Antibiotic Residues in Animal Products from Some African Countries and Their Possible Impact on Human Health
Abstract
:1. Introduction
2. Results and Discussion
Antibiotic Residues in Animal Products from Africa
3. Impact of Antibiotic Residues on Human Health
3.1. Antibiotic Resistance
3.2. Allergic Reactions
3.3. Hepatotoxicity Effect
3.4. Destruction of Normal or Useful Intestinal Flora and Indigestion
3.5. Carcinogenicity and Other Effects
4. Conclusions and Recommendation
5. Limitations of This Study
6. Materials and Methods
- Those where the antibiotics analyzed were specified;
- Those where the concentrations of antibiotic residues in animal products in Africa were quantified;
- The impact of the antibiotic residues on human health;
- Research activities mainly carried out in Africa;
- Published papers that dealt with antibiotics in livestock only.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stojković, D.; Petrović, J.; Carević, T.; Soković, M.; Liaras, K. Synthetic and Semisynthetic Compounds as Antibacterials Targeting Virulence Traits in Resistant Strains: A Narrative Updated Review. Antibiotics 2023, 12, 963. [Google Scholar] [CrossRef] [PubMed]
- Phillips, I.; Casewell, M.; Cox, T.; De Groot, B.; Friis, C.; Jones, R.; Nightingale, C.; Preston, R.; Waddell, J. Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J. Antimicrob. Chemother. 2004, 53, 28–52. [Google Scholar] [CrossRef]
- Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics use in food animal production: Escalation of antimicrobial resistance: Where are we now in combating AMR? Med. Sci. 2021, 9, 14. [Google Scholar] [CrossRef]
- Bacanlı, M.; Başaran, N. Importance of antibiotic residues in animal food. Food Chem. Toxicol. 2019, 125, 462–466. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ying, G.-G.; Deng, W.-J. Antibiotic residues in food: Extraction, analysis, and human health concerns. J. Agric. Food Chem. 2019, 67, 7569–7586. [Google Scholar] [CrossRef]
- Patangia, D.V.; Anthony Ryan, C.; Dempsey, E.; Paul Ross, R.; Stanton, C. Impact of antibiotics on the human microbiome and consequences for host health. Microbiologyopen 2022, 11, e1260. [Google Scholar] [CrossRef]
- Darwish, W.S.; Eldaly, E.A.; El-Abbasy, M.T.; Ikenaka, Y.; Nakayama, S.; Ishizuka, M. Antibiotic residues in food: The African scenario. Jpn. J. Vet. Res. 2013, 61, S13–S22. [Google Scholar]
- Li, J.; Yousif, M.; Li, Z.; Wu, Z.; Li, S.; Yang, H.; Wang, Y.; Cao, Z. Effects of antibiotic residues in milk on growth, ruminal fermentation, and microbial community of preweaning dairy calves. J. Dairy Sci. 2019, 102, 2298–2307. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.S.; Hassan, M.M.; Chowdhury, S. Determination of antibiotic residues in milk and assessment of human health risk in Bangladesh. Heliyon 2021, 7, e07739. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, E.D.; Smits, S.A.; Tikhonov, M.; Higginbottom, S.K.; Wingreen, N.S.; Sonnenburg, J.L. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016, 529, 212–215. [Google Scholar] [CrossRef]
- Francino, M. Antibiotics and the human gut microbiome: Dysbioses and accumulation of resistances. Front. Microbiol. 2016, 6, 164577. [Google Scholar] [CrossRef]
