A Real-World Data Observational Analysis of the Impact of Liposomal Amphotericin B on Renal Function Using Machine Learning in Critically Ill Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Definitions or Classification
2.2.1. Variables
2.2.2. Definitions
- -
- Baseline serum creatinine value
- -
- High risk of developing-AKI subgroup patients
2.3. Follow-Up and Endpoints
- -
- Post-treatment renal dysfunction criteria
2.4. Statistical Analysis
3. Results
3.1. Whole Population
3.2. Development of Renal Dysfunction
3.3. Factors Associated with AKI Development
3.4. Subgroups Analysis: High and Low Risk of AKI
3.5. AKI Development in Patients with Low Risk of AKI at Baseline
3.6. Factors Associated with AKI Development in Patients with Low Risk of AKI
3.7. AKI Development in Patients with High Risk of AKI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martinez, R. An Update on the Use of Antifungal Agents. J. Bras. Pneumol. 2006, 32, 449–460. [Google Scholar] [CrossRef]
- Klepser, M. The Value of Amphotericin B in the Treatment of Invasive Fungal Infections. J. Crit. Care 2011, 26, 225.e1–225.e10. [Google Scholar] [CrossRef]
- Rivera-Toledo, E.; Jiménez-Delgadillo, A.U.; Manzano-Gayosso, P. Antifúngicos Poliénicos. Mec. Acción Aplicaciones. Rev. Fac. Med. 2020, 63, 7–17. [Google Scholar] [CrossRef]
- Idígoris, P.; Perez-Trallero, E.; Piniero, L.; Larruskain, J.; López-Lopategui, M.C.; Rodríguez, N.; González, J.M. Disseminated infection and colonization by Scedosporium prolificans: A review of 18 cases, 1990–1999. Clin. Infect. Dis. 2001, 32, E158–E165. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, J.; Rodríguez-Tudela, J.L.; Richard, C.; Alvarez, M.; Sanz, M.; Gaztelurrutia, L.; Ayats, J.; Martínez-Suárez, J.; Scedosporium Prolificans Spanish Study Group. Deep infections caused by Scedosporium prolificans. A report on 16 cases in Spain and a review of the literature. Medicine 1997, 76, 256–265. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Colombo, A.L.; Cordoba, S.; Dufresne, P.J.; Fuller, J.; Ghannoum, M.; Gonzalez, G.M.; Guarro, J.; Kidd, S.E.; Meis, J.F.; et al. An international evaluation of MIC distributions and ECV definition for Fusarium species identified by molecular methods for the CLSI broth microdilution method. Antimicrob. Agents Chemother. 2016, 60, 1079–1084. [Google Scholar] [CrossRef]
- Walsh, T.J.; Finberg, R.W.; Arndt, C.; Hiemenz, J.; Schwartz, C.; Bodensteiner, D.; Pappas, P.; Seibel, N.; Greenberg, R.N.; Dummer, S.; et al. Liposomal Amphotericin B for Empirical Therapy in Patients with Persistent Fever and Neutropenia. N. Engl. J. Med. 1999, 340, 764–771. [Google Scholar] [CrossRef] [PubMed]
- Deray, G. Amphotericin B Nephrotoxicity. J. Antimicrob. Chemother. 2002, 49, 37–41. [Google Scholar] [CrossRef]
- Kellum, J.A.; Romagnani, P.; Ashuntantang, G.; Ronco, C.; Zarbock, A.; Anders, H.J. Acute Kidney Injury. Nat. Rev. Dis. Primers 2021, 7, 52. [Google Scholar] [CrossRef] [PubMed]
