * |
Penicillins (without PIP/TAZ) | 8243 (7.22) | 2.0 | 4594 (7.66) | 2.4 | 1.07 (1.03–1.11), p < 0.001 | 570 (1.62) | 0.8 | 0.21 (0.19–0.23), p < 0.001 |
PIP/TAZ | 3426 (3.00) | 0.8 | 2520 (4.20) | 1.3 | 1.42 (1.34–1.49), p < 0.001 | 481 (1.37) | 0.7 | 0.45 (0.41–0.49), p < 0.001 |
3GC and 4GC | 11,720 (10.26) | 2.9 | 14,177 (23.63) | 7.3 | 2.71 (2.63–2.78), p < 0.001 | 16 632 (47.30) | 24.1 | 7.85 (7.63–8.07), p < 0.001 |
Carbapenems | 20,444 (17.91) | 5.1 | 8999 (15.00) | 4.6 | 0.81 (0.79–0.83), p < 0.001 | 6311 (17.95) | 9.1 | 1.00 (0.97–1.03), p = 0.86 |
Macrolides | 2084 (1.83) | 0.5 | 597 (1.00) | 0.3 | 0.54 (0.49–0.59), p < 0.001 | 794 (2.26) | 1.2 | 1.24 (1.14–1.35), p < 0.001 |
Fluoroquinolones | 33,193 (29.07) | 8.2 | 13,779 (22.97) | 7.1 | 0.73 (0.71–0.74), p < 0.001 | 6225 (17.70) | 9.0 | 0.52 (0.51–0.54), p < 0.001 |
Colistin | 1245 (1.09) | 0.3 | 637 (1.06) | 0.3 | 0.97 (0.88–1.07), p = 0.59 | 488 (1.39) | 0.7 | 1.28 (1.15–1.42), p < 0.001 |
Metronidazole | 16,114 (14.11) | 4.0 | 6853 (11.42) | 3.5 | 0.78 (0.76–0.81), p < 0.001 | 1483 (4.22) | 2.1 | 0.27 (0.26–0.28), p < 0.001 |
Others | 17,708 (15.51) | 4.4 | 7830 (13.05) | 4.0 | 0.82 (0.79–0.84), p < 0.001 | 2182 (6.20) | 3.2 | 0.36 (0.34–0.38), p < 0.001 |
Total | 114,177 (100) | 28.2 | 59,986 (100) | 30.8 | -- | 35,166 (100) | 50.9 | -- |
ICU Patients Only | 2019, DOT | 2020 Non-COVID-19 Patients, DOT | 2020 COVID-19, DOT | |||||
---|---|---|---|---|---|---|---|---|
ABX Group | N (%) | Per 100 pds | N (%) | Per 100 pds | OR (95%CI), p-Value * | N (%) | Per 100 pds | OR (95%CI), p-Value * |
Penicillins (without PIP/TAZ) | 985 (4.03) | 7.9 | 163 (1.93) | 4.8 | 0.47 (0.39–0.55), p < 0.001 | 665 (7.66) | 9.2 | 1.98 (1.78–2.18), p < 0.001 |
PIP/TAZ | 210 (0.86) | 1.7 | 153 (1.81) | 4.5 | 5.05 (4.38–5.85), p < 0.001 | 120 (1.38) | 1.7 | 1.61 (1.36–1.89), p < 0.001 |
3GC and 4GC | 1587 (6.50) | 12.8 | 1 523 (18.00) | 44.8 | 4.45 (4.22–4.70), p < 0.001 | 1 304 (15.00) | 18.0 | 2.54 (2.35–2.75), p < 0.001 |
Carbapenems | 7440 (30.48) | 59.9 | 2 102 (24.84) | 61.8 | 0.75 (0.71–0.79), p < 0.001 | 2 209 (25.42) | 30.5 | 0.78 (0.73–0.82), p < 0.001 |
Macrolides | 38 (0.16) | 0.3 | 16 (0.19) | 0.5 | 1.21 (0.63–2.23), p = 0.53 | 36 (0.41) | 0.5 | 2.67 (1.64–4.33), p < 0.001 |
Fluoroquinolones | 4419 (18.10) | 35.6 | 1871 (22.11) | 55.0 | 1.28 (1.21–1.37), p < 0.001 | 2 063 (23.74) | 28.5 | 1.41 (1.33–1.50), p < 0.001 |
Colistin | 2690 (11.02) | 21.7 | 561 (6.63) | 16.5 | 0.57 (0.52–0.63), p < 0.001 | 1 342 (15.44) | 18.5 | 1.47 (1.37–1.58), p < 0.001 |
Metronidazole | 2951 (12.09) | 23.8 | 999 (11.81) | 29.4 | 0.97 (0.90–1.05), p = 0.50 | 273 (3.14) | 3.8 | 0.24 (0.21–0.27), p < 0.001 |
Others | 4092 (16.76) | 33.0 | 1 074 (12.69) | 31.6 | 0.72 (0.67–0.78), p < 0.001 | 678 (7.80) | 9.4 | 0.42 (0.39–0.46), p < 0.001 |
Total | 24,412 (100) | 196.7 | 8462 (100) | 248.9 | -- | 8690 (100) | 112.1 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Durlak, U.; Kapturkiewicz, C.; Różańska, A.; Gajda, M.; Krzyściak, P.; Kania, F.; Wójkowska-Mach, J. Is Antimicrobial Stewardship Policy Effectively Implemented in Polish Hospitals? Results from Antibiotic Consumption Surveillance before and during the COVID-19 Pandemic. Antibiotics 2024, 13, 636. https://doi.org/10.3390/antibiotics13070636
Durlak U, Kapturkiewicz C, Różańska A, Gajda M, Krzyściak P, Kania F, Wójkowska-Mach J. Is Antimicrobial Stewardship Policy Effectively Implemented in Polish Hospitals? Results from Antibiotic Consumption Surveillance before and during the COVID-19 Pandemic. Antibiotics. 2024; 13(7):636. https://doi.org/10.3390/antibiotics13070636
Chicago/Turabian StyleDurlak, Urszula, Cezary Kapturkiewicz, Anna Różańska, Mateusz Gajda, Paweł Krzyściak, Filip Kania, and Jadwiga Wójkowska-Mach. 2024. "Is Antimicrobial Stewardship Policy Effectively Implemented in Polish Hospitals? Results from Antibiotic Consumption Surveillance before and during the COVID-19 Pandemic" Antibiotics 13, no. 7: 636. https://doi.org/10.3390/antibiotics13070636
APA StyleDurlak, U., Kapturkiewicz, C., Różańska, A., Gajda, M., Krzyściak, P., Kania, F., & Wójkowska-Mach, J. (2024). Is Antimicrobial Stewardship Policy Effectively Implemented in Polish Hospitals? Results from Antibiotic Consumption Surveillance before and during the COVID-19 Pandemic. Antibiotics, 13(7), 636. https://doi.org/10.3390/antibiotics13070636