Antibiotic Prescription Practice and Resistance Patterns of Bacterial Isolates from a Neonatal Intensive Care Unit: A Retrospective Study from Jordan
Abstract
:1. Introduction
2. Methodology
2.1. Study Sittings
2.2. Study Participants and Data Collection
2.3. Statistical Analyses
2.4. Ethical Approval
3. Results
3.1. Characteristics of the Participants
3.2. Characteristics of Antibiotic Prescription for the Treatment of Neonatal Sepsis
3.3. Types of Bacterial Isolates from Neonatal Sepsis Patients in Jordan
3.4. Practice of Antibiotic Prescription for Neonatal Sepsis Patients in Jordan
3.5. Resistance Patterns to Antibiotics Used for Neonatal Sepsis Patients in Jordan
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldstein, B.; Giroir, B.; Randolph, A. International pediatric sepsis consensus conference: Definitions for sepsis and organ dysfunction in pediatrics. Pediatr. Crit. Care Med. 2005, 6, 2–8. [Google Scholar] [CrossRef] [PubMed]
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Seale, A.C.; Blencowe, H.; Manu, A.A.; Nair, H.; Bahl, R.; Qazi, S.A.; Zaidi, A.K.; Berkley, J.A.; Cousens, S.N.; Lawn, J.E. Estimates of possible severe bacterial infection in neonates in sub-Saharan Africa, south Asia, and Latin America for 2012: A systematic review and meta-analysis. Lancet Infect. Dis. 2014, 14, 731–741. [Google Scholar] [CrossRef] [PubMed]
- Amare, D.; Mela, M.; Dessie, G. Unfinished agenda of the neonates in developing countries: Magnitude of neonatal sepsis: Systematic review and meta-analysis. Heliyon 2019, 5, e02519. [Google Scholar] [CrossRef] [PubMed]
- Zakariya, B.P.; Bhat, V.; Harish, B.N.; Arun Babu, T.; Joseph, N.M. Neonatal sepsis in a tertiary care hospital in South India: Bacteriological profile and antibiotic sensitivity pattern. Indian J. Pediatr. 2011, 78, 413–417. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.L. Defining neonatal sepsis. Curr. Opin. Pediatr. 2016, 28, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Cizmeci, M.N.; Kara, S.; Kanburoglu, M.K.; Simavli, S.; Duvan, C.I.; Tatli, M.M. Detection of cord blood hepcidin levels as a biomarker for early-onset neonatal sepsis. Med. Hypotheses 2014, 82, 310–312. [Google Scholar] [CrossRef]
- Schuchat, A. Neonatal group B streptococcal disease--screening and prevention. N. Engl. J. Med. 2000, 343, 209–210. [Google Scholar] [CrossRef]
- Stoll, B.J.; Hansen, N.; Fanaroff, A.A.; Wright, L.L.; Carlo, W.A.; Ehrenkranz, R.A.; Lemons, J.A.; Donovan, E.F.; Stark, A.R.; Tyson, J.E.; et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N. Engl. J. Med. 2002, 347, 240–247. [Google Scholar] [CrossRef] [PubMed]
- Attia Hussein Mahmoud, H.; Parekh, R.; Dhandibhotla, S.; Sai, T.; Pradhan, A.; Alugula, S.; Cevallos-Cueva, M.; Hayes, B.K.; Athanti, S.; Abdin, Z.K.B. Insight into Neonatal Sepsis: An Overview. Cureus 2023, 15, e45530. [Google Scholar] [CrossRef]