- KDIGO International Section 2: AKI Definition. Kidney Int. Suppl. 2012, 2, 19–36. [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Rocha, P.N.; Kobayashi, C.D.; De Carvalho Almeida, L.; De Oliveira Dos Reis, C.; Santos, B.M.; Glesby, M.J. Incidence, Predictors, and Impact on Hospital Mortality of Amphotericin B Nephrotoxicity Defined Using Newer Acute Kidney Injury Diagnostic Criteria. Antimicrob. Agents Chemother. 2015, 59, 4759–4769. [Google Scholar] [CrossRef] [PubMed]
- Takazono, T.; Tashiro, M.; Ota, Y.; Obata, Y.; Wakamura, T.; Miyazaki, T.; Nishino, T.; Izumikawa, K. Factor Analysis of Acute Kidney Injury in Patients Administered Liposomal Amphotericin B in a Real-World Clinical Setting in Japan. Sci. Rep. 2020, 10, 15033. [Google Scholar] [CrossRef]
- Personett, H.A.; Kayhart, B.M.; Barreto, E.F.; Tosh, P.; Dierkhising, R.; Mara, K.; Leung, N. Renal Recovery Following Liposomal Amphotericin B-Induced Nephrotoxicity. Int. J. Nephrol. 2019, 2019, 8629891. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Lerma, F.; Cruz Soriano, M.; Rodríguez, M.; Catalán, M.; María Llorente, A.; Vidart, N.; Garitacelaya, M.; Maraví, E.; Fernández, E.; Alvarado, F.; et al. Impact of Liposomal Amphotericin B on Renal Function in Critically Ill Patients with Renal Function Impairment. Rev. Española Quimioter. 2012, 25, 206–215. [Google Scholar]
- Ullmann, A.J.; Sanz, M.A.; Tramarin, A.; Barnes, R.A.; Wu, W.; Gerlach, B.A.; Krobot, K.J.; Gerth, W.C. Prospective Study of Amphotericin B Formulations in Immunocompromised Patients in 4 European Countries. Clin. Infect. Dis. 2006, 43, e29–e38. [Google Scholar] [CrossRef] [PubMed]
- Hachem, R.Y.; Boktour, M.R.; Hanna, H.A.; Husni, R.N.; Torres, H.A.; Afif, C.; Kontoyiannis, D.P.; Raad, I.I. Amphotericin B Lipid Complex Versus Liposomal Amphotericin B Monotherapy for Invasive Aspergillosis in Patients with Hematologic Malignancy. Cancer 2008, 112, 1282–1287. [Google Scholar] [CrossRef]
- Wingard, J.R.; White, M.H.; Anaissie, E.; Raffalli, J.; Goodman, J.; Arrieta, A. A Randomized, Double-Blind Comparative Trial Evaluating the Safety of Liposomal Amphotericin B versus Amphotericin B Lipid Complex in the Empirical Treatment of Febrile Neutropenia. Clin. Infect. Dis. 2000, 31, 1155–1163. [Google Scholar] [CrossRef]
- Cornely, O.A.; Maertens, J.; Bresnik, M.; Ebrahimi, R.; Ullmann, A.J.; Bouza, E.; Heussel, C.P.; Lorttiolary, O.; Rieger, C.; Boehrne, A.; et al. Liposomal Amphotericin B as Initial Therapy for Invasive Mold Infection: A Randomized Trial Comparing a High-Loading Dose Regimen with Standard Dosing (AmBiLoad Trial). Clin. Infect. Dis. 2007, 44, 1289–1297. [Google Scholar] [CrossRef]
- Sabra, R.; Branch, R.A. Amphotericin B Nephrotoxicity. Drug-Saf. 1990, 5, 94–108. [Google Scholar] [CrossRef]
- Inselmann, G.; Inselmann, U.; Heidemann, H.T. Amphotericin B and liver function. Eur. J. Intern. Med. 2002, 13, 288–292. [Google Scholar] [CrossRef] [PubMed]
