Management and Outcome of Invasive Clindamycin-Resistant MRSA Community-Associated Infections in Children
Abstract
:1. Introduction
2. Results
2.1. Overall S. aureus Disease Trends
2.2. Use of Anti-MRSA Agents
2.3. Clinical Features and Outcomes of Clindamycin-Resistant MRSA
2.4. Infection in Non-Critically Ill Children
2.5. Clindamycin-Resistant MRSA Osteomyelitis
3. Discussion
4. Methods
4.1. Study Subjects
4.2. Anti-MRSA Agent Use
4.3. Outcomes and Analytic Concerns
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- GBD 2019. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef] [PubMed]
- Kuehnert, M.J.; Kruszon-Moran, D.; Hill, H.A.; McQuillan, G.; McAllister, S.K.; Fosheim, G.; McDougal, L.K.; Chaitram, J.; Jensen, B.; Fridkin, S.K.; et al. Prevalence of Staphylococcus aureus nasal colonization in the United States, 2001–2002. J. Infect. Dis. 2006, 193, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Graham, P.L., 3rd; Lin, S.X.; Larson, E.L. A U.S. population-based survey of Staphylococcus aureus colonization. Ann. Intern. Med. 2006, 144, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Spaulding, A.B.; Thurm, C.; Courter, J.D.; Banerjee, R.; Gerber, J.S.; Newland, J.G.; Parker, S.K.; Brogan, T.V.; Kronman, M.P.; Shah, S.S.; et al. Epidemiology of Staphylococcus aureus infections in patients admitted to freestanding pediatric hospitals, 2009–2016. Infect Control Hosp. Epidemiol. 2018, 39, 1487–1490. [Google Scholar] [CrossRef] [PubMed]
- Holland, T.L.; Arnold, C.; Fowler, V.G., Jr. Clinical management of Staphylococcus aureus bacteremia: A review. JAMA 2014, 312, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Fowler, V.G., Jr.; Olsen, M.K.; Corey, G.R.; Woods, C.W.; Cabell, C.H.; Reller, L.B.; Cheng, A.C.; Dudley, T.; Oddone, E.Z. Clinical identifiers of complicated Staphylococcus aureus bacteremia. Arch. Intern. Med. 2003, 163, 2066–2072. [Google Scholar] [CrossRef] [PubMed]
- McMullan, B.J.; Bowen, A.C.; Blyth, C.C.; Van Hal, S.; Korman, T.; Buttery, J.; Voss, L.; Roberts, S.; Cooper, C.; Tong, S.Y.; et al. The epidemiology and mortality of Staphylococcus aureus bacteremia in a prospective cohort of Australian and New Zealand children. JAMA Pediatr. 2016, 170, 979–986. [Google Scholar] [CrossRef] [PubMed]
- Hulten, K.G.; Mason, E.O.; Lamberth, L.B.; Forbes, A.R.; Revell, P.A.; Kaplan, S.L. Analysis of Invasive Community-Acquired Methicillin-Susceptible Staphylococcus aureus Infections during a Period of Declining CA-MRSA Infections at a Large Children’s Hospital. Pediatr. Infect. Dis. J. 2018, 37, 235–241. [Google Scholar] [CrossRef] [PubMed]
- David, M.Z.; Crawford, S.E.; Boyle-Vavra, S.; Hostetler, M.A.; Kim, D.C.; Daum, R.S. Contrasting pediatric and adult methicillin-resistant Staphylococcus aureus isolates. Emerg. Infect. Dis. 2006, 12, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Aguilar, G.; Hammerman, W.A.; Mason, E.O., Jr.; Kaplan, S.L. Clindamycin treatment of invasive infections caused by community-acquired, methicillin-resistant and methicillin-susceptible Staphylococcus aureus in children. Pediatr. Infect. Dis. J. 2003, 22, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Bayer, A.; Cosgrove, S.E.; Daum, R.S.; Fridkin, S.K.; Gorwitz, R.J.; Kaplan, S.L.; Karchmer, A.W.; Levine, D.P.; Murray, B.E.; et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin. Infect. Dis. 2011, 52, e18–e55. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.L.; Hulten, K.G.; Gonzalez, B.E.; Hammerman, W.A.; Lamberth, L.; Versalovic, J.; Mason, E.O., Jr. Three-year surveillance of community-acquired Staphylococcus aureus infections in children. Clin. Infect. Dis. 2005, 40, 1785–1791. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.; Waites, K.B.; Moser, S.A.; Cloud, G.A.; Hoesley, C.J. Prevalence of inducible clindamycin resistance among community- and hospital-associated Staphylococcus aureus isolates. J. Clin. Microbiol. 2006, 44, 2481–2484. [Google Scholar] [CrossRef] [PubMed]
- Chavez-Bueno, S.; Bozdogan, B.; Katz, K.; Bowlware, K.L.; Cushion, N.; Cavuoti, D.; Ahmad, N.; McCracken, G.H., Jr.; Appelbaum, P.C. Inducible clindamycin resistance and molecular epidemiologic trends of pediatric community-acquired methicillin-resistant Staphylococcus aureus in Dallas, Texas. Antimicrob. Agents Chemother. 2005, 49, 2283–2288. [Google Scholar] [CrossRef] [PubMed]
- Stein, M.; Komerska, J.; Prizade, M.; Sheinberg, B.; Tasher, D.; Somekh, E. Clindamycin resistance among Staphylococcus aureus strains in Israel: Implications for empirical treatment of skin and soft tissue infections. Int. J. Infect. Dis. 2016, 46, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Mongkolrattanothai, K.; Aldag, J.C.; Mankin, P.; Gray, B.M. Epidemiology of community-onset Staphylococcus aureus infections in pediatric patients: An experience at a Children’s Hospital in central Illinois. BMC Infect. Dis. 2009, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Khamash, D.F.; Voskertchian, A.; Tamma, P.D.; Akinboyo, I.C.; Carroll, K.C.; Milstone, A.M. Increasing Clindamycin and Trimethoprim-Sulfamethoxazole Resistance in Pediatric Staphylococcus aureus Infections. J. Pediatric Infect. Dis. Soc. 2019, 8, 351–353. [Google Scholar] [CrossRef] [PubMed]
- La Vecchia, A.; Ippolito, G.; Taccani, V.; Gatti, E.; Bono, P.; Bettocchi, S.; Pinzani, R.; Tagliabue, C.; Bosis, S.; Marchisio, P.; et al. Epidemiology and antimicrobial susceptibility of Staphylococcus aureus in children in a tertiary care pediatric hospital in Milan, Italy, 2017–2021. Ital. J. Pediatr. 2022, 48, 67. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.; Coombs, G.W.; Bell, J.M.; Daley, D.A.; Mowlaboccus, S.; Bryant, P.; Campbell, A.; Cooley, L.; Iredell, J.; Irwin, A.D.; et al. Antimicrobial resistance in Staphylococcus aureus and Enterococci spp. isolates from bloodstream infections in Australian children, 2013–2021. J. Pediatr. Infect. Dis. Soc. 2024; piae110. [Google Scholar] [CrossRef] [PubMed]
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Vital Signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Sutter, D.E.; Milburn, E.; Chukwuma, U.; Dzialowy, N.; Maranich, A.M.; Hospenthal, D.R. Changing Susceptibility of Staphylococcus aureus in a US Pediatric Population. Pediatrics 2016, 137, e20153099. [Google Scholar] [CrossRef] [PubMed]
- Acree, M.E.; Morgan, E.; David, M.Z. S. aureus Infections in Chicago, 2006–2014: Increase in CA MSSA and Decrease in MRSA Incidence. Infect. Control Hosp. Epidemiol. 2017, 38, 1226–1234. [Google Scholar] [CrossRef] [PubMed]
- Pediatrics, A.A.O. Staphylococcus aureus. In Red Book: Report of the Committee on Infectious Diseases; Kimberlin, D.W., Barnett, E.D., Lynfield, R., Sawyer, M.H., Eds.; American Academy of Pediatrics: Ithasca, IL, USA, 2021. [Google Scholar]
