Source Control and Antibiotics in Intra-Abdominal Infections
Abstract
:1. Background
2. Intra-Abdominal Infections
- (1)
- Tachypnea (>22 respiratory acts per minute);
- (2)
- Hypotension (systolic blood pressure < 100 mmHg);
- (3)
- Alteration of the state of consciousness (Glasgow Coma Scale < 15) [15].
- Primary: diffuse bacterial infection without loss of integrity of the gastrointestinal tract (typical of cirrotic ascetic patients or patients who undergo peritoneal dialysis); it usually requires no surgical treatment.
- Secondary (the most common ones): derived from loss of integrity of the gastrointestinal tract.
- Tertiary: recurrent peritoneal infection which occurs more than 48 h after apparently successful and adequate surgical source control of secondary peritonitis (usually associated with multidrug-resistant organisms, common in immunocompromised patients, associated with high morbidity and mortality).
3. Principles of Source Control
Timings of Source Control and Patients Stratification
- Emergent source control (high mortality risk, severe physiological derangement caused by the acute disease): SC is mandatory and must be initiated as soon as feasible.
- Urgent source control: the intervention can be delayed up to 24 h to improve the clinical status of the patient (fluid resuscitation and broad-spectrum antibiotic therapy).
- Delayed source control (stable patient, low risk): the SC can be delayed until the infectious process is well defined to decrease the chance of collateral operation injury.
4. Antibiotic Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Angus, D.C.; van der Poll, T. Severe sepsis and septic shock. N. Engl. J. Med. 2013, 369, 840–851. [Google Scholar] [CrossRef]
- Coccolini, F.; Sartelli, M.; Sawyer, R.; Rasa, K.; Viaggi, B.; Abu-Zidan, F.; Soreide, K.; Hardcastle, T.; Gupta, D.; Bendinelli, C.; et al. Source control in emergency general surgery: WSES, GAIS, SIS-E, SIS-A guidelines. World J. Emerg. Surg. 2023, 18, 41. [Google Scholar] [CrossRef] [PubMed]
- van de Groep, K.; Verhoeff, T.L.; Verboom, D.M.; Bos, L.D.; Schultz, M.J.; Bonten, M.J.; Cremer, O.L. Epidemiology and outcomes of source control procedures in critically ill patients with intra-abdominal infection. J. Crit. Care 2019, 52, 258–264. [Google Scholar] [CrossRef]
- Menichetti, F.; Sganga, G. Definition and Classification of Intra-abdominal Infections. J. Chemother. 2009, 21 (Suppl. 1), 3–4. [Google Scholar] [CrossRef]
- Blot, S.; Antonelli, M.; Arvaniti, K.; Blot, K.; Creagh-Brown, B.; de Lange, D.; De Waele, J.; Deschepper, M.; Dikmen, Y.; Dimopoulos, G.; et al. Epidemiology of intra-abdominal infection and sepsis in critically ill patients: “AbSeS”, a multinational observational cohort study and ESICM Trials Group Project. Intensive Care Med. 2019, 45, 1703–1717. [Google Scholar] [CrossRef] [PubMed]
- Hecker, A.; Reichert, M.; Reuß, C.J.; Schmoch, T.; Riedel, J.G.; Schneck, E.; Padberg, W.; Weigand, M.A.; Hecker, M. Intra-abdominal sepsis: New definitions and current clinical standards. Langenbeck’s Arch. Surg. 2019, 404, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, M.; Evans, L.; Levy, M.; Rhodes, A. Sepsis and septic shock. Lancet 2018, 392, 75–87. [Google Scholar] [CrossRef]
- Leligdowicz, A.; Dodek, P.M.; Norena, M.; Wong, H.; Kumar, A.; Kumar, A. Association between source of infection and hospital mortality in patients who have septic shock. Am. J. Respir. Crit. Care Med. 2014, 189, 1204–1213. [Google Scholar] [CrossRef]
- De Waele, J.J. Early source control in sepsis. Langenbeck’s Arch. Surg. 2010, 395, 489–494. [Google Scholar] [CrossRef]
- Marshall, J.C. Principles of Source Control in the Early Management of Sepsis. Curr. Infect. Dis. Rep. 2010, 12, 345–353. [Google Scholar] [CrossRef]