Variable | Whole Population (n = 67) | Low Risk AKI (n = 52) | High Risk AKI (n = 15) | p-Value |
---|---|---|---|---|
General | ||||
Age, median (Q1–Q3) years | 61 (53–71) | 61 (52–66) | 65 (56–72) | 0.25 |
Male sex, n (%) | 45 (67.0) | 33 (63.5) | 12 (80.0) | 0.35 |
Weight, median (Q1–Q3) kg | 70 (64–80) | 74 (67–80) | 65 (53–72) | 0.04 |
SOFA score, median (Q1–Q3) | 4 (3–6.5) | 5 (3–6) | 7 (6–7) | 0.01 |
Total diuresis in 24 h, median (Q1–Q3) mL | 2100 (1500–2900) | 2168 (1800–2880) | 1825 (1300–3200) | 0.49 |
Laboratory | ||||
WBC count, median (Q1–Q3) ×103 | 8.8 (2.0–15.5) | 9.1 (7.1–15.4) | 8.3 (7.1–15.9) | 0.40 |
Lymphocytes count, median (Q1–Q3) ×103 | 0.55 (0.23–1.2) | 0.55 (0.23–1.24) | 0.54 (0.42–0.88) | 0.72 |
RCP, median (Q1–Q3) mg/dL | 24 (13–30) | 20 (13–29) | 26 (24–30) | 0.31 |
PCT, median (Q1–Q3) ng/mL | 0.60 (0.25–2.05) | 0.41 (0.22–1.59) | 1.28 (0.53–12.4) | 0.10 |
Serum Na+, median (Q1–Q3) mEq/L | 138 (134–142) | 139 (136–145) | 137 (134–143) | 0.29 |
Serum K+, median (Q1–Q3) mEq/L | 3.5 (3.3–3.8) | 3.5 (3.1–3.8) | 3.7 (3.5–4.3) | 0.17 |
Total bilirubin, median (Q1–Q3) mg/dL | 0.6 (0.3–1.7) | 0.5 (0.3–1.7) | 0.7 (0.4–1.5) | 0.69 |
Serum albumin, median (Q1–Q3) g/dL | 2.7 (2.4–2.9) | 2.7 (2.4–2.9) | 2.7 (2.4–2.8) | 0.90 |
Hemoglobin, median (Q1–Q3) g/dL | 8.7 (7.8–10.0) | 8.7 (7.7–9.1) | 9.7 (8.1–10.8) | 0.07 |
Serum Creatinine, median (Q1–Q3) mg/dL | 0.61 (0.45–0.90) | 0.54 (0.44–0.70) | 1.43 (1.16–1.54) | 0.001 |
Serum Urea, median (Q1–Q3) mg/dL | 49 (33–79) | 40 (30–65) | 79 (65–104) | 0.002 |
Comorbidities | ||||
Diabetes mellitus, n (%) | 13 (19.4) | 9 (16.7) | 4 (26.7) | 0.45 |
Chronic liver disease, n (%) | 7 (10.4) | 5 (9.2) | 2 (13.0) | 0.64 |
Hypertension, n (%) | 25 (37.3) | 19 (35.2) | 6 (40.0) | 0.96 |
Immunosupression, n (%) | 31 (46.3) | 25 (46.3) | 7 (46.7) | 1.00 |
Antifungal medication and concomitant drugs | ||||
L-AmB dose by Kg, median (Q1–Q3) mg/kg | 3 (3–4) | 3 (3–4) | 3 (3.0–3.6) | 0.71 |
L-AmB total dose at day 3, median (Q1–Q3) mg | 672 (535–877) | 675 (590–915) | 552 (380–842) | 0.12 |
L-AmB total dose at day 7, median (Q1–Q3) mg | 1200 (710–1575) | 1250 (808–1680) | 855 (380–1420) | 0.02 |
Norepinephrine, n (%) | 9 (13.4) | 5 (9.6) | 4 (26.7) | 0.10 |
Dexketoprofen, n (%) | 17 (25.4) | 15 (28.8) | 2 (13.3) | 0.32 |
Metamizole, n (%) | 24 (35.8) | 18 (34.6) | 6 (40.0) | 0.96 |
Furosemide, n (%) | 28 (41.8) | 23 (44.2) | 5 (33.3) | 0.63 |
Amikacin, n (%) | 6 (8.9) | 5 (9.6) | 1 (6.7) | 1.00 |
Acyclovir, n (%) | 15 (22.4) | 12 (22.2) | 3 (20.0) | 1.00 |
Foscarnet, n (%) | 2 (3.0) | 2 (3.8) | 0 (0.0) | 1.00 |
Co-trimoxazole, n (%) | 14 (21.0) | 13 (25.0) | 1 (6.7) | 0.16 |
Ganciclovir, n (%) | 7 (10.4) | 6 (11.5) | 1 (6.7) | 0.67 |
Outcomes | ||||
ICU LOS, median (Q1–Q3) days | 17.8 (8.4–37.3) | 19.1 (8.9–42.9) | 9.4 (7.7–20.1) | 0.06 |
Days of L-AmB administration, median (Q1–Q3) | 5.0 (3.1–8.2) | 5.5 (3.7–8.0) | 3.0 (2.0–7.0) | 0.13 |
