An Eco-Friendly Method to Synthesize Potent Antimicrobial Tricyclic Flavonoids
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Synthesis of Tricyclic Flavonoids
2.2. Flavonoids 5a–g Exhibit Potent Antimicrobial Activity
3. Materials and Methods
3.1. Chemistry
3.1.1. General Procedure for 6,8-diiodo-2-(4-iodophenyl)-4-oxochroman-3-yl N,N-diethyldithiocarbamate (4e)
3.1.2. General Procedure for 2-N,N-Diethylamino-6,8-diiodo-4-(4-iodophenyl)-4H-1,3-dithiol[4,5-c]chromen-2-ylium Tetrafluoroborate (5e)
3.2. Microbial Strains and Culture Conditions
3.3. Antibacterial Susceptibility Testing: Determination of the Minimum Inhibitory Concentration and the Minimum Bactericidal/Fungicidal Concentration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.W.K.; Millar, B.C.; Moore, J.E. Antimicrobial resistance (AMR). Br. J. Biomed. Sci. 2023, 80, 11387. [Google Scholar] [CrossRef] [PubMed]
- The World Bank. Drug-Resistant Infections: A Threat to Our Economic Future; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Zhu, Y.; Huang, W.E.; Yang, Q. Clinical perspective of antimicrobial resistance in bacteria. Infect. Drug Resist. 2022, 15, 735–746. [Google Scholar] [CrossRef]
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.S.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef]
- World Health Organization. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Andayani, N.; Mahdani, W.; Nisyra, M.; Agustin, H. Distribution and antibacterial susceptibility pattern of isolated bacteria from endotracheal aspirates among ventilator-assisted pneumonia patients in Indonesia. Narra J. 2023, 3, e149. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. 2023 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis; World Health Organization: Geneva, Switzerland, 2024. [Google Scholar]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Babii, C.; Mihalache, G.; Bahrin, L.G.; Neagu, A.N.; Gostin, I.; Mihai, C.T.; Sarbu, L.G.; Birsa, L.M.; Stefan, M. A novel synthetic flavonoid with potent antibacterial properties: In Vitro activity and proposed mode of action. PLoS ONE 2018, 13, e0194898. [Google Scholar] [CrossRef]
- Mutlu, H.; Barner, L. Getting the terms right: Green, sustainable, or circular chemistry? Macromol. Chem. Phys. 2022, 223, 2200111. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Arends, I.W.C.E.; Hanefeld, U. Green Chemistry and Catalysis; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar] [CrossRef]
- Cernansky, R. Chemistry: Green refill. Nature 2015, 519, 379–380. [Google Scholar] [CrossRef] [PubMed]
- Poliakoff, M.; Licence, P. Green chemistry. Nature 2007, 450, 810–812. [Google Scholar] [CrossRef]
- Babii, C.; Savu, M.; Motrescu, I.; Birsa, L.M.; Sarbu, L.G.; Stefan, M. The antibacterial synthetic flavonoid BrCl-Flav exhibits important anti-Candida activity by damaging cell membrane integrity. Pharmaceuticals 2021, 14, 1130. [Google Scholar] [CrossRef] [PubMed]
- Bahrin, L.G.; Apostu, M.O.; Birsa, L.M.; Stefan, M. The antibacterial properties of sulfur containing flavonoids. Bioorg. Med. Chem. Lett. 2014, 24, 2315–2318. [Google Scholar] [CrossRef]
- Birsa, M.L.; Sarbu, L.G. An improved synthetic method for sensitive iodine containing tricyclic flavonoids. Molecules 2022, 27, 8430. [Google Scholar] [CrossRef]