- Solomkin, J.S.; Mazuski, J.E.; Bradley, J.S.; Rodvold, K.A.; Goldstein, E.J.; Baron, E.J.; O’Neill, P.J.; Chow, A.W.; Dellinger, E.P.; Eachempati, S.R.; et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: Guidelines by the surgical infection society and the infectious diseases society of America. Surg. Infect. 2010, 11, 79–109. [Google Scholar] [CrossRef]
- Coccolini, F.; Roberts, D.; Ansaloni, L.; Ivatury, R.; Gamberini, E.; Kluger, Y.; Moore, E.E.; Coimbra, R.; Kirkpatrick, A.W.; Pereira, B.M.; et al. The open abdomen in trauma and non-trauma patients: WSES guidelines. World J. Emerg. Surg. 2018, 13, 7. [Google Scholar] [CrossRef]
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.-D.; Coopersmith, C.M.; et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef] [PubMed]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of Clinical Criteria for Sepsis: For the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef] [PubMed]
- Mureșan, M.G.; Balmoș, I.A.; Badea, I.; Santini, A. Abdominal Sepsis: An Update. J. Crit. Care Med. 2018, 4, 120–125. [Google Scholar] [CrossRef]
- Seguin, P.; Fédun, Y.; Laviolle, B.; Nesseler, N.; Donnio, P.-Y.; Mallédant, Y. Risk factors for multidrug-resistant bacteria in patients with post-operative peritonitis requiring intensive care. J. Antimicrob. Chemother. 2009, 65, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Augustin, P.; Kermarrec, N.; Muller-Serieys, C.; Lasocki, S.; Chosidow, D.; Marmuse, J.-P.; Valin, N.; Desmonts, J.-M.; Montravers, P. Risk factors for multidrug resistant bacteria and optimization of empirical antibiotic therapy in postoperative peritonitis. Crit. Care 2010, 14, R20. [Google Scholar] [CrossRef]
- Rué, M.; Artigas, A.; Álvarez, M.; Quintana, S.; Valero, C. Performance of the Mortality Probability Models in assessing severity of illness during the first week in the intensive care unit. Crit. Care Med. 2000, 28, 2819–2824. [Google Scholar] [CrossRef]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new Simplified Acute Physiology Score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Vincent, J.L.; Moreno, R.; Takala, J.; Willatts, S.; De Mendonça, A.; Bruining, H.; Reinhart, C.K.; Suter, P.M.; Thijs, L.G. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure: On behalf of the Working Group on Sepsis-Related Problems of the European Society of Intensive Care Medicine. Intensive Care Med. 1996, 22, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Copeland, G.P.; Jones, D.; Walters, M. POSSUM: A scoring system for surgical audit. Br. J. Surg. 1991, 78, 355–360. [Google Scholar] [CrossRef]
- Kologlu, M.; Elker, D.; Altun, H.; Sayek, I. Validation of MPI and PIA II in two different groups of patients with secondary peri-tonitis. Hepatogastroenterology 2001, 48, 147–151. [Google Scholar]
- Bosscha, K.; Reijnders, K.; Hulstaert, P.F.; Algra, A.; van der Werken, C. Prognostic scoring systems to predict outcome in peritonitis and intra-abdominal sepsis. Br. J. Surg. 1997, 84, 1532–1534. [Google Scholar] [CrossRef]
- Sartelli, M.; Abu-Zidan, F.M.; Catena, F.; Griffiths, E.A.; Di Saverio, S.; Coimbra, R.; Ordoñez, C.A.; Leppaniemi, A.; Fraga, G.P.; Coccolini, F.; et al. Global validation of the WSES Sepsis Severity Score for patients with complicated intra-abdominal infections: A prospective multicentre study (WISS Study). World J. Emerg. Surg. 2015, 10, 61. [Google Scholar] [CrossRef]
- De Filippo, M.; Puglisi, S.; D’amuri, F.; Gentili, F.; Paladini, I.; Carrafiello, G.; Maestroni, U.; Del Rio, P.; Ziglioli, F.; Pagnini, F. CT-guided percutaneous drainage of abdominopelvic collections: A pictorial essay. La Radiol. Medica 2021, 126, 1561–1570. [Google Scholar] [CrossRef] [PubMed]
- Bufalari, A.; Giustozzi, G.; Moggi, L. Postoperative intraabdominal abscesses: Percutaneous versus surgical treatment. Acta Chir. Belg. 1996, 96, 197–200. [Google Scholar]
