Cytocompatibility and Antibiofilm Activity of Calcium Hydroxide Mixed with Cyperus articulatus Essential Oil and Bio-C Temp Bioceramic Intracanal Medicament
Abstract
:1. Introduction
2. Results
2.1. Cell Viability
2.2. Assessment of Biofilm Biomass
3. Discussion
4. Materials and Methods
4.1. Cell-Viability Assay
4.1.1. Preparation of Commercial Products/Associations
4.1.2. Cell Culture of the Saos-2 Lineage
4.1.3. MTT Colorimetric Assay
4.2. Assessment of Antimicrobial Capacity
Quantification of Biofilm Formation
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siqueira, J.F., Jr.; Guimarães-Pinto, T.; Rôças, I.N. Effects of chemomechanical preparation with 2.5% sodium hypochlorite and intracanal medication with calcium hydroxide on cultivable bacteria in infected root canals. J. Endod. 2007, 33, 800–805. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Rôças, I.N.; Riche, F.N.; Provenzano, J.C. Clinical outcome of the endodontic treatment of teeth with apical periodontitis using an antimicrobial protocol. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2008, 106, 757–762. [Google Scholar] [CrossRef] [PubMed]
- Veríssimo, D.M.; Vale, M.S. Methodologies for assessment of apical and coronal leakage of endodontic filling materials—A critical review. J. Oral Sci. 2006, 48, 93–98. [Google Scholar] [PubMed]
- Estrela, C.; Pécora, J.D.; Souza-Neto, M.D.; Estrela, C.R.; Bammann, L.L. Effect of vehicle on antimicrobial properties of calcium hydroxide pastes. Braz. Dent. J. 1999, 10, 63–72. [Google Scholar] [PubMed]
- Nerwich, A.; Figdor, D.; Messer, H.H. pH changes in root dentin over a 4-week period following root canal dressing with calcium hydroxide. J. Endod. 1993, 19, 302–306. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Rôças, I.N.; Lopes, H.P.; Magalhães, F.A.; de Uzeda, M. Elimination of Candida albicans infection of the radicular dentin by intracanal medications. J. Endod. 2003, 29, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.C.; Alves, F.R.; Uzeda, M.d.; Rôças, I.N.; Siqueira, J.F., Jr. Influence of serum and necrotic soft tissue on the antimicrobial effects of intracanal medicaments. Braz. Dent. J. 2010, 21, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Momenijavid, M.; Salimizand, H.; Korani, A.; Dianat, O.; Nouri, B.; Ramazanzadeh, R.; Ahmadi, A.; Rostamipour, J.; Khosravi, M.R. Effect of calcium hydroxide on morphology and physicochemical properties of Enterococcus faecalis biofilm. Sci. Rep. 2022, 12, 7595. [Google Scholar] [CrossRef] [PubMed]
- Cosan, G.; Ozverel, C.S.; Yigit Hanoglu, D.; Baser, K.H.C.; Tunca, Y.M. Evaluation of Antibacterial and Antifungal Effects of Calcium Hydroxide Mixed with Two Different Essential Oils. Molecules 2022, 27, 2635. [Google Scholar] [CrossRef] [PubMed]
- Krüger, H.C.; Francio, J.; Silva, A.S.D.; Oliveira, G.S.N.; Brancher, J.A.; Dantas, L.R.; Oliveira, R.C.; Tuon, F.F.; Carneiro, E. Antimicrobial action, cytotoxicity, calcium ion release, and pH variation of a calcium hydroxide-based paste associated with Myracrodruon urundeuva Allemão extract. Aust. Endod. J. 2022, 48, 170–178. [Google Scholar] [CrossRef]
- Galvão, L.C.; Furletti, V.F.; Bersan, S.M.; da Cunha, M.G.; Ruiz, A.L.; de Carvalho, J.E.; Sartoratto, A.; Rehder, V.L.; Figueira, G.M.; Duarte, M.C.T.; et al. Antimicrobial Activity of Essential Oils against Streptococcus mutans and their Antiproliferative Effects. Evid. Based Complement. Altern. Med. 2012, 2012, 751435. [Google Scholar] [CrossRef] [PubMed]