- Glaser, M.A.; Hughes, L.M.; Jnah, A.; Newberry, D. Neonatal Sepsis: A Review of Pathophysiology and Current Management Strategies. Adv. Neonatal Care 2021, 21, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Basmaci, R.; Titomanlio, L.; Sun, B.; Mercier, J.C. Neonatal sepsis: Within and beyond China. Chin. Med. J. (Engl.) 2020, 133, 2219–2228. [Google Scholar] [CrossRef]
- Russell, N.; Barday, M.; Okomo, U.; Dramowski, A.; Sharland, M.; Bekker, A. Early-versus late-onset sepsis in neonates—Time to shift the paradigm? Clin. Microbiol. Infect. 2024, 30, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Zea-Vera, A.; Ochoa, T.J. Challenges in the diagnosis and management of neonatal sepsis. J. Trop. Pediatr. 2015, 61, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Speer, C.P. Late-onset neonatal sepsis: Recent developments. Arch. Dis. Child Fetal Neonatal Ed. 2015, 100, F257–F263. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, H.; Yan, J.; Zhang, T. Literature review on the distribution characteristics and antimicrobial resistance of bacterial pathogens in neonatal sepsis. J. Matern. Fetal Neonatal Med. 2022, 35, 861–870. [Google Scholar] [CrossRef] [PubMed]
- Pokhrel, B.; Koirala, T.; Shah, G.; Joshi, S.; Baral, P. Bacteriological profile and antibiotic susceptibility of neonatal sepsis in neonatal intensive care unit of a tertiary hospital in Nepal. BMC Pediatr. 2018, 18, 208. [Google Scholar] [CrossRef]
- Tan, J.; Wang, Y.; Gong, X.; Li, J.; Zhong, W.; Shan, L.; Lei, X.; Zhang, Q.; Zhou, Q.; Zhao, Y.; et al. Antibiotic resistance in neonates in China 2012–2019: A multicenter study. J. Microbiol. Immunol. Infect. 2022, 55, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Köstlin-Gille, N.; Härtel, C.; Haug, C.; Göpel, W.; Zemlin, M.; Müller, A.; Poets, C.F.; Herting, E.; Gille, C. Epidemiology of early and late onset neonatal sepsis in very low birthweight infants: Data from the German Neonatal Network. Pediatr. Infect. Dis. J. 2021, 40, 255–259. [Google Scholar] [CrossRef]
- Nyenga, A.M.; Mukuku, O.; Wembonyama, S.O. Neonatal sepsis: A review of the literature. Theory Clin. Pract. Pediatr. 2021, 3, 94–101. [Google Scholar] [CrossRef]
- Ramiro-Cortijo, D.; Zozaya-Nieto, C.; López de Pablo, A.L.; López-Giménez, M.R.; Saenz de Pipaon, M.; Arribas, S.M. Higher risk of late-onset sepsis in very low birth weight male preterm infants. Rev. Med. Univ. 2018, 20, 118–124. [Google Scholar] [CrossRef]
- Polin, R.A.; the Committee on Fetus and Newborn; Papile, L.-A.; Baley, J.E.; Bhutani, V.K.; Carlo, W.A.; Cummings, J.; Kumar, P.; Tan, R.C.; Wang, K.S.; et al. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics 2012, 129, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Boscarino, G.; Romano, R.; Iotti, C.; Tegoni, F.; Perrone, S.; Esposito, S. An overview of antibiotic therapy for early-and late-onset neonatal sepsis: Current strategies and future prospects. Antibiotics 2024, 13, 250. [Google Scholar] [CrossRef] [PubMed]
- Hodoșan, V.; Daina, C.M.; Zaha, D.C.; Cotrău, P.; Vladu, A.; Pantiș, C.; Dorobanțu, F.R.; Negrău, M.; Maghiar, A.; Daina, L.G. Pattern of antibiotic use in the perinatal period in a public university hospital in Romania. Medicina 2022, 58, 772. [Google Scholar] [CrossRef] [PubMed]