- Gervaz, P.; Ambrosetti, P. Critical appraisal of laparoscopic lavage for Hinchey III diverticulitis. World J. Gastrointest. Surg. 2016, 8, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Siewert, B.; Tye, G.; Kruskal, J.; Sosna, J.; Opelka, F. Impact of CT-guided drainage in the treatment of diverticular abscesses: Size matters. Am. J. Roentgenol. 2006, 186, 680–686. [Google Scholar] [CrossRef]
- Singh, B.; May, K.; Coltart, I.; Moore, N.; Cunningham, C. The long-term results of percutaneous drainage of diverticular abscess. Ind. Mark. Manag. 2008, 90, 297–301. [Google Scholar] [CrossRef]
- Sallinen, V.; Akl, E.A.; You, J.J.; Agarwal, A.; Shoucair, S.; Vandvik, P.O.; Agoritsas, T.; Heels-Ansdell, D.; Guyatt, G.H.; Tikkinen, K.A.O. Meta-analysis of antibiotics versus appendicectomy for non-perforated acute appendicitis. Br. J. Surg. 2016, 103, 656–667. [Google Scholar] [CrossRef]
- Oliak, D.; Yamini, D.; Udani, V.M.; Lewis, R.J.; Arnell, T.; Vargas, H.; Stamos, M.J. Initial nonoperative management for periappendiceal abscess. Dis. Colon. Rectum 2001, 44, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.V.; Abrishami, M.; Muller, M.; Velmahos, G.C. Appendiceal Abscess: Immediate Operation or Percutaneous Drainage? Am. Surg. 2003, 69, 829–832. [Google Scholar] [CrossRef]
- Roberts, D.J.; Bobrovitz, N.; Zygun, D.A.; Ball, C.G.; Kirkpatrick, A.W.; Faris, P.D.; Parry, N.; Nicol, A.J.; Navsaria, P.H.; Moore, E.E.; et al. Indications for use of thoracic, abdominal, pelvic, and vascular damage control interventions in trauma patients: A content analysis and expert appropriateness rating study. J. Trauma Acute Care Surg. 2015, 79, 568–579. [Google Scholar] [CrossRef]
- Pepe, G.; Chiarello, M.M.; Bianchi, V.; Fico, V.; Altieri, G.; Tedesco, S.; Tropeano, G.; Molica, P.; Di Grezia, M.; Brisinda, G. Entero-Cutaneous and Entero-Atmospheric Fistulas: Insights into Management Using Negative Pressure Wound Therapy. J. Clin. Med. 2024, 13, 1279. [Google Scholar] [CrossRef] [PubMed]
- Demetriades, D.; Salim, A. Management of the open abdomen. Surg. Clin. N. A. 2014, 94, 131–153. [Google Scholar] [CrossRef] [PubMed]
- Regner, J.L.; Kobayashi, L.; Coimbra, R. Surgical strategies for management of the open abdomen. World J. Surg. 2011, 36, 497–510. [Google Scholar] [CrossRef]
- Einav, S.; Zimmerman, F.S.; Tankel, J.; Leone, M. Management of the patient with the open abdomen. Curr. Opin. Crit. Care 2021, 27, 726–732. [Google Scholar] [CrossRef]
- Kirkpatrick, A.W.; Roberts, D.J.; De Waele, J.; Laupland, K. Is intra-abdominal hypertension a missing factor that drives multiple organ dysfunction syndrome? Crit. Care 2014, 18, 124. [Google Scholar] [CrossRef]
- Roberts, D.J.; Ball, C.G.; Kirkpatrick, A.W. Increased pressure within the abdominal compartment: Intra-abdominal hypertension and the abdominal compartment syndrome. Curr. Opin. Crit. Care 2016, 22, 174–185. [Google Scholar] [CrossRef]
- Maddison, L.; Starkopf, J.; Blaser, A.R. Mild to moderate intra-abdominal hypertension: Does it matter? World J. Crit. Care Med. 2016, 5, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Coccolini, F.; Improta, M.; Sartelli, M.; Rasa, K.; Sawyer, R.; Coimbra, R.; Chiarugi, M.; Litvin, A.; Hardcastle, T.; Forfori, F.; et al. Acute abdomen in the immunocompromised patient: WSES, SIS-E, WSIS, AAST, and GAIS guidelines. World J. Emerg. Surg. 2021, 16, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Bloos, F. The importance of a hospital-dedicated sepsis response team. Expert. Rev. Anti-Infect. Ther. 2020, 18, 1235–1243. [Google Scholar] [CrossRef] [PubMed]
- Saito, H.; Inoue, K.; Ditai, J.; Weeks, A.D.; Fry, D.E. A Global Declaration on Appropriate Use of Antimicrobial Agents across the Surgical Pathway. Surg. Infect. 2017, 18, 846–853. [Google Scholar] [CrossRef]