- Yang, S.; Sun, Y.; Yang, H.; Wan, J. Catalytic wet air oxidation of phenol, nitrobenzene and aniline over the multi-walled carbon nanotubes (MWCNTs) as catalysts. Front. Environ. Sci. Eng. 2015, 9, 436–443. [Google Scholar] [CrossRef]
- Rafiee, E.; Shahbazi, F. One-pot synthesis of dihydropyrimidones using silica-supported heteropoly acid as an efficient and reusable catalyst: Improved protocol conditions for the Biginelli reaction. J. Mol. Catal. A Chem. 2006, 250, 57–61. [Google Scholar] [CrossRef]
- Parghi, K.D.; Satam, J.R.; Jayaram, R.V. Silica supported heteropolyacid catalyzed dehydration of aldoximes to nitriles and alcohols to alkenes. Green Chem. Lett. Rev. 2011, 4, 143–149. [Google Scholar] [CrossRef]
- Sandulache, A.; Cascaval, A.; Toniutti, N.; Giumanini, A.G. New flavones by a novel synthetic route. Tetrahedron 1997, 53, 9813–9822. [Google Scholar] [CrossRef]
- Rukayadi, Y.; Lee, K.; Han, S.; Yong, D.; Hwang, J.K. In vitro activities of panduratin A against clinical Staphylococcus strains. Antimicrob. Agents Chemother. 2009, 53, 4529–4532. [Google Scholar] [CrossRef]
- Thebti, A.; Meddeb, A.; Ben Salem, I.; Bakary, C.; Ayari, S.; Rezgui, F.; Essafi-Benkhadir, K.; Boudabous, A.; Ouzari, H.-I. Antimicrobial activities and mode of flavonoid actions. Antibiotics 2023, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Narwal, S.; Kumar, S.; Verma, P.K. Synthesis and biological activity of new chalcone scaffolds as prospective antimicrobial agents. Res. Chem. Intermed. 2021, 47, 1625–1641. [Google Scholar] [CrossRef]
- Long, G.-Q.; Li, X.-M.; Wang, D.-D.; Bao, T.-R.-G.; Yang, Y.-C.; Zheng, Y.-Y.; Liu, X.-L.; Sun, X.-D.; Wang, A.-H.; Jia, J.-M. Prenylated flavonoids and derivatives isolated from the root barks of Sophora flavescens as potent antibacterial agents against Staphylococcus aureus. Ind. Crops Prod. 2022, 189, 115834. [Google Scholar] [CrossRef]
- Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem. 2019, 91, 103133. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.-H.; Zheng, C.-J.; Sun, L.-P.; Piao, H.-R. Synthesis of new chalcone derivatives containing a rhodanine-3-acetic acid moiety with potential anti-bacterial activity. Eur. J. Med. Chem. 2010, 45, 5739–5743. [Google Scholar] [CrossRef] [PubMed]
- Bandgar, B.P.; Gawande, S.S. Synthesis and biological screening of a combinatorial library of β-chlorovinyl chalcones as anticancer, anti-inflammatory and antimicrobial agents. Bioorg. Med. Chem. 2010, 18, 2060–2065. [Google Scholar] [CrossRef]
- Edziri, H.; Mastouri, M.; Mahjoub, M.A.; Mighri, Z.; Mahjoub, A.; Verschaeve, L. Antibacterial, antifungal and cytotoxic activities of two flavonoids from Retama raetam flowers. Molecules 2012, 17, 7284–7293. [Google Scholar] [CrossRef]
- Jin, Y.-S. Recent advances in natural antifungal flavonoids and their derivatives. Bioorg. Med. Chem. Lett. 2019, 29, 126589. [Google Scholar] [CrossRef]
- Andrade, J.T.; Santos, F.R.S.; Lima, W.G.; Sousa, C.D.F.; Oliveira, L.S.F.M.; Ribeiro, R.I.M.A.; Gomes, A.J.P.S.; Araújo, M.G.F.; Villar, J.A.F.P.; Ferreira, J.M.S. Design, synthesis, biological activity and structure-activity relationship studies of chalcone derivatives as potential anti-Candida agents. J. Antibiot. 2018, 71, 702–712. [Google Scholar] [CrossRef]