- Abushaheen, M.A.; Muzaheed; Fatani, A.J.; Alosaimi, M.; Mansy, W.; George, M.; Acharya, S.; Rathod, S.; Divakar, D.D.; Jhugroo, C.; et al. Antimicrobial resistance, mechanisms and its clinical significance. Disease-a-Month 2020, 66, 100971. [Google Scholar] [CrossRef]
- Rallis, D.; Giapros, V.; Serbis, A.; Kosmeri, C.; Baltogianni, M. Fighting antimicrobial resistance in neonatal intensive care units: Rational use of antibiotics in neonatal sepsis. Antibiotics 2023, 12, 508. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, S.; Al-Saryi, N.; Al-Kadmy, I.M.; Aziz, S.N. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol. Biol. Rep. 2021, 48, 6987–6998. [Google Scholar] [CrossRef]
- Al Bshabshe, A.; Al-Hakami, A.; Alshehri, B.; Al-Shahrani, K.A.; Alshehri, A.A.; Al Shahrani, M.B.; Assiry, I.; Joseph, M.R.; Alkahtani, A.M.; Hamid, M.E. Rising Klebsiella pneumoniae infections and its expanding drug resistance in the intensive care unit of a tertiary Healthcare Hospital, Saudi Arabia. Cureus 2020, 12, e10060. [Google Scholar] [CrossRef]
- Ting, J.Y.; Autmizguine, J.; Dunn, M.S.; Choudhury, J.; Blackburn, J.; Gupta-Bhatnagar, S.; Assen, K.; Emberley, J.; Khan, S.; Leung, J.; et al. Practice summary of antimicrobial therapy for commonly encountered conditions in the neonatal intensive care unit: A Canadian perspective. Front. Pediatr. 2022, 10, 894005. [Google Scholar] [CrossRef]
- Kasem, S.; Elhadidi, A.; Omar, N.; Dawoud, T.; Sa’da, O.A.; Rahmani, A.; Khan, N. Microbiological Characteristics and Resistance Patterns in a Neonatal Intensive Care Unit: A Retrospective Surveillance Study. Cureus 2024, 16, e56027. [Google Scholar] [CrossRef] [PubMed]
- Romandini, A.; Pani, A.; Schenardi, P.A.; Pattarino GA, C.; De Giacomo, C.; Scaglione, F. Antibiotic resistance in pediatric infections: Global emerging threats, predicting the near future. Antibiotics 2021, 10, 393. [Google Scholar] [CrossRef]
- Naylor, N.R.; Atun, R.; Zhu, N.; Kulasabanathan, K.; Silva, S.; Chatterjee, A.; Knight, G.M.; Robotham, J.V. Estimating the burden of antimicrobial resistance: A systematic literature review. Antimicrob. Resist. Infect. Control 2018, 7, 58. [Google Scholar] [CrossRef] [PubMed]
- Bilal, H.; Khan, M.N.; Rehman, T.; Hameed, M.F.; Yang, X. Antibiotic resistance in Pakistan: A systematic review of past decade. BMC Infect. Dis. 2021, 21, 244. [Google Scholar] [CrossRef]
- Jubeh, B.; Breijyeh, Z.; Karaman, R. Resistance of gram-positive bacteria to current antibacterial agents and overcoming approaches. Molecules 2020, 25, 2888. [Google Scholar] [CrossRef]
- Sands, K.; Spiller, O.B.; Thomson, K.; Portal, E.A.; Iregbu, K.C.; Walsh, T.R. Early-onset neonatal sepsis in low-and middle-income countries: Current challenges and future opportunities. Infect. Drug Resist. 2022, 15, 933–946. [Google Scholar] [CrossRef]