- Sartelli, M.; Coccolini, F.; Kluger, Y.; Agastra, E.; Abu-Zidan, F.M.; Abbas, A.E.S.; Ansaloni, L.; Adesunkanmi, A.K.; Atanasov, B.; Augustin, G.; et al. WSES/GAIS/SIS-E/WSIS/AAST global clinical pathways for patients with intra-abdominal infections. World J. Emerg. Surg. 2021, 16, 49. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Lepape, A.; Dubreuil, L.; Gauzit, R.; Pean, Y.; Benchimol, D.; Dupont, H. Clinical and microbiological profiles of community-acquired and nosocomial intra-abdominal infections: Results of the French prospective, observational EBIIA study. J. Antimicrob. Chemother. 2009, 63, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Worldwide Antimicrobial Resistance National/International Network Group (WARNING) Collaborators; Sartelli, M.; Barie, P.S.; Coccolini, F.; Abbas, M.; Abbo, L.M.; Abdukhalilova, G.K.; Abraham, Y.; Abubakar, S.; Abu-Zidan, F.M.; et al. Ten golden rules for optimal antibiotic use in hospital settings: The WARNING call to action. World J. Emerg. Surg. 2023, 18, 50. [Google Scholar] [CrossRef]
- Wirz, Y.; Meier, M.A.; Bouadma, L.; Luyt, C.E.; Wolff, M.; Chastre, J.; Tubach, F.; Schroeder, S.; Nobre, V.; Annane, D.; et al. Effect of procalcitonin-guided antibiotic treatment on clinical outcomes in intensive care unit patients with infection and sepsis patients: A patient-level meta-analysis of randomized trials. Crit. Care 2018, 22, 191. [Google Scholar] [CrossRef]
- Regimbeau, J.M.; Fuks, D.; Pautrat, K.; Mauvais, F.; Haccart, V.; Msika, S.; Mathonnet, M.; Scotté, M.; Paquet, J.C.; Vons, C.; et al. Effect of postoperative antibiotic administration on postoperative infection following cholecystectomy for acute calculous cholecystitis: A randomized clinical trial. JAMA 2014, 312, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Mazeh, H.; Mizrahi, I.; Dior, U.; Simanovsky, N.; Shapiro, M.; Freund, H.R.; Eid, A. Role of antibiotic therapy in mild acute calculus cholecystitis: A prospective randomized controlled Trial. World J. Surg. 2012, 36, 1750–1759. [Google Scholar] [CrossRef]
- Sawyer, R.G.; Claridge, J.A.; Nathens, A.B.; Rotstein, O.D.; Duane, T.M.; Evans, H.L.; Cook, C.H.; O’neill, P.J.; Mazuski, J.E.; Askari, R.; et al. Trial of short-course antimicrobial therapy for intraabdominal infection. New Engl. J. Med. 2015, 372, 1996–2005. [Google Scholar] [CrossRef] [PubMed]
- Montravers, P.; Tubach, F.; Lescot, T.; Veber, B.; Esposito-Farèse, M.; Seguin, P.; Paugam, C.; Lepape, A.; Meistelman, C.; Cousson, J.; et al. Short-course antibiotic therapy for critically ill patients treated for postoperative intra-abdominal infection: The DURAPOP randomised clinical trial. Intensive Care Med. 2018, 44, 300–310. [Google Scholar] [CrossRef]
- Póvoa, P.; Moniz, P.; Pereira, J.G.; Coelho, L. Optimizing Antimicrobial Drug Dosing in Critically Ill Patients. Microorganisms 2021, 9, 1401. [Google Scholar] [CrossRef]
- Pea, F.; Viale, P. Bench-to-bedside review: Appropriate antibiotic therapy in severe sepsis and septic shock—Does the dose matter? Crit. Care 2009, 13, 214. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Rice, L.B. Federal Funding for the Study of Antimicrobial Resistance in Nosocomial Pathogens: No ESKAPE. J. Infect. Dis. 2008, 197, 1079–1081. [Google Scholar] [CrossRef]
- Noskin, G.A. Vancomycin-resistant enterococci: Clinical, microbiologic, and epidemiologic features. J. Lab. Clin. Med. 1997, 130, 14–20. [Google Scholar] [CrossRef]
- Kaffarnik, M.F.; Urban, M.; Hopt, U.T.; Utzolino, S. Impact of enterococcus on immunocompetent and immunosuppressed patients with perforation of the small or large bowel. Technol. Health Care. 2012, 20, 37–48. [Google Scholar] [CrossRef]