ICU crude mortality, n (%) | 23 (34.3) | 16 (30.8) | 7 (46.7) | 0.40 |
Variable | No AKI (n = 41) | AKI I (n = 15) | p-Value |
---|---|---|---|
General | |||
Age, median (Q1–Q3) years | 61 (54–71) | 61 (49–63) | 0.39 |
Male sex, n (%) | 27 (65.9) | 10 (66.7) | 1.00 |
Weight, median (Q1–Q3) kg | 72 (65–80) | 70 (70–82) | 0.54 |
SOFA score at day 3, median (Q1–Q3) | 5 (3–7) | 6.5 (4–7) | 0.62 |
Calculated glomerular filtrate, median (Q1–Q3) mL/min/m2 | 120 (87–171) | 146(89–169) | 0.59 |
Total diuresis at day 3, median (Q1–Q3) mL | 2300 (1760–3380) | 2150 (1630–2650) | 0.52 |
Laboratory | |||
WBC count at day 3, median (Q1–Q3) ×103 | 8.8 (4.7–15.6) | 6.9 (2.5–14.0) | 0.39 |
Lymphocytes count at day 3, median (Q1–Q3) ×103 | 0.8 (0.4–1.2) | 0.5 (0.3–0.7) | 0.10 |
RCP at day 3, median (Q1–Q3) mg/dL | 15 (6–25) | 17 (10–24) | 0.47 |
PCT at day 3, median (Q1–Q3) ng/mL | 0.56 (0.31–1.30) | 1.22 (0.58–13.5) | 0.27 |
Serum Na+ at day 3, median (Q1–Q3) mEq/L | 140 (136–144) | 142 (139–146) | 0.32 |
Serum K+ at day 3, median (Q1–Q3) mEq/L | 3.7 (3.4–4.2) | 3.4 (3.3–3.8) | 0.14 |
Total bilirubin at day 3, median (Q1–Q3) mg/dL | 0.7 (0.4–1.5) | 1.1 (0.7–1.5) | 0.37 |
Serum albumin at day 3, median (Q1–Q3) | 2.6 (2.2–3.0) | 2.8 (2.6–3.0) | 0.64 |
Hemoglobin at day 3, median (Q1–Q3) g/L | 8.5 (8.0–9.3) | 8.5 (7.6–9.2) | 0.96 |
Serum Creatinine at day 3, median (Q1–Q3) mg/dL | 0.61 (0.54–0.83) | 0.55 (0.46–0.90) | 0.68 |
Serum Urea, median (Q1–Q3) mg/dL | 69 (48–95) | 66 (35–98) | 0.72 |
Comorbidities | |||
Diabetes mellitus, n (%) | 8 (19.5) | 4 (26.7) | 0.71 |
Chronic liver disease, n (%) | 5 (12.2) | 1 (6.6) | 1.00 |
Hypertension, n (%) | 15 (36.6) | 7 (46.7) | 0.70 |
Immunosuppression, n (%) | 19 (46.3) | 6 (40.0) | 0.90 |
Antifungal medication and concomitant drugs | |||
L-AmB dose by kg, median (Q1–Q3) mg/kg | 3.0 (3.0–3.5) | 3.0 (3.0–5.0) | 0.65 |
L-AmB total dose at day 3, median (Q1–Q3) mg | 675 (600–828) | 675 (458–1065) | 0.75 |
Norepinephrine at day 3, n (%) | 16 (39.0) | 3 (20.0) | 0.31 |
Outcomes | |||
ICU LOS, median (Q1–Q3) days | 17.8 (8.8–32.5) | 26.5 (12.4–54.0) | 0.09 |
Days of L-AmB administration, median (Q1–Q3) | 6 (4–9) | 5 (2.5–7.5) | 0.50 |
ICU crude mortality, n (%) | 15 (36.6) | 5 (33.3) | 1.00 |
Variable | No AKI (n = 39) | AKI I (n = 13) | p-Value |
---|---|---|---|
General | |||
Age, median (Q1–Q3) years | 61 (53–69) | 59 (43–61) | 0.22 |
Male sex, n (%) | 24 (61.5) | 9 (69.2) | 0.74 |
Weight, median (Q1–Q3) kg | 75.0 (63.8–80.0) | 70.0 (70.0–75.2) | 0.93 |
SOFA score at day 3, median (Q1–Q3) | 4.0 (3.0–5.0) | 5.0 (4.0–6.0) | 0.04 |
Total diuresis in 24 h. at day 3, median (Q1–Q3) mL | 2150 (1790–3150) | 2290 (2040–2840) | 0.76 |
Laboratory | |||
WBC count, median (Q1–Q3) ×103 | 9.1 (5.5–14.2) | 6.1 (1.3–13.7) | 0.23 |
RCP, median (Q1–Q3) mg/dL | 15.9 (12.2–19.4) | 14.0 (11.2–24.3) | 0.87 |
PCT, median (Q1–Q3) ng/mL | 4.3 (1.9–5.3) | 5.9 (1.2–7.5) | 0.31 |