- Freires, I.A.; Bueno-Silva, B.; Galvão, L.C.; Duarte, M.C.; Sartoratto, A.; Figueira, G.M.; de Alencar, S.M.; Rosalen, P.L. The Effect of Essential Oils and Bioactive Fractions on Streptococcus mutans and Candida albicans Biofilms: A Confocal Analysis. Evid. Based Complement. Altern. Med. 2015, 2015, 871316. [Google Scholar] [CrossRef] [PubMed]
- Bersan, S.M.; Galvão, L.C.; Goes, V.F.; Sartoratto, A.; Figueira, G.M.; Rehder, V.L.; Alencar, S.M.; Duarte, R.M.; Rosalen, P.L.; Duarte, M.C. Action of essential oils from Brazilian native and exotic medicinal species on oral biofilms. BMC Complement. Altern. Med. 2014, 14, 451. [Google Scholar] [CrossRef] [PubMed]
- Mittas, D.; Mawunu, M.; Magliocca, G.; Lautenschläger, T.; Schwaiger, S.; Stuppner, H.; Marzocco, S. Bioassay-Guided Isolation of Anti-Inflammatory Constituents of the Subaerial Parts of Cyperus articulatus (Cyperaceae). Molecules 2022, 27, 5937. [Google Scholar] [CrossRef] [PubMed]
- Villa, N.; Santos, V.V.D.; Costa, U.M.D.; Mendes, A.T.; Duarte, P.H.M.; Rosa, R.A.D.; Pereira, J.R.; Só, M.V.R. A new calcium silicate-based root canal dressing: Physical and chemical properties, cytotoxicity and dentinal tubule penetration. Braz. Dent. J. 2020, 31, 598–604. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, J.C.M.; Ochoa-Rodrígez, V.M.; Rodrigues, E.M.; Chavez-Andrade, G.M.; Tanomaru-Filho, M.; Guerreiro-Tanomaru, J.M.; Faria, G. Antibacterial activity, cytocompatibility and effect of Bio-C Temp bioceramic intracanal medicament on osteoblast biology. Int. Endod. J. 2021, 54, 1155–1165. [Google Scholar] [CrossRef]
- de Campos, I.V.B.; Vieira, W.A.; de Almeida, R.F.; Gabriel, P.H.; Marciano, M.A.; Gomes, B.P.F.A.; de-Jesus-Soares, A. In Vitro Dental Discoloration Provoked by Intracanal Calcium Silicate-based Dressing Used for Regenerative Endodontic Procedures: An One-year Spectrometric Analysis. J. Endod. 2023, 49, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Bystrom, A.; Claesson, R.; Sundqvist, G. The antibacterial effect of camphorated para- monochlorophenol, camphorated phenol and calcium hydroxide in the treatment of infected root canals. Dent. Traumatol. 1985, 1, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Filho, M.T.; Leonardo, M.R.; da Silva, L.A. Effect of irrigating solution and calcium hydroxide root canal dressing on the repair of apical and periapical tissues of teeth with periapical lesion. J. Endod. 2002, 28, 295–299. [Google Scholar]
- Mohammadi, Z.; Dummer, P.M. Properties and applications of calcium hydroxide in endodontics and dental traumatology. Int. Endod. J. 2011, 44, 697–730. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr.; Lopes, H.P. Mechanisms of antimicrobial activity of calcium hydroxide: A critical review. Int. Endod. J. 1999, 32, 361–369. [Google Scholar] [CrossRef] [PubMed]
- van der Waal, S.V.; Connert, T.; Crielaard, W.; de Soet, J.J. In mixed biofilms Enterococcus faecalis benefits from a calcium hydroxide challenge and culturing. Int. Endod. J. 2016, 49, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Leonardo, M.R.; Silva, L.A.B.; Utrilla, L.S.; Leonardo, R.T.; Consolaro, A. Effect of intracanal dressings on repair and apical bridging of teeth with incomplete root formation. Dent. Traumatol. 1993, 9, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.C.; Figueira, G.M.; Sartoratto, A.; Rehder, V.L.; Delarmelina, C. Anti-Candida activity of Brazilian medicinal plants. J. Ethnopharmacol. 2005, 97, 305–311. [Google Scholar] [CrossRef]