- Ruebner, R.; Keren, R.; Coffin, S.; Chu, J.; Horn, D.; Zaoutis, T.E. Complications of central venous catheters used for the treatment of acute hematogenous osteomyelitis. Pediatrics 2006, 117, 1210–1215. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.W.; Abaza, H.; Mehta, P.; Bauer, J.; Cooperman, D.R.; Gilmore, A. Intravenous versus oral outpatient antibiotic therapy for pediatric acute osteomyelitis. Iowa Orthop. J. 2013, 33, 208–212. [Google Scholar] [PubMed] [PubMed Central]
- Maraqa, N.F.; Gomez, M.M.; Rathore, M.H. Outpatient parenteral antimicrobial therapy in osteoarticular infections in children. J. Pediatr. Orthop. 2002, 22, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Rinke, M.L.; Heo, M.; Saiman, L.; Bundy, D.G.; Rosenberg, R.E.; DeLaMora, P.; Rabin, B.; Zachariah, P.; Mirhaji, P.; Ford, W.J.H.; et al. Pediatric Ambulatory Central Line-Associated Bloodstream Infections. Pediatrics 2021, 147, e20200524. [Google Scholar] [CrossRef] [PubMed]
- Zaoutis, T.; Localio, A.R.; Leckerman, K.; Saddlemire, S.; Bertoch, D.; Keren, R. Prolonged intravenous therapy versus early transition to oral antimicrobial therapy for acute osteomyelitis in children. Pediatrics 2009, 123, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Messina, A.F.; Namtu, K.; Guild, M.; Dumois, J.A.; Berman, D.M. Trimethoprim-sulfamethoxazole therapy for children with acute osteomyelitis. Pediatr. Infect. Dis. J. 2011, 30, 1019–1021. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; Chiu, C.H.; Lin, T.Y.; Lee, Z.L.; Yang, W.E.; Huang, Y.C. Experience with linezolid therapy in children with osteoarticular infections. Pediatr. Infect. Dis. J. 2007, 26, 985–988. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Lee, S.; Lee, Y.; Kim, J.H.; Lee, J. The molecular epidemiology and clinical implication of methicillin-resistant Staphylococcus aureus (MRSA) sequence types in pediatric bacteremia: A restrospective observational study, 2016–2021. BMC Infect. Dis. 2024, 24, 259. [Google Scholar] [CrossRef] [PubMed]
- Carrel, M.; Perencevich, E.N.; David, M.Z. USA300 Methicillin-Resistant Staphylococcus aureus, United States, 2000–2013. Emerg. Infect. Dis. 2015, 21, 1973–1980. [Google Scholar] [CrossRef] [PubMed]
- Hoyer, E.A.; Joseph, M.; Kaplan, S.L.; Vallejo, J.G.; McNeil, J.C. Predictive Factors to Guide Empiric Antimicrobial Therapy of Acute Hematogenous Osteomyelitis in Children. Pediatr. Infect. Dis. J. 2023, 42, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Takoudju, E.; Bemer, P.; Touchais, S.; Asseray, N.; Corvec, S.; Khatchatourian, L.; Serandour, N.; Boutoille, D.; Nantes, B.; Joint Infections Study, G. Bacteriological relevance of linezolid vs. vancomycin in postoperative empirical treatment of osteoarticular infections: A retrospective single-center study. Int. J. Antimicrob. Agents 2018, 52, 663–666. [Google Scholar] [CrossRef] [PubMed]
- Woods, C.R.; Bradley, J.S.; Chatterjee, A.; Copley, L.A.; Robinson, J.; Kronman, M.P.; Arrieta, A.; Fowler, S.L.; Harrison, C.; Carrillo-Marquez, M.A.; et al. Clinical Practice Guideline by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America: 2021 Guideline on Diagnosis and Management of Acute Hematogenous Osteomyelitis in Pediatrics. J. Pediatr. Infect. Dis. Soc. 2021, 10, 801–844. [Google Scholar] [CrossRef] [PubMed]