Serum Na+, median (Q1–Q3) mEq/L | 139 (136–143) | 142 (139.144) | 0.26 |
Serum K+, median (Q1–Q3) mEq/L | 3.7 (3.4–4.1) | 3.4 (2.9–3.7) | 0.07 |
Total bilirubin, median (Q1–Q3) mg/dL | 1.5 (0.9–2.8) | 2.0 (1.5–2.9) | 0.24 |
Serum albumin, median (Q1–Q3) | 2.7 (2.6–2.8) | 2.6 (2.5–2.7) | 0.63 |
Hemoglobin, median (Q1–Q3) g/L | 8.5 (8.0–9.3) | 8.5 (7.4–9.2) | 0.39 |
Serum Creatinine, median (Q1–Q3) mg/dL | 0.59 (0.48–0.67) | 0.55 (0.50–0.87) | 0.61 |
Serum Urea, median (Q1–Q3) mg/dL | 59 (35–80) | 66 (43–100) | 0.44 |
Comorbidities | |||
Diabetes mellitus, n (%) | 5 (12.8) | 4 (30.8) | 0.20 |
Chronic liver disease, n (%) | 4 (10.3) | 1 (7.7) | 1.00 |
Hypertension, n (%) | 15 (38.5) | 4 (30.8) | 0.74 |
Immunosuppression, n (%) | 18 (46.2) | 6 (46.2) | 1.00 |
Antifungal medication and concomitant drugs | |||
L-AmB dose by Kg, median (Q1–Q3) mg/kg | 3.0 (3.0–3.4) | 3.0 (3.0–5.8) | 0.11 |
L-AmB total dose at day 3, median (Q1–Q3) mg | 675 (600–780) | 675 (495–1350) | 0.44 |
Norepinephrine, n (%) | 12 (30.8) | 2 (15.4) | 0.47 |
Outcomes | |||
ICU LOS, median (Q1–Q3) days | 17.8 (8.0–36.8) | 26.5 (15.3–49.8) | 0.09 |
Days of L-AmB administration, median (Q1–Q3) | 6 (3.5–8.0) | 5 (5.0–8.0) | 0.70 |
ICU crude mortality, n (%) | 12 (30.8) | 4 (30.8) | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sacanella, I.; Esteve-Pitarch, E.; Guevara-Chaux, J.; Berrueta, J.; García-Martínez, A.; Gómez, J.; Casarino, C.; Alés, F.; Canadell, L.; Martín-Loeches, I.; et al. A Real-World Data Observational Analysis of the Impact of Liposomal Amphotericin B on Renal Function Using Machine Learning in Critically Ill Patients. Antibiotics 2024, 13, 760. https://doi.org/10.3390/antibiotics13080760
Sacanella I, Esteve-Pitarch E, Guevara-Chaux J, Berrueta J, García-Martínez A, Gómez J, Casarino C, Alés F, Canadell L, Martín-Loeches I, et al. A Real-World Data Observational Analysis of the Impact of Liposomal Amphotericin B on Renal Function Using Machine Learning in Critically Ill Patients. Antibiotics. 2024; 13(8):760. https://doi.org/10.3390/antibiotics13080760
Chicago/Turabian StyleSacanella, Ignasi, Erika Esteve-Pitarch, Jessica Guevara-Chaux, Julen Berrueta, Alejandro García-Martínez, Josep Gómez, Cecilia Casarino, Florencia Alés, Laura Canadell, Ignacio Martín-Loeches, and et al. 2024. "A Real-World Data Observational Analysis of the Impact of Liposomal Amphotericin B on Renal Function Using Machine Learning in Critically Ill Patients" Antibiotics 13, no. 8: 760. https://doi.org/10.3390/antibiotics13080760
APA StyleSacanella, I., Esteve-Pitarch, E., Guevara-Chaux, J., Berrueta, J., García-Martínez, A., Gómez, J., Casarino, C., Alés, F., Canadell, L., Martín-Loeches, I., Grau, S., Candel, F. J., Bodí, M., & Rodríguez, A. (2024). A Real-World Data Observational Analysis of the Impact of Liposomal Amphotericin B on Renal Function Using Machine Learning in Critically Ill Patients. Antibiotics, 13(8), 760. https://doi.org/10.3390/antibiotics13080760