- Mongelli, E.; Desmarchelier, C.; Coussio, J.; Ciccia, G. Antimicrobial activity and interaction with DNA of medicinal plants from the Peruvian Amazon region. Rev. Argent. Microbiol. 1995, 27, 199–203. [Google Scholar] [PubMed]
- Oladosu, I.A.; Usman, L.A.; Olawore, N.O.; Atata, R.F. Antibacterial activity of rhizomes essential oils of two types of Cyperus articulatus growing in Nigeria. Adv. Biol. Res. 2011, 5, 179–183. [Google Scholar]
- Azzaz, N.A.; El-khateeb, A.Y.; Farag, A.A. Chemical composition and biological activity of the essential oil of Cyperus articulatus. Int. J. Acad. Res. 2014, 6, 265–269. [Google Scholar]
- Camilleri, J. The biocompatibility of modified experimental Portland cements with potential for use in dentistry. Int. Endod. J. 2008, 41, 1107–1114. [Google Scholar] [CrossRef]
- Giacomino, C.M.; Wealleans, J.A.; Kuhn, N.; Diogenes, A. Comparative biocompatibility and osteogenic potential of two bioceramic sealers. J. Endod. 2019, 45, 51–56. [Google Scholar] [CrossRef]
- Silva, S.; Alves, N.; Silva, P.; Vieira, T.; Maciel, P.; Castellano, L.R.; Bonan, P.; Velozo, C.; Albuquerque, D. Antibacterial Activity of Rosmarinus officinalis, Zingiber officinale, Citrus aurantium bergamia, and Copaifera officinalis Alone and in Combination with Calcium Hydroxide against Enterococcus faecalis. Biomed. Res. Int. 2019, 12, 8129439. [Google Scholar] [CrossRef]
- Distel, J.W.; Hatton, J.F.; Gillespie, M.J. Biofilm formation in medicated root canals. J. Endod. 2002, 28, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Editorial Board of the Journal of Endodontics. Wanted: A Base of Evidence. J. Endod. 2007, 33, 1401–1402. [Google Scholar] [CrossRef] [PubMed]
- Zordan-Bronzel, C.L.; Tanomaru-Filho, M.; Rodrigues, E.M.; Cha vez-Andrade, G.M.; Faria, G.; Guerreiro-Tanomaru, J.M. Cytocompatibility, bioactive potential and antimicrobial activity of an experimental calcium silicate-based endodontic sealer. Int. Endod. J. 2019, 52, 979–986. [Google Scholar] [CrossRef] [PubMed]
- de Araújo Lopes, J.M.; Benetti, F.; Rezende, G.C.; Souza, M.T.; Conti, L.C.; Ervolino, E.; Jacinto, R.C.; Zanotto, E.D.; Cintra, L.T.A. Biocompatibility, induction of mineralization and antimicro- bial activity of experimental intracanal pastes based on glass and glass-ceramic materials. Int. Endod. J. 2020, 53, 1494–1505. [Google Scholar] [CrossRef] [PubMed]
- Stojicic, S.; Shen, Y.; Haapasalo, M. Effect of the source of biofilm bacteria, level of biofilm maturation, and type of disinfecting agent on the susceptibility of biofilm bacteria to antibacterial agents. J. Endod. 2013, 39, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Šimundić Munitić, M.; Poklepović Peričić, T.; Utrobičić, A.; Bago, I.; Puljak, L. Antimicrobial efficacy of commercially available endodontic bioceramic root canal sealers: A systematic review. PLoS ONE. 2019, 14, e0223575. [Google Scholar] [CrossRef]
- Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol. 2010, 161, 816–823. [Google Scholar] [CrossRef] [PubMed]