- Li, W.; Tapiainen, T.; Brinkac, L.; Lorenzi, H.A.; Moncera, K.; Tejesvi, M.V.; Salo, J.; Nelson, K.E. Vertical transmission of gut microbiome and antimicrobial resistance genes in infants exposed to antibiotics at birth. J. Infect. Dis. 2021, 224, 1236–1246. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial resistance: Impacts, challenges, and future prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam Tumpa, M.A.; Zehravi, M.; Sarker, M.T.; Yamin, M.; Islam, M.R.; Harun-Or-Rashid, M.; Ahmed, M.; Ramproshad, S.; Mondal, B. An overview of antimicrobial stewardship optimization: The use of antibiotics in humans and animals to prevent resistance. Antibiotics 2022, 11, 667. [Google Scholar] [CrossRef] [PubMed]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef] [PubMed]
- Salama, N.; Abou-Raya, S.; Shalaby, A.; Emam, W.; Mehaya, F. Incidence of tetracycline residues in chicken meat and liver retailed to consumers. Food Addit. Contam. Part B 2011, 4, 88–93. [Google Scholar] [CrossRef]
- Olowoyo, J.; Okoya, A.; Adesiyan, I.; Awe, Y.; Lion, G.; Agboola, O.; Oladeji, O. Environmental health science research: Opportunities and challenges for some developing countries in Africa. Int. J. Environ. Health Res. 2024, 1–25. [Google Scholar] [CrossRef]
- Mensah, S.; Dakpogan, H.; Aboh, A.; Sika, K.C.; Abléto, M.; Adjahoutonon, K.B.; Koudandé, O.; Sanders, P.; Mensah, G. Occurrence of antibiotic residues in raw fish Clarias gariepinus and Oreochromis niloticus from intensive rearing system in Benin. Veterinaria 2019, 68, 91–94. [Google Scholar]
- Guetiya Wadoum, R.; Zambou, N.; Anyangwe, F.; Njimou, J.; Coman, M.; Verdenelli, M.C.; Cecchini, C.; Silvi, S.; Orpianesi, C.; Cresci, A. Abusive use of antibiotics in poultry farming in Cameroon and the public health implications. Br. Poult. Sci. 2016, 57, 483–493. [Google Scholar] [CrossRef]
- Vougat Ngom, R.R.B.; Garabed, R.B.; Rumbeiha, W.K.; Foyet, H.S.; Schrunk, D.E.; Shao, D.; Zoli Pagnah, A. Penicillin-G and oxytetracycline residues in beef sold for human consumption in Maroua, Cameroon. Int. J. Food Contam. 2017, 4, 1–11. [Google Scholar] [CrossRef]
- Mouiche, M.M.M.; Okah-Nnane, N.H.; Moffo, F.; Djibo, I.; Mapiefou, N.P.; Mpouam, S.E.; Mfopit, Y.M.; Mingoas, J.-P.K.; Tebug, S.F.; Ndukum, J.A. Antibiotic Residues in Foods of Animal Origin in Cameroon: Prevalence, Consumers’ Risk Perceptions, and attitudes. J. Food Prot. 2024, 87, 100237. [Google Scholar] [CrossRef]
- Fahim, H.M. Evaluate antibiotic residues in beef and effect of cooking and freezing on it. Benha Vet. Med. J. 2019, 36, 109–116. [Google Scholar] [CrossRef]
- Mohammed, N.; Adare Mengistu, D.; Abdurehman, A.; Belina, D.; Mengistu, S. Determination of tetracycline residues in kidney and muscle of beef cattle slaughtered in Dire Dawa and Harar municipal abattoirs, Eastern Ethiopia. Environ. Health Insights 2022, 16, 11786302221109720. [Google Scholar] [CrossRef] [PubMed]
- Uma, G.; Ashenef, A. Determination of some antibiotic residues (tetracycline, oxytetracycline and penicillin-G) in beef sold for public consumption at Dukem and Bishoftu (Debre Zeyit) towns, central Ethiopia by LC/MS/MS. Cogent Food Agric. 2023, 9, 2242633. [Google Scholar] [CrossRef]
- Abdeta, D.; Tafesse, M.; Bacha, B. Detection of selected antimicrobial residues in red meat and kidney of beef cattle slaughtered at Nekemte municipal abattoir, Ethiopia. Vet. Med. Sci. 2024, 10, e1459. [Google Scholar] [CrossRef]
- Mingle, C.L.; Darko, G.; Borquaye, L.S.; Asare-Donkor, N.K.; Woode, E.; Koranteng, F. Veterinary drug residues in beef, chicken, and egg from Ghana. Chem. Afr. 2021, 4, 339–348. [Google Scholar] [CrossRef]
- Kosgey, A.; Shitandi, A.; Marion, J.W. Antibiotic residues in milk from three popular Kenyan milk vending machines. Am. J. Trop. Med. Hyg. 2018, 98, 1520. [Google Scholar] [CrossRef]