- Chiusaroli, L.; Liberati, C.; Caseti, M.; Rulli, L.; Barbieri, E.; Giaquinto, C.; Donà, D. Therapeutic Options and Outcomes for the Treatment of Neonates and Preterms with Gram-Negative Multidrug-Resistant Bacteria: A Systematic Review. Antibiotics 2022, 11, 1088. [Google Scholar] [CrossRef] [PubMed]
- Christensen, E.E. Towards Improved Sepsis Delineation: Chronic Organ Failures, Infection Biomarkers, and Leukocyte Phenotypes. Ph.D. Thesis, University of Oslo, Oslo, Norway, 2024. [Google Scholar]
- Kakkar, A.K.; Shafiq, N.; Singh, G.; Ray, P.; Gautam, V.; Agarwal, R.; Muralidharan, J.; Arora, P. Antimicrobial stewardship programs in resource constrained environments: Understanding and addressing the need of the systems. Front. Public Health 2020, 8, 140. [Google Scholar] [CrossRef] [PubMed]
- Cantón, R.; Akova, M.; Langfeld, K.; Torumkuney, D. Relevance of the consensus principles for appropriate antibiotic prescribing in 2022. J. Antimicrob. Chemother. 2022, 77 (Suppl. S1), i2–i9. [Google Scholar] [CrossRef]
- Dikkatwar, M.S.; Vaghasiya, J. Antibiogram and antimicrobial stewardship program: Fighting global antimicrobial resistance and rationalizing the antibiotic treatment. J. Young Pharm. 2022, 15, 41–48. [Google Scholar] [CrossRef]
- Ryu, H.; Azim, A.A.; Bhatt, P.J.; Uprety, P.; Mohayya, S.; Dixit, D.; Kirn, T.J.; Narayanan, N. Rapid diagnostics to enhance therapy selection for the treatment of bacterial infections. Curr. Pharmacol. Rep. 2023, 9, 198–216. [Google Scholar] [CrossRef]
- Martínez, M.L.; Plata-Menchaca, E.P.; Ruiz-Rodríguez, J.C.; Ferrer, R. An approach to antibiotic treatment in patients with sepsis. J. Thorac. Dis. 2020, 12, 1007. [Google Scholar] [CrossRef] [PubMed]
- Mdarhri, H.A.; Benmessaoud, R.; Yacoubi, H.; Seffar, L.; Assimi, H.G.; Hamam, M.; Boussettine, R.; Filali-Ansari, N.; Lahlou, F.A.; Diawara, I.; et al. Alternatives therapeutic approaches to conventional antibiotics: Advantages, limitations and potential application in medicine. Antibiotics 2022, 11, 1826. [Google Scholar] [CrossRef]
- Williams, P.; Qazi, S.; Agarwal, R.; Velaphi, S.; Bielicki, J.; Nambiar, S.; Giaquinto, C.; Bradley, J.; Noel, G.; Ellis, S.; et al. Antibiotics needed to treat multidrug-resistant infections in neonates. Bull. World Health Organ. 2022, 100, 797. [Google Scholar] [CrossRef] [PubMed]
Factor | (Mean ± SD) | |
---|---|---|
Gestational age (days) | 35.10 ± 2.90 | |
Hospital stay (days) | 18.46 ± 23.79 | |
Birth weight (mg) | 2424.20 ± 845.42 | |
Factor | Category | n (%) |
Gender | Male | 151 (56.8) |
Female | 115 (43.2) | |
Previous admission | Yes | 8 (3.0) |
No | 258 (97.0) | |
Signs of infection | Bradycardia | 7 (2.6) |
Abdominal distension | 19 (7.1) | |
Vomiting | 25 (9.3) | |
Chest retraction | 53 (19.9) | |
CRP | 51 (19.1) | |
Grunting | 21 (7.9) | |
Tachypnea | 35 (13.2) | |
Fever | 12 (4.5) | |
Poor feeding | 16 (6.0) | |
Hypoactivity | 6 (2.3) | |
Mottled skin | 20 (7.5) | |
None | 73 (27.4) | |
Diagnosis on admission | Transient tachypnea of the newborn (TTN) | 33 (12.4) |
Respiratory distress syndrome | 106 (39.8) | |
Neonatal jaundice (NNT) | 32 (12.0) | |
Cyanosis | 24 (9.0) | |
Intrauterine growth restriction (IUGR) | 15 (5.6) | |