- Cox, S.D.; Mann, C.M.; Markham, J.L.; Bell, H.C.; Gustafson, J.E.; Warmington, J.R.; Wyllie, S.G. The mode of antimicrobial action of the essential oil of melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 2000, 88, 170–175. [Google Scholar] [CrossRef]
- Carson, C.F.; Mee, B.J.; Riley, T.V. Mechanism of action of melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 2002, 46, 1914–1920. [Google Scholar] [CrossRef]
- Taheri, Y.; Herrera-Bravo, J.; Huala, L.; Salazar, L.A.; Sharifi-Rad, J.; Akram, M.; Shahzad, K.; Melgar-Lalanne, G.; Baghalpour, N.; Tamimi, K.; et al. Cyperus spp.: A Review on Phytochemical Composition, Biological Activity, and Health-Promoting Effects. Oxid. Med. Cell. Longev. 2021, 7, 4014867. [Google Scholar] [CrossRef]
- Swain, A.; Choudhir, G.; Prabakaran, D.; Hariprasad, P. Molecular docking, dynamics simulation and pharmacokinetic studies of Cyperus articulatus essential oil metabolites as inhibitors of Staphylococcus aureus. J. Biomol. Struct. Dyn. 2023, 41, 9245–9255. [Google Scholar] [CrossRef] [PubMed]
- Omidbeygi, M.; Barzegar, M.; Hamidi, Z.; Nafhdibadi, H. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus flavus in liquid medium and tomato paste. Food 2007, 18, 1518–1523. [Google Scholar] [CrossRef]
- Xiao, J.; Koo, H. Structural organization and dynamics of exopolysaccharide matrix and microcolonies formation by Streptococcus mutans in biofilms. J. Appl. Microbiol. 2010, 108, 2103–2113. [Google Scholar]
- Shen, Y.; Stojicic, S.; Haapasalo, M. Antimicrobial efficacy of chlorhexidine against bacteria in biofilms at different stages of development. J. Endod. 2011, 37, 657–661. [Google Scholar] [CrossRef] [PubMed]
- Peters, O.A. Research that matters—Biocompatibility and cytotoxicity screening. Int. Endod. J. 2013, 46, 195–197. [Google Scholar] [CrossRef] [PubMed]
- Andolfatto, C.; da Silva, G.F.; Cornélio, A.L.; Guerreiro-Tanomaru, J.M.; Tanomaru-Filho, M.; Faria, G.; Bonetti-Filho, I.; Cerri, P.S. Biocompatibility of intracanal medications based on calcium hydroxide. ISRN Dent. 2012, 2012, 904963. [Google Scholar] [CrossRef] [PubMed]
- Ruparel, N.B.; Teixeira, F.B.; Ferraz, C.C.; Diogenes, A. Direct effect of intracanal medicaments on survival of stem cells of the apical papilla. J. Endod. 2012, 38, 1372–1375. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, P.W.; Wu, J.L.; Kolte, R.; Zhang, R.; Gregory, R.L.; Bruzzaniti, A.; Yassen, G.H. The antimicrobial properties, cytotoxicity, and differentiation potential of double antibiotic intracanal medicaments loaded into hydrogel system. Clin. Oral Investig. 2019, 23, 1051–1059. [Google Scholar] [CrossRef]
- Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE. 2010, 5, e10202. [Google Scholar] [CrossRef]
- Hsu, S.; Bollag, W.B.; Lewis, J.; Huang, Q.I.N.; Singh, B.; Sharawy, M.; Yamamoto, T.; Schuster, G. Green tea polyphenols induce differentiation and proliferation in epidermal keratinocytes. J. Pharmacol. Exp. Ther. 2003, 306, 29–34. [Google Scholar] [CrossRef]
Dilution | Group | 24 h | 72 h | p |
---|---|---|---|---|
1:2 | Control | 0.21 (0.03) AB,a | 0.20 (0.03) AB,a | 0.715 |
Ca | 0.20 (0.02) AB,a | 0.14 (0.02) A,b | 0.013 | |
CHPG | 0.19 (0.02) AB,a | 0.23 (0.01) AB,a | 0.238 | |
CHCa | 0.16 (0.01) A,a | 0.17 (0.03) A,a | 0.614 | |
U | 0.25 (0.01) B,a | 0.27 (0.01) B,a | 0.524 | |