- Ouma, J.; Gachanja, A.; Mugo, S.; Gikunju, J. Antibiotic residues in milk from Juja and Githurai markets in Kenya by liquid chromatography-tandem mass spectrometry. Chem. Afr. 2021, 4, 769–775. [Google Scholar] [CrossRef]
- Odundo, F.; Ngigi, A.; Magu, M. Sulfonamides and β-lactam antibiotic residues and human health risk assessment in commercial chicken meat sold in Nairobi City, Kenya. Heliyon 2023, 9, e18810. [Google Scholar] [CrossRef]
- Olatoye, I.O.; Daniel, O.F.; Ishola, S.A. Screening of antibiotics and chemical analysis of penicillin residue in fresh milk and traditional dairy products in Oyo state, Nigeria. Vet. World 2016, 9, 948. [Google Scholar] [CrossRef]
- Yusuf, M.; Kabir, J.; Bello, M.; Babashani, M. Occurrence of tetracycline residues in raw milk from dairy farms in Kano state, Nigeria. In Proceedings of the 54th Annual Congress of the Nigerian Veterinary Medical Association (Kano, 2017), Kano, Nigeria, 30 July–4 August 2017; p. 155. [Google Scholar]
- Oluwafemi, F.; Oluwabamiwo, B.F.; Oluwatosin, O.O.; Akinrinade, O.R.; Kolapo, A.L. Assessment of microbiological and residual antibiotics status in milk sold in Abeokuta, Ogun State. Nigeria. Turk. J. Agric. Food Sci. Technol. 2018, 6, 642–651. [Google Scholar] [CrossRef]
- Adama, J.; Mande, L.; Usman, A. Detection of antimicrobial drug residues in edible tissues from Bunaji cattle slaughtered in Minna modern abattoir. Niger. J. Anim. Prod. 2020, 47, 32–38. [Google Scholar] [CrossRef]
- Lateefat, H.M.; Olaniyi, O.A.; Yusuf, A.B.; Azaman, I.; Raimi, M.O. Elixirs of life, threats to human and environmental well-being: Assessment of antibiotic residues in raw meat sold within central market Kaduna metropolis, Kaduna State, Nigeria. BioRxiv 2022. [Google Scholar] [CrossRef]
- Ramatla, T.; Ngoma, L.; Adetunji, M.; Mwanza, M. Evaluation of antibiotic residues in raw meat using different analytical methods. Antibiotics 2017, 6, 34. [Google Scholar] [CrossRef] [PubMed]
- Ndlovu, K.; Mwanza, M.; Nleya, N.; Ngoma, L. Detection and quantification of antibiotic residues in goat milk in Mahikeng Local Municipality. J. S. Afr. Vet. Assoc. 2024, 95, 121–130. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mdegela, R.H.; Mhaiki, C.J.; Karimuribo, E.D.; Mabiki, F.; Nonga, H.E.; Mwesongo, J. Determination of oxytetracycline residues in cattle meat marketed in the Kilosa district, Tanzania: Research communication. Onderstepoort J. Vet. Res. 2015, 82, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Mgonja, F.; Mosha, R.; Mabiki, F.; Choongo, K. Oxytetracycline residue levels in beef in Dodoma region, Tanzania. Afr. J. Food Sci. 2017, 11, 40–43. [Google Scholar]
- Nchima, G.; Choongo, K.; Muzandu, K.; Nalubamba, K.; Muma, J.; Bumbangi, F.; Monga, G.; Kangwa, H. Determination of oxytetracycline and sulphamethazine residues in marketed beef from selected parts of Zambia to assess compliance with maximum residual limits. Am. J. Res. Commun 2017, 5, 42–64. [Google Scholar]
- Mouiche, M.M.M.; Moffo, F.; Akoachere, J.-F.T.K.; Okah-Nnane, N.H.; Mapiefou, N.P.; Ndze, V.N.; Wade, A.; Djuikwo-Teukeng, F.F.; Toghoua, D.G.T.; Zambou, H.R. Antimicrobial resistance from a one health perspective in Cameroon: A systematic review and meta-analysis. BMC Public Health 2019, 19, 1135. [Google Scholar] [CrossRef] [PubMed]
- Anueyiagu, K.; Nandi, S.; Uzochukwu, I.; Sule, S. Prevalence of antibiotic residues in body organs of pigs slaughtered in Jos, Nigeria. Afr. J. Clin. Exp. Microbiol. 2022, 23, 318–322. [Google Scholar] [CrossRef]