- Saavedra-Lozano, J.; Falup-Pecurariu, O.; Faust, S.N.; Girschick, H.; Hartwig, N.; Kaplan, S.; Lorrot, M.; Mantadakis, E.; Peltola, H.; Rojo, P.; et al. Bone and Joint Infections. Pediatr. Infect. Dis. J. 2017, 36, 788–799. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, L.M.; Fiawoo, S.; Tamma, P.D.; Same, R.G. Trimethoprim-Sulfamethoxazole for Pediatric Osteoarticular Infections. J. Pediatr. Infect. Dis. Soc. 2023, 12, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.L.; Jackson, M.A.; Herigon, J.C.; Hersh, A.L.; Shapiro, D.J.; Leeder, J.S. Trends in adverse reactions to trimethoprim-sulfamethoxazole. Pediatrics 2013, 131, e103–e108. [Google Scholar] [CrossRef] [PubMed]
- Goldman, J.L.; Richardson, T.; Newland, J.G.; Lee, B.; Gerber, J.S.; Hall, M.; Kronman, M.; Hersh, A.L. Outpatient Parenteral Antimicrobial Therapy in Pediatric Medicaid Enrollees. J. Pediatr. Infect. Dis. Soc. 2017, 6, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Hulten, K.G.; Kaplan, S.L.; Gonzalez, B.E.; Hammerman, W.A.; Lamberth, L.B.; Versalovic, J.; Mason, E.O., Jr. Three-year surveillance of community onset health care-associated staphylococcus aureus infections in children. Pediatr. Infect. Dis. J. 2006, 25, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Hulten, K.G.; Kaplan, S.L.; Lamberth, L.B.; Slimp, K.; Hammerman, W.A.; Carrillo-Marquez, M.; Starke, J.R.; Versalovic, J.; Mason, E.O., Jr. Hospital-acquired Staphylococcus aureus infections at Texas Children’s Hospital, 2001–2007. Infect. Control Hosp. Epidemiol. 2010, 31, 183–190. [Google Scholar] [CrossRef] [PubMed]
All, n = 34 | Vancomycin, n = 15 | Ceftaroline, n = 2 | TMP-SMX, n = 9 | Linezolid, n = 7 | Doxycycline, n = 1 | p | |
---|---|---|---|---|---|---|---|
Median Age, years (IQR) * | 2.37 (0.79–8.7) | 2.5 (0.86–8.3) | 1.7 (0.03–3.6) | 2.1 (1.7–11.2) | 5.6 (0.3–12.9) | 10.4 | 0.76 |
Gender (%) Male Female | 16 (47.1) 18 (52.9) | 6 (40) 9 (60) | 1 (50) 1 (50) | 5 (55.6) 4 (44.4) | 3 (42.9) 4 (57.1) | 1 (100) 0 | 0.89 |
Diagnosis (%) Osteomyelitis Septic Arthritis Bacteremia Pneumonia Pyomyositis Deep Abscess | 17 (50) 1 (2.9) 1 (2.9) 6 (17.6) 2 (5.9) 7 (20.6) | 8 (53.3) 0 1 (6.67) 3 (20) 1 (6.67) 2 (13.3) | 1 (50) 0 0 0 1 (50) 0 | 5 (55.6) 0 0 1 (11.1) 0 3 (33.3) | 3 (42.9) 1 (14.3) 0 2 (28.6) 0 1 (14.3) | 0 0 0 0 0 1 (100) | 0.57 |
ICU Admission | 14 (41.2) | 9 (60) | 2 (100) | 0 | 3 (42.8) | 0 | 0.004 |
Median Duration of IV therapy, days (IQR) | 11.5 (6–42) | 42 (16–43) | 30 (25–35) | 4 (3–6) ** | 10 (9–12) ** | 6 ** | <0.001 # |
Median Duration of Oral Therapy, days (IQR) | 21.5 (13–25) | n/a | n/a | 17.5 (8–34) | 22 (16–29) | 16 | 0.9 |
Median Duration of Total Therapy (IV + Oral), days (IQR) | 32 (23–42) | 42 (28–52) | 30 (25–35) | 27 (12–42) | 33 (28–42) | 22 | 0.19 |
Positive Blood Cultures (%) | 13 (38.2) | 10 (66.7) | 1 (50.0) | 1 (11.1) | 2 (28.6) | 0 | 0.036 |
Median Duration of Bacteremia, days (IQR) | 2 (1–3) | 2 (2–3) | 7 | 1 | 1 (1–1) | n/a | 0.06 |
Surgical Source Control (%) | 29 (85.3) | 12 (80) | 1 (50) | 8 (88.9) | 7 (100) | 1 (100) | 0.41 |
Cure (%) | 28 (82.4) | 11 (73.3) | 1 (50) | 8 (88.9) | 7 (100) | 1 (100) | 0.35 |
Intravenous n = 17 | Oral n = 17 | p Value | |
---|---|---|---|
Median Age, years (IQR) | 2.4 (0.9–6.3) | 2.3 (0.8–11.2) | 0.58 |
Positive Blood Culture (%) | 10 (58.8) | 3 (17.6) | 0.03 |