BCT | 0.24 (0.03) B,a | 0.25 (0.02) B,a | 0.763 | |
p | 0.008 | 0.001 | ||
1:4 | Control | 0.21 (0.03) A,a | 0.20 (0.03) A,a | 0.715 |
Ca | 0.21 (0.03) A,a | 0.25 (0.03) A,a | 0.174 | |
CHPG | 0.23 (0.01) A,a | 0.28 (0.11) A,a | 0.593 | |
CHCa | 0.23 (0.03) A,a | 0.21 (0.00) A,a | 0.464 | |
U | 0.39 (0.07) B,a | 0.28 (0.01) A,a | 0.100 | |
BCT | 0.29 (0.06) AB,a | 0.28 (0.11) A,a | 0.948 | |
p | 0.005 | 0.513 | ||
1:8 | Control | 0.21 (0.03) A,a | 0.20 (0.03) AC,a | 0.715 |
Ca | 0.25 (0.01) A,a | 0.32 (0.05) BC,a | 0.175 | |
CHCP | 0.35 (0.09) A,a | 0.29 (0.03) ABC,a | 0.364 | |
CHCa | 0.21 (0.04) A,a | 0.27 (0.01) ABC,a | 0.211 | |
U | 0.35 (0.08) A,a | 0.37 (0.05) ABC,a | 0.772 | |
BCT | 0.25 (0.03) A,a | 0.25 (0.06) AB,a | 0.943 | |
p | 0.056 | 0.006 | ||
1:16 | Control | 0.21 (0.03) A,a | 0.20 (0.03) A,a | 0.715 |
Ca | 0.18 (0.11) A,a | 0.34 (0.09) A,a | 0.993 | |
CHCP | 0.32 (0.03) A,a | 0.31 (0.04) A,a | 0.959 | |
CHCa | 0.20 (0.03) A,a | 0.23 (0.01) A,a | 0.123 | |
U | 0.25 (0.02) A,a | 0.23 (0.06) A,a | 0.711 | |
BCT | 0.24 (0.02) A,a | 0.22 (0.03) A,a | 0.570 | |
p | 0.128 | 0.059 |
Material | Manufacturer | Composition |
---|---|---|
calcium hydroxide | Biodinamica Química e Farmacêutica LTDA., Paraná, Brazil | calcium hydroxide (10 g) |
C. articulatus essential oil | Quinari®, Ponta Grossa, PR, Brazil | C. articulatus pure oil (10 mL) |
UltraCal® XS | Ultradent Products Inc., South Jordan, UT, USA | calcium hydroxide, barium sulfate, and methylcellulose, in aqueous solution. |
Bio-C Temp® | Angelus Indústria de Produtos Odontológicos S/A, Londrina, PR, Brazil | Calcium silicates, calcium aluminate, calcium oxide, calcium tungstate, and titanium oxide. |
Chemical Composition/Properties | Constituents/Values |
---|---|
DENSITY (20 °C) | 0.956 |
REFRACTION INDEX (20 °C) | 1.5041 |
GAS CHROMATOGRAPHY–MASS SPECTROMETRY (GC-MS) ANALYSIS | Mustakone: 9.8–14.5% β-Caryophyllene oxide: 9% α-pinene: 5.7–12.3% β-Pinene: 6% (E)-Pinocarveol: 5% Myrtenal + myrtenol: 5% |
EXTRACTION MODE | Steam distillation of tubers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Magalhães Silveira, C.F.; da Silveira Bueno, C.E.; Schreiber, A.Z. Cytocompatibility and Antibiofilm Activity of Calcium Hydroxide Mixed with Cyperus articulatus Essential Oil and Bio-C Temp Bioceramic Intracanal Medicament. Antibiotics 2024, 13, 637. https://doi.org/10.3390/antibiotics13070637
de Magalhães Silveira CF, da Silveira Bueno CE, Schreiber AZ. Cytocompatibility and Antibiofilm Activity of Calcium Hydroxide Mixed with Cyperus articulatus Essential Oil and Bio-C Temp Bioceramic Intracanal Medicament. Antibiotics. 2024; 13(7):637. https://doi.org/10.3390/antibiotics13070637
Chicago/Turabian Stylede Magalhães Silveira, Cláudia Fernandes, Carlos Eduardo da Silveira Bueno, and Angélica Zaninelli Schreiber. 2024. "Cytocompatibility and Antibiofilm Activity of Calcium Hydroxide Mixed with Cyperus articulatus Essential Oil and Bio-C Temp Bioceramic Intracanal Medicament" Antibiotics 13, no. 7: 637. https://doi.org/10.3390/antibiotics13070637
APA Stylede Magalhães Silveira, C. F., da Silveira Bueno, C. E., & Schreiber, A. Z. (2024). Cytocompatibility and Antibiofilm Activity of Calcium Hydroxide Mixed with Cyperus articulatus Essential Oil and Bio-C Temp Bioceramic Intracanal Medicament. Antibiotics, 13(7), 637. https://doi.org/10.3390/antibiotics13070637