- Monger, X.; Gilbert, A.; Saucier, L.; Vincent, A. Antibiotic resistance: From pig to meat. Antibiotics 2021, 10, 1209. [Google Scholar] [CrossRef]
- Kebede, G.; Zenebe, T.; Disassa, H.; Tolosa, T. Review on detection of antimicrobial residues in raw bulk milk in dairy farms. Afr. J. Basic Appl. Sci. 2014, 6, 87–97. [Google Scholar]
- Rware, H.; Monica, K.K.; Idah, M.; Fernadis, M.; Davis, I.; Buke, W.; Solveig, D.; Daniel, K.; Duncan, C.; Morten, B. Examining antibiotic use in Kenya: Farmers’ knowledge and practices in addressing antibiotic resistance. CABI Agric. Biosci. 2024, 5, 21. [Google Scholar] [CrossRef]
- Martínez-López, B.; Perez, A.M.; Feliziani, F.; Rolesu, S.; Mur, L.; Sánchez-Vizcaíno, J.M. Evaluation of the risk factors contributing to the African swine fever occurrence in Sardinia, Italy. Front. Microbiol. 2015, 6, 314. [Google Scholar] [CrossRef] [PubMed]
- Marshall, B.M.; Levy, S.B. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 2011, 24, 718–733. [Google Scholar] [CrossRef] [PubMed]
- Ojo, O.O.; Awonuga, D.; Dedeke, I.O.F.; Nwadike, V.U.; Adenaya, O.R.; Odelola, O.I. Prevalence of Group B Streptococcus Colonisation and Antimicrobial Susceptibility Pattern among Pregnant Women Attending a Tertiary Health Facility in Ogun State, Southwest Nigeria. J. West Afr. Coll. Surg. 2019, 9, 8–14. [Google Scholar] [PubMed]
- Kagira, J.; Ngotho, M.; Mugo, E.; Kiplimo, M.; Maina, N. Occurrence of antibiotic resistance in bacteria isolated from milk of dairy cows in small-holder farms in Juja sub-county, Kenya. Asian J. Res. Anim. Vet. Sci. 2022, 9, 36–45. [Google Scholar] [CrossRef]
- Kimera, Z.I.; Mshana, S.E.; Rweyemamu, M.M.; Mboera, L.E.; Matee, M.I. Antimicrobial use and resistance in food-producing animals and the environment: An African perspective. Antimicrob. Resist. Infect. Control 2020, 9, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Odey, T.O.J.; Tanimowo, W.O.; Afolabi, K.O.; Jahid, I.K.; Reuben, R.C. Antimicrobial use and resistance in food animal production: Food safety and associated concerns in Sub-Saharan Africa. Int. Microbiol. 2024, 27, 1–23. [Google Scholar] [CrossRef]
- Akbari, M.Z.; Xu, Y.; Lu, Z.; Peng, L. Review of antibiotics treatment by advance oxidation processes. Environ. Adv. 2021, 5, 100111. [Google Scholar] [CrossRef]
- Ngangom, B.L.; Tamunjoh, S.S.A.; Boyom, F.F. Antibiotic residues in food animals: Public health concern. Acta Ecol. Sin. 2019, 39, 411–415. [Google Scholar]
- Pandey, N.; Cascella, M. Beta-lactam antibiotics. In StatPearls; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Bacanlı, M.G. The two faces of antibiotics: An overview of the effects of antibiotic residues in foodstuffs. Arch. Toxicol. 2024, 98, 1717–1725. [Google Scholar] [CrossRef] [PubMed]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing country-perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Founou, L.L.; Amoako, D.G.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in food animals in Africa: A systematic review and meta-analysis. Microb. Drug Resist. 2018, 24, 648–665. [Google Scholar] [CrossRef] [PubMed]
- Landers, T.F.; Cohen, B.; Wittum, T.E.; Larson, E.L. A review of antibiotic use in food animals: Perspective, policy, and potential. Public Health Rep. 2012, 127, 4–22. [Google Scholar] [CrossRef]