Vomiting | 11 (4.1) | |
Birth weight category | Very low | 33 (12.4) |
Low | 93 (40.0) | |
Normal | 140 (52.6) | |
Gestational age category | Very preterm | 33 (12.4) |
Moderate to late preterm | 96 (36.1) | |
Term | 137 (51.5) | |
Type of delivery | Normal delivery | 102 (38.3) |
Cesarean section | 158 (59.4) | |
Unknown | 6 (2.3) | |
Onset of sepsis | Early onset | 92 (34.6) |
Late onset | 174 (65.4) | |
Early-onset sepsis according to gestational age | Very preterm | 4 (1.5) |
Moderate to late preterm | 43 (16.2) | |
Term | 45 (16.9) | |
Late-onset sepsis according to gestational age | Very preterm | 29 (10.9) |
Moderate to late preterm | 53 (19.9) | |
Term | 92 (34.6) | |
Patient’s prognosis | Discharged | 260 (97.7) |
Died | 5 (1.88) | |
Transferred | 1 (0.38) |
Factor | Category | n (%) |
---|---|---|
Prenatal Antibiotic Use | No | 262 (98.5) |
Yes | 4 (1.5) | |
Intrapartum antibiotic use | No | 266 (100) |
Number of empirical antibiotics used | 0 | 13 (4.9) |
1 | 11 (4.1) | |
2 | 184 (69.2) | |
3 | 26 (9.8) | |
4 | 29 (10.9) | |
5 | 1 (0.4) | |
6 | 2 (0.8) | |
Antibiotics changed after culture | Yes | 120 (45.1) |
No | 134 (50.4) | |
Number of targeted antibiotics used when changing antibiotics | 1 | 37 (30.8) |
2 | 52 (43.3) | |
3 | 22 (18.3) | |
4 | 9 (7.5) | |
Antibiotics prescribed in early-onset sepsis | Penicillin | 83 (31.2) |
Dehydropeptidase inhibitor/carbapenem | 5 (1.9) | |
Glycopeptide | 4 (1.5) | |
Aminoglycosides | 81 (30.5) | |
3rd-generation cephalosporin | 5 (1.9) | |
Antibiotics prescribed in late-onset sepsis | Penicillin | 84 (31.6) |
Dehydropeptidase inhibitor/carbapenem | 61 (22.9) | |
Glycopeptide | 50 (18.8) | |
Aminoglycosides | 101 (38.0) | |
3rd-generation cephalosporin | 14 (5.3) |
A. Type of bacterial infection, Gram-positive bacteria, (n = 232). | |||
Type of Bacteria | Early-Onset Sepsis n (%) | Late-Onset Sepsis n (%) | n (%) |
---|---|---|---|
Micrococcus luteus | 34 (14.7) | 53 (22.8) | 87 (37.5) |
Staphylococcus epidermidis | 24 (10.3) | 60 (25.9) | 84 (36.2) |
Streptococcus viridans | 7 (3.0) | 9 (3.9) | 16 (6.9) |
MRSA | 3 (1.3) | 11 (4.7) | 14 (6.0) |
Diphtheroids (Corynebacterium diphtheriae) | 5 (2.2) | 1 (0.4) | 6 (2.6) |
Enterococcus faecalis | 3 (1.3) | 1 (0.4) | 4 (1.7) |
Bacillus cereus | 3 (1.3) | 0 (0) | 3 (1.3) |
Staphylococcus hominis | 1 (0.4) | 2 (0.9) | 3 (1.3) |
Staphylococcus haemolyticus | 1 (0.4) | 1 (0.4) | 2 (0.9) |
Staphylococcus aureus | 0 (0) | 2 (0.9) | 2 (0.9) |
Streptococcus pneumoniae | 1 (0.4) | 1 (0.4) | 2 (0.9) |
Streptococcus agalactiae | 1 (0.4) | 0 (0) | 1 (0.4) |
B. Type of bacterial infection, Gram-negative bacteria, (n = 34) | |||
Type of Bacteria | Early-Onset Sepsis n (%) | Late-Onset Sepsis n (%) | n (%) |
Klebsiella pneumoniae | 2 (5.8) | 12 (35.3) | 14 (41.2) |
Acinetobacter baumannii | 1 (2.9) | 5 (14.7) | 6 (17.6) |
Escherichia coli | 1 (2.9) | 4 (11.8) | 5 (14.7) |
Enterobacter cloacae | 3 (8.8) | 0 (0) | 3 (8.8) |
Klebsiella oxytoca | 1 (2.9) | 0 (0) | 1 (2.9) |
Acinetobacter lwoffii | 1 (2.9) | 0 (0) | 1 (2.9) |