- Munoz-Price, L.S.; Poirel, L.; Bonomo, R.A.; Schwaber, M.J.; Daikos, G.L.; Cormican, M.; Cornaglia, G.; Garau, J.; Gniadkowski, M.; Hayden, M.K.; et al. Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect. Dis. 2013, 13, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Perez, F.; Bonomo, R.A. Can we really use ß-lactam/ß-lactam inhibitor combinations for the treatment of infections caused by extended-spectrum ß-lactamase–producing bacteria? Clin. Infect. Dis. 2012, 54, 175–177. [Google Scholar] [CrossRef]
- Boyd, S.E.; Holmes, A.; Peck, R.; Livermore, D.M.; Hope, W. OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob. Agents Chemother. 2022, 66, e0021622. [Google Scholar] [CrossRef] [PubMed]
- Pappas, P.G.; Kauffman, C.A.; Andes, D.R.; Clancy, C.J.; Marr, K.A.; Ostrosky-Zeichner, L.; Reboli, A.C.; Schuster, M.G.; Vazquez, J.A.; Walsh, T.J.; et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 62, e1–e50. [Google Scholar] [CrossRef] [PubMed]
SOFA Score | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Respiration | ||||
PaO2/FiO2, mmHg | <400 | <300 | <200 | <100 |
with respiratory support | ||||
Coagulation | ||||
Platelets × 103/mm3 | <150 | <100 | <50 | <20 |
Liver | ||||
Bilirubin, mg/dL | 1.2–1.9 | 2.0–5.9 | 6.0–11.9 | >12.0 |
(μmol/L) | (20–32) | (33–101) | (102–204) | (<204) |
Cardiovascular | ||||
Hypotension | MAP < 70 mmHg | Dopamine < 5 or or dobutamine (any dose) a | Dopamine > 5 or nor-/epinephrine ≤0.1 | Dopamine > 15 or nor-/epinephrine >0.1 |
Central nervous system | ||||
Glasgow Coma Score | 13–14 | 10–12 | 6–9 | <6 |
Renal | ||||
Creatinine, mg/dL | 1.2–1.9 | 2.0–3.4 | 3.5–4.9 | >5.0 |
(μmol/L) or urine | (300–440) | (>440) | ||
output | (110–170) | (171–299) | or <500 mL/day | or <200 mL/day |
Class A | Healthy patients with no or well-controlled comorbidities and no immunocompromise, where the infection is the main problem |
Class B | Patient with major comorbidities and/or moderate immunocompromise but currently clinically stable, in whom the infection can rapidly worsen the prognosis |
Class C | Patients with important comorbidities in advanced stages and/or severe immunocompromise, in which the infection worsens an already severe clinical condition |
E | Enterococcus Faecium |
S | Staphylococcus Aureus |
K | Klebsiella Pneumoniae |
A | Acinetobacter Baumannii |
P | Pseudomonas Aeruginosa Cellulitis, Endocarditis, Prostatitis, UTI, Wound infection and concurrent bacteremia Pneumonia, Skin infections, Endocarditis, Ospeomyelitis, Arthritis Bacteremia, Pneumonia, Gastrointestinal tract infections, Osteomyelitis, Endocarditis Ventilator-associated Pneumonia, Bloodstream infection, Wound infections, Meningitis Endocarditis, Pneumonia, UTI, Wound and Skin infections, Osteomyelitis |
E | Enterobacteriaceae resistant to carbapenem (CRE) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bova, R.; Griggio, G.; Vallicelli, C.; Santandrea, G.; Coccolini, F.; Ansaloni, L.; Sartelli, M.; Agnoletti, V.; Bravi, F.; Catena, F. Source Control and Antibiotics in Intra-Abdominal Infections. Antibiotics 2024, 13, 776. https://doi.org/10.3390/antibiotics13080776
Bova R, Griggio G, Vallicelli C, Santandrea G, Coccolini F, Ansaloni L, Sartelli M, Agnoletti V, Bravi F, Catena F. Source Control and Antibiotics in Intra-Abdominal Infections. Antibiotics. 2024; 13(8):776. https://doi.org/10.3390/antibiotics13080776
Chicago/Turabian StyleBova, Raffaele, Giulia Griggio, Carlo Vallicelli, Giorgia Santandrea, Federico Coccolini, Luca Ansaloni, Massimo Sartelli, Vanni Agnoletti, Francesca Bravi, and Fausto Catena. 2024. "Source Control and Antibiotics in Intra-Abdominal Infections" Antibiotics 13, no. 8: 776. https://doi.org/10.3390/antibiotics13080776
APA StyleBova, R., Griggio, G., Vallicelli, C., Santandrea, G., Coccolini, F., Ansaloni, L., Sartelli, M., Agnoletti, V., Bravi, F., & Catena, F. (2024). Source Control and Antibiotics in Intra-Abdominal Infections. Antibiotics, 13(8), 776. https://doi.org/10.3390/antibiotics13080776