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Pires, J.; Silvester, R.; Zhao, C.; Song, J.; Criscuolo, N.G.; Gilbert, M.; Bonhoeffer, S.; Laxminarayan, R. Global trends in antimicrobial resistance in animals in low-and middle-income countries. Science 2019, 365, eaaw1944. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sørum, H.; Norström, M.; Pons, M.-N. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef] [PubMed]
- McEachran, A.D.; Blackwell, B.R.; Hanson, J.D.; Wooten, K.J.; Mayer, G.D.; Cox, S.B.; Smith, P.N. Antibiotics, bacteria, and antibiotic resistance genes: Aerial transport from cattle feed yards via particulate matter. Environ. Health Perspect. 2015, 123, 337–343. [Google Scholar] [CrossRef]
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Front. Vet. Sci. 2018, 4, 237. [Google Scholar] [CrossRef]
- Okaiyeto, S.A.; Sutar, P.P.; Chen, C.; Ni, J.-B.; Wang, J.; Mujumdar, A.S.; Zhang, J.-S.; Xu, M.-Q.; Fang, X.-M.; Zhang, C. Antibiotic resistant bacteria in food systems: Current status, resistance mechanisms, and mitigation strategies. Agric. Commun. 2024, 2, 100027. [Google Scholar] [CrossRef]
- Khan, S.A.; Imtiaz, M.A.; Sayeed, M.A.; Shaikat, A.H.; Hassan, M.M. Antimicrobial resistance pattern in domestic animal-wildlife-environmental niche via the food chain to humans with a Bangladesh perspective; a systematic review. BMC Vet. Res. 2020, 16, 302. [Google Scholar] [CrossRef] [PubMed]
- Stanley, D.; Batacan Jr, R.; Bajagai, Y.S. Rapid growth of antimicrobial resistance: The role of agriculture in the problem and the solutions. Appl. Microbiol. Biotechnol. 2022, 106, 6953–6962. [Google Scholar] [CrossRef]
- Dopcea, G.N.; Dopcea, I.; Nanu, A.E.; Diguţă, C.F.; Matei, F. Resistance and cross-resistance in Staphylococcus spp. strains following prolonged exposure to different antiseptics. J. Glob. Antimicrob. Resist. 2020, 21, 399–404. [Google Scholar] [CrossRef]
- Puangseree, J.; Jeamsripong, S.; Prathan, R.; Pungpian, C.; Chuanchuen, R. Resistance to widely-used disinfectants and heavy metals and cross resistance to antibiotics in Escherichia coli isolated from pigs, pork and pig carcass. Food Control 2021, 124, 107892. [Google Scholar] [CrossRef]
- Hao, R.; Zhao, R.; Qiu, S.; Wang, L.; Song, H. Antibiotics crisis in China. Science 2015, 348, 1100–1101. [Google Scholar] [CrossRef]
- Caniça, M.; Manageiro, V.; Abriouel, H.; Moran-Gilad, J.; Franz, C.M. Antibiotic resistance in foodborne bacteria. Trends Food Sci. Technol. 2019, 84, 41–44. [Google Scholar] [CrossRef]
- Vieira, A.R.; Collignon, P.; Aarestrup, F.M.; McEwen, S.A.; Hendriksen, R.S.; Hald, T.; Wegener, H.C. Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: An ecological study. Foodborne Pathog. Dis. 2011, 8, 1295–1301. [Google Scholar] [CrossRef] [PubMed]
- van den Bogaard, A.E.; Stobberingh, E.E. Epidemiology of resistance to antibiotics: Links between animals and humans. Int. J. Antimicrob. Agents 2000, 14, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Bayou, K.; Haile, N. Review on antibiotic residues in food of animal origin: Economic and public health impacts. Appl. J. Hyg. 2017, 6, 1–8. [Google Scholar]
- Kyuchukova, R. Antibiotic residues and human health hazard-review. Bulg. J. Agric. Sci. 2020, 26, 664–668. [Google Scholar]
- Baynes, R.E.; Dedonder, K.; Kissell, L.; Mzyk, D.; Marmulak, T.; Smith, G.; Tell, L.; Gehring, R.; Davis, J.; Riviere, J.E. Health concerns and management of select veterinary drug residues. Food Chem. Toxicol. 2016, 88, 112–122. [Google Scholar] [CrossRef]