Sphingomonas paucimobilis | 1 (2.9) | 0 (0) | 1 (2.9) |
Citrobacter koseri | 0 (0) | 1 (2.9) | 1 (2.9) |
Neisseria sicca | 1 (2.9) | 0 (0) | 1 (2.9) |
Pseudomonas aeruginosa | 1 (2.9) | 0 (0) | 1 (2.9) |
A. Group of antibiotics used (n = 266). | ||||||
Antibiotic Group | Empiric 1 n (%) | Empiric 2 n (%) | Empiric 3 n (%) | Empiric 4 n (%) | Empiric 5 n (%) | Empiric 6 n (%) |
Penicillin | 164 (61.7) | 3 (1.1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Penicillin–beta lactamase | 1 (0.4) | 0 (0) | 0 (0) | 2 (0.8) | 0 (0) | 0 (0) |
Dehydropeptidase/Carbapenem | 30 (11.3) | 36 (13.5) | 22(8.3) | 12 (4.5) | 2 (0.8) | 2 (0.8) |
Glycopeptide | 29 (10.9) | 25 (9.4) | 10 (3.8) | 7 (2.6) | 2 (0.8) | 0 (0) |
Aminoglycosides | 20 (7.5) | 162 (60.9) | 11 (4.1) | 6 (2.3) | 0 (0) | 0 (0) |
3rd-generation Cephalosporin | 3 (1.1) | 16 (6.0) | 4 (1.5) | 1 (0.4) | 0 (0) | 0 (0) |
Nitroimidazole | 2 (0.8) | 0 (0) | 10 (3.8) | 2 (0.8) | 0 (0) | 0 (0) |
Polymyxins | 0 (0) | 0 (0) | 0 (0) | 1 (0.4) | 0 (0) | 0 (0) |
B. Name of antibiotics used (n = 266). | ||||||
Antibiotic | Empiric 1 n (%) | Empiric 2 n (%) | Empiric 3 n (%) | Empiric 4 n (%) | Empiric 5 n (%) | Empiric 6 n (%) |
Ampicillin | 164 (61.7) | 3 (1.1) | 0 (0) | 0 (0) | 0 (0) | 0 (0) |
Amikacin | 19 (7.1) | 32 (12.0) | 10 (3.8) | 6 (2.3) | 0 (0) | 0 (0) |
Meropenem | 21 (7.9) | 32 (12.0) | 15 (5.6) | 11 (4.1) | 2 (0.8) | 2 (0.8) |
Vancomycin | 29 (10.9) | 25 (9.4) | 10 (3.8) | 7 (2.6) | 2 (0.8) | 0 (0) |
Metronidazole | 2 (0.8) | 0 (0) | 10 (3.8) | 2 (0.8) | 0 (0) | 0 (0) |
Gentamycin | 1 (0.4) | 130 (48.9) | 1 (0.4) | 0 (0) | 0 (0) | 0 (0) |
Colistimethate | 0 (0) | 0 (0) | 0 (0) | 1 (0.4) | 0 (0) | 0 (0) |
Piperacillin–Tazobactam | 1 (0.4) | 0 (0) | 0 (0) | 2 (0.8) | 0 (0) | 0 (0) |
Cefotaxime | 3 (1.1) | 16 (6.0) | 4 (1.5) | 1 (0.4) | 0 (0) | 0 (0) |
Cilastatin/imipenem | 9 (3.4) | 0 (0) | 7 (2.6) | 1 (0.4) | 0 (0) | 0 (0) |
A. Group of antibiotics changed (n = 120). | ||||
Antibiotic Group | Changed 1 n (%) | Changed 2 n (%) | Changed 3 n (%) | Changed 4 n (%) |
Penicillin | 8 (6.7) | 2 (1.7) | 1 (0.8) | 0 (0) |
Penicillin–beta lactamase | 1 (0.8) | 1 (0.8) | 0 (0) | 0 (0) |
Glycopeptide | 41 (34.2) | 16 (13.3) | 5 (4.2) | 0 (0) |
Dehydropeptidase/Carbapenem | 17 (14.2) | 39 (32.5) | 11 (9.2) | 4 (3.3) |
Aminoglycosides | 34 (28.3) | 18 (15.0) | 4 (3.3) | 0 (0) |
3rd-generation Cephalosporin | 11 (9.2) | 6 (5.0) | 2 (1.7) | 2 (1.7) |
Nitroimidazole | 2 (1.7) | 1 (0.8) | 2 (1.7) | 1 (0.8) |
Polymyxins | 4 (3.3) | 0 (0) | 1 (0.8) | 0 (0) |
Macrolide | 1 (0.8) | 0 (0) | 0 (0) | 0 (0) |
Sulfonamide/diaminopyridine | 1 (0.8) | 0 (0) | 3 (2.5) | 1 (0.8) |
B. Name of antibiotics changed (n = 120). | ||||
Antibiotic | Changed #1 n (%) | Changed #2 n (%) | Changed #3 n (%) | Changed #4 n (%) |
Ampicillin | 8 (6.7) | 2 (1.7) | 1 (0.8) | 0 (0) |
Amikacin | 26 (21.7) | 9 (7.5) | 3 (2.5) | 0 (0) |
Meropenem | 8 (6.7) | 34 (28.3) | 8 (6.7) | 4 (3.3) |
Vancomycin | 41 (34.2) | 16 (13.3) | 5 (4.2) | 0 (0) |
Metronidazole | 2 (1.7) | 1 (0.8) | 2 (1.7) | 1 (0.8) |