- Ahmad, A.; Wani, M.Y.; Patel, M.; Sobral, A.; Duse, A.G.; Aqlan, F.M.; Al-Bogami, A.S. Synergistic antifungal effect of cyclized chalcone derivatives and fluconazole against Candida albicans. Medchemcomm 2017, 8, 2195–2207. [Google Scholar] [CrossRef]
- Kucerova-Chlupacova, M.; Vyskovska-Tyllova, V.; Richterova-Finkova, L.; Kunes, J.; Buchta, V.; Vejsova, M.; Paterova, P.; Semelkova, L.; Jandourek, O.; Opletalova, V. Novel halogenated pyrazine-based chalcones as potential antimicrobial drugs. Molecules 2016, 21, 1421. [Google Scholar] [CrossRef] [PubMed]
- Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 2016, 113, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Shimamura, T.; Zhao, W.; Hu, Z.-Q. Mechanism of action and potential for use of tea catechin as an antiinfective agent. Anti-Infect. Agents Med. Chem. (Former. Curr. Med. Chem. Anti-Infect. Agents) 2007, 6, 57–62. [Google Scholar] [CrossRef]
Microbial Strains | 5a | 5b | 5c | 5d | 5e | 5f | 5g | DMSO (%) | Control |
---|---|---|---|---|---|---|---|---|---|
Staphylococcus aureus ATCC 25923 | 0.97 | 0.97 | 0.48 | 0.97 | 0.48 | 0.97 | 0.97 | 24.87 | 1.95 a/7.81 chl |
Bacillus subtilis ATCC 6633 | 0.24 | 0.12 | 0.12 | 0.48 | 0.24 | 0.9 | 0.48 | 24.87 | 0.12 a |
Enterococcus faecium medbio2-2012 | 7.81 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 3.9 | 12.43 | 15.62 chl |
Escherichia coli ATCC 25922 | 7.81 | 15.62 | 31.25 | 7.81 | 62.50 | 15.62 | 31.25 | 12.43 | 62.50 a/7.81 k |
Pseudomonas aeruginosa PAO1 | 125 | 125 | 125 | 125 | 125 | 125 | 125 | 12.43 | >250 a |
Acinetobacter pittii Cl2 | 7.81 | 7.81 | 7.81 | 62.50 | 62.50 | 15.62 | 31.25 | 6.21 | >250 a/0.37 cip |
Candida albicans ATCC 10231 | 15.62 | 7.81 | 7.81 | 7.81 | 7.81 | 15.62 | 15.62 | 6.21 | >500 f |
Candida krusei Prx | 7.81 | 7.81 | 7.81 | 3.90 | 15.62 | 7.81 | 7.81 | 6.21 | 62.5 f |
Microbial Strains | 5a | 5b | 5c | 5d | 5e | 5f | 5g | Control |
---|---|---|---|---|---|---|---|---|
Staphylococcus aureus ATCC 25923 | 3.90 | 7.81 | 3.90 | 1.97 | 3.90 | 3.90 | 3.90 | 7.8 a |
Bacillus subtilis ATCC 6633 | 0.9 | 0.9 | 1.9 | 0.9 | 0.48 | 3.9 | 1.95 | 3.9 a |
Enterococcus faecium medbio2-2012 | 62.5 | 15.62 | 31.25 | 62.5 | 15.62 | 62.5 | 31.25 | >250 chl |
Escherichia coli ATCC 25922 | 31.25 | 31.25 | 62.50 | 31.25 | 125 | 62.50 | 31.25 | 125 a |
Pseudomonas aeruginosa PAO1 | 250 | 250 | 250 | 125 | 125 | 125 | 125 | >250 a |
Acinetobacter pittii Cl2 | 31.25 | 15.62 | 31.25 | 125 | 125 | 62.50 | 31.25 | >250 a |
Candida albicans ATCC 10231 | 15.62 | 15.62 | 7.81 | 7.81 | 15.62 | 15.62 | 15.62 | >500 f |
Candida krusei Prx | 15.62 | 15.62 | 7.81 | 7.81 | 31.25 | 7.81 | 15.62 | 62.5 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantea, L.-E.; Moldovan, C.-V.; Savu, M.; Sarbu, L.G.; Stefan, M.; Birsa, M.L. An Eco-Friendly Method to Synthesize Potent Antimicrobial Tricyclic Flavonoids. Antibiotics 2024, 13, 798. https://doi.org/10.3390/antibiotics13090798
Mantea L-E, Moldovan C-V, Savu M, Sarbu LG, Stefan M, Birsa ML. An Eco-Friendly Method to Synthesize Potent Antimicrobial Tricyclic Flavonoids. Antibiotics. 2024; 13(9):798. https://doi.org/10.3390/antibiotics13090798
Chicago/Turabian StyleMantea, Loredana-Elena, Cristina-Veronica Moldovan, Mihaela Savu, Laura Gabriela Sarbu, Marius Stefan, and Mihail Lucian Birsa. 2024. "An Eco-Friendly Method to Synthesize Potent Antimicrobial Tricyclic Flavonoids" Antibiotics 13, no. 9: 798. https://doi.org/10.3390/antibiotics13090798