Median Duration of Bacteremia, days (IQR) | 2.5 (2–3) | 1 (1–1) | 0.01 |
Diagnosis (%) * Osteomyelitis Septic Joint Deep Abscess Bacteremia/Endovascular ** Pneumonia Pyomyositis | 9 (52.9) 0 2 (11.8) 3 (17.6) 3 (17.6) 1 (5.88) | 8 (47.1) 1 (5.9) 5 (29.4) 0 3 (17.6) 0 | 1 1 0.39 0.23 1 1 |
Cure (%) | 12 (75) | 16 (88.9) | 0.38 |
Recurrence (%) | 2 (11.8) | 1 (5.9) | 1 |
Deceased (%) | 3 (18.8) | 0 | 0.09 |
Vancomycin, n = 6 | TMP-SMX, n = 9 | Linezolid, n = 4 | Doxycycline, n = 1 | p | |
---|---|---|---|---|---|
Median Age, years (IQR) | 8.5 (6.1–11.3) | 2.1 (1.7–11.2) | 9.3 (2.9–13.1) | 10.44 | 0.5 |
Infectious Diagnosis | 0.24 | ||||
Osteomyelitis | 5 (83.3) | 5 (55.6) | 2 (50) | 0 | |
Septic Arthritis | 0 | 0 | 1 (25) | 0 | |
Bacteremia | 1 (16.7) | 0 | 0 | 0 | |
Pneumonia | 0 | 1 (11.1) | 0 | 0 | |
Deep Abscess | 0 | 3 (33.3) | 1 (25) | 1 (100) | |
Positive Blood Cultures (%) | 5 (83.3) | 1 (11.1) | 1 (25) | 0 | 0.01 |
Surgical Source Control (%) | 4 (66.7) | 8 (88.9) | 4 (100) | 1 (100) | 0.49 |
Duration of Fever, days | 6 (1–10) | 1 (1–1) | 2.5 (1–6) | 1 | 0.27 |
Median Duration of Total Therapy (IV + Oral), days (IQR) | 37.5 (28–52) | 27 (12–42) | 33.5 (32–38) | 22 | 0.57 |
Length of Stay, days | 14 (8–17) | 5 (3–6) | 9 (6.5–12) | 6 | 0.08 |
Cure (%) | 5 (83.3) | 8 (88.9) | 4 (100) | 1 (100) | 0.81 |
Vancomycin, n = 8 | TMP-SMX, n = 5 | Linezolid, n = 3 | p Value | |
---|---|---|---|---|
Age, years | 5.7 (2.5–8.5) | 11.2 (2.1–11.2) | 7.5 (5.6–12.9) | 0.6 |
ICU Admission | 3 (37.5) | 0 | 1 (33.3) | 0.3 |
Positive Blood Culture | 7 (87.5) | 0 | 2 (66.7) | 0.003 |
Duration of Bacteremia, days | 2.5 (2–3) | n/a | 1 (1–1) | 0.007 |
Duration of Fever, days | 9 (6–12.5) | 1 (1–1) | 3.5 (2–7) | 0.02 |
Source Control | 7 (87.5) | 4 (80) | 3 (100) | 1 |
Number of Surgeries | 1 (1–2) | 1 (1–1) | 2 (1–5) | 0.14 |
Site of Osteomyelitis | 0.49 | |||
Femur | 3 (37.5) | 1 (20) | 1 (33.3) | |
Tibia/Fibula | 1 (12.5) | 1 (20) | 1 (33.3) | |
Pelvis | 2 (25) | 0 | 0 | |
Other site | 2 (25) | 3 (60) | 1 (33.3) | |
Duration of IV Antibiotics, days | 42 (35–46.5) | 6 (3–8) | 11 (10–13) | 0.001 |
Duration of Total Antibiotics, days | 47.5 (37.5–63) | 42 (31–42) | 42 (33–47) | 0.46 |
Clinical Cure | 7 (87.5) | 4 (80) | 3 (100) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macias, A.E.; Stimes, G.; Kaplan, S.L.; Vallejo, J.G.; Hulten, K.G.; McNeil, J.C. Management and Outcome of Invasive Clindamycin-Resistant MRSA Community-Associated Infections in Children. Antibiotics 2025, 14, 107. https://doi.org/10.3390/antibiotics14010107
Macias AE, Stimes G, Kaplan SL, Vallejo JG, Hulten KG, McNeil JC. Management and Outcome of Invasive Clindamycin-Resistant MRSA Community-Associated Infections in Children. Antibiotics. 2025; 14(1):107. https://doi.org/10.3390/antibiotics14010107
Chicago/Turabian StyleMacias, Amanda E., Grant Stimes, Sheldon L. Kaplan, Jesus G. Vallejo, Kristina G. Hulten, and J. Chase McNeil. 2025. "Management and Outcome of Invasive Clindamycin-Resistant MRSA Community-Associated Infections in Children" Antibiotics 14, no. 1: 107. https://doi.org/10.3390/antibiotics14010107
APA StyleMacias, A. E., Stimes, G., Kaplan, S. L., Vallejo, J. G., Hulten, K. G., & McNeil, J. C. (2025). Management and Outcome of Invasive Clindamycin-Resistant MRSA Community-Associated Infections in Children. Antibiotics, 14(1), 107. https://doi.org/10.3390/antibiotics14010107