Gentamycin | 8 (6.7) | 9 (7.5) | 1 (0.8) | 0 (0) |
Colistimethate | 4 (3.3) | 0 (0) | 1 (0.8) | 0 (0) |
Piperacillin–Tazobactam | 1 (0.8) | 1 (0.8) | 0 (0) | 0 (0) |
Ceftriaxone | 2 (1.7) | 0 (0) | 1 (0.8) | 0 (0) |
Cefotaxime | 9 (7.5) | 6 (5.0) | 1 (0.8) | 2 (1.7) |
SMX/TMP | 1 (0.8) | 0 (0) | 3 (2.5) | 1 (0.8) |
Azithromycin | 1 (0.8) | 0 (0) | 0 (0) | 0 (0) |
Cilastatin/imipenem | 9 (7.5) | 5 (4.2) | 3 (2.5) | 0 (0) |
Antibiotic Resistance to Pathogens | n (%) | E-coli | Enterobacter | K. pneumonia | Micrococcus | MRSA | Staph. Epidermis | Viridans streptococci | Staphylococcus hominis | Acinetobacter baumannii | Sphingomonas | Klebsiella oxytoca | Streptococcus pneumoniae | Streptococcus mitis | Staphylococcus haemolyticus | Enterococcus | Coagulase-negative Staphylococci | Staphylococcus aureus |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | ||||||||||||||||||
Ampicillin | 15 (5.6) | 2 | 1 | 3 | 5 | 3 | 1 | |||||||||||
Gentamicin | 22 (8.3) | 1 | 7 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | 1 | 2 | |||||
Penicillin | 41 (15.4) | 11 | 7 | 11 | 3 | 1 | 1 | 4 | 3 | |||||||||
Imipenem | 16 (6.0) | 12 | 3 | 1 | ||||||||||||||
Meropenem | 14 (5.3) | 10 | 2 | 1 | 1 | |||||||||||||
Ceftriaxone | 16 (6.0) | 1 | 1 | 1 | 5 | 3 | 1 | 2 | 1 | 1 | ||||||||
Cefotaxime | 37 (13.9) | 4 | 11 | 1 | 5 | 9 | 3 | 1 | 1 | 1 | 1 | |||||||
Ceftazidime | 27 (10.2) | 3 | 11 | 1 | 5 | 3 | 1 | 1 | 1 | 1 | ||||||||
Cefepime | 25 (9.4) | 2 | 11 | 1 | 5 | 2 | 1 | 1 | 1 | 1 | ||||||||
Cefoxitin | 35 (13.2) | 1 | 12 | 7 | 5 | 3 | 4 | 3 | ||||||||||
Erythromycin | 20 (7.5) | 5 | 4 | 3 | 1 | 1 | 4 | 1 | 1 | |||||||||
Oxacillin | 33 (12.4) | 11 | 7 | 4 | 3 | 1 | 4 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alameri, M.; Gharaibeh, L.; Alsous, M.; Yaghi, A.; Tanash, A.; Sa’id, S.; Sartawi, H. Antibiotic Prescription Practice and Resistance Patterns of Bacterial Isolates from a Neonatal Intensive Care Unit: A Retrospective Study from Jordan. Antibiotics 2025, 14, 105. https://doi.org/10.3390/antibiotics14010105
Alameri M, Gharaibeh L, Alsous M, Yaghi A, Tanash A, Sa’id S, Sartawi H. Antibiotic Prescription Practice and Resistance Patterns of Bacterial Isolates from a Neonatal Intensive Care Unit: A Retrospective Study from Jordan. Antibiotics. 2025; 14(1):105. https://doi.org/10.3390/antibiotics14010105
Chicago/Turabian StyleAlameri, Mariam, Lobna Gharaibeh, Mervat Alsous, Aseel Yaghi, Asma’a Tanash, Saqr Sa’id, and Hanan Sartawi. 2025. "Antibiotic Prescription Practice and Resistance Patterns of Bacterial Isolates from a Neonatal Intensive Care Unit: A Retrospective Study from Jordan" Antibiotics 14, no. 1: 105. https://doi.org/10.3390/antibiotics14010105
APA StyleAlameri, M., Gharaibeh, L., Alsous, M., Yaghi, A., Tanash, A., Sa’id, S., & Sartawi, H. (2025). Antibiotic Prescription Practice and Resistance Patterns of Bacterial Isolates from a Neonatal Intensive Care Unit: A Retrospective Study from Jordan. Antibiotics, 14(1), 105. https://doi.org/10.3390/antibiotics14010105