- Hautekeete, M.L.; Geerts, A. The hepatic stellate (Ito) cell: Its role in human liver disease. Virchows Arch. 1997, 430, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Przeniosło-Siwczyńska, M.; Patyra, E.; Grelik, A.; Chyłek-Purchała, M.; Kozak, B.; Kwiatek, K. Contamination of animal feed with undeclared tetracyclines—Confirmatory analysis by liquid chromatography–mass spectrometry after microbiological plate test. Molecules 2020, 25, 2162. [Google Scholar] [CrossRef]
- Riviere, J.E.; Papich, M.G. Veterinary Pharmacology and Therapeutics; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- van Gerven, N.M.; de Boer, Y.S.; Mulder, C.J.; van Nieuwkerk, C.M.; Bouma, G. Auto immune hepatitis. World J. Gastroenterol. 2016, 22, 4651. [Google Scholar] [CrossRef] [PubMed]
- Falowo, A.B.; Akimoladun, O.F. Veterinary drug residues in meat and meat products: Occurrence, detection and implications. Vet. Med. Pharm. 2019, 3, 10-5772. [Google Scholar]
- Zhang, Y.-J.; Li, S.; Gan, R.-Y.; Zhou, T.; Xu, D.-P.; Li, H.-B. Impacts of gut bacteria on human health and diseases. Int. J. Mol. Sci. 2015, 16, 7493–7519. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, C.; Wang, Y.; Song, R.; Tan, Y.; Yang, Y.; Zhang, Z. Sources, environmental fate, and ecological risks of antibiotics in sediments of Asia’s longest river: A whole-basin investigation. Environ. Sci. Technol. 2022, 56, 14439–14451. [Google Scholar] [CrossRef]
- Piñeiro, S.A.; Cerniglia, C.E. Antimicrobial drug residues in animal-derived foods: Potential impact on the human intestinal microbiome. J. Vet. Pharmacol. Ther. 2021, 44, 215–222. [Google Scholar] [CrossRef]
- Ben, Y.; Fu, C.; Hu, M.; Liu, L.; Wong, M.H.; Zheng, C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 2019, 169, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, K.; Khanna, S. Gut microbiome and Clostridioides difficile infection: A closer look at the microscopic interface. Ther. Adv. Gastroenterol. 2021, 14, 1756284821994736. [Google Scholar] [CrossRef] [PubMed]
- Birkett, N.; Al-Zoughool, M.; Bird, M.; Baan, R.A.; Zielinski, J.; Krewski, D. Overview of biological mechanisms of human carcinogens. J. Toxicol. Environ. Health Part B 2019, 22, 288–359. [Google Scholar] [CrossRef] [PubMed]
- Beyene, T. Veterinary drug residues in food-animal products: Its risk factors and potential effects on public health. J. Vet Sci. Technol. 2016, 7, 285. [Google Scholar] [CrossRef]
- Treiber, F.M.; Beranek-Knauer, H. Antimicrobial residues in food from animal origin—A review of the literature focusing on products collected in stores and markets worldwide. Antibiotics 2021, 10, 534. [Google Scholar] [CrossRef]
- Arsène, M.M.J.; Davares, A.K.L.; Viktorovna, P.I.; Andreevna, S.L.; Sarra, S.; Khelifi, I.; Sergueïevna, D.M. The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Vet. World 2022, 15, 662. [Google Scholar] [CrossRef] [PubMed]
- Mbarga Manga, J.A.; LA, S.; Viktorovna, P.I. Evaluation of apparent microflora and study of antibiotic resistance of coliforms isolated from the shells of poultry eggs in Moscow-Russia. J. Adv. Microbiol. 2021, 20, 70–77. [Google Scholar]
- Commission, E. Commission Regulation (EU) No 37/2010 of 22 December 2009 on pharmacologically active substances and their classification regarding maximum residue limits in foodstuffs of animal origin. Off. J. Eur. Union 2010, 15, 1–72. [Google Scholar]
Country | Region | Source | Animal Product | Antibiotics | Concentration (µg/kg) | References |
Benin | West Africa | Fish | Muscles | Amphenicols, Macrolids Tetracycline | Not detected Detected | [18] |
Cameroun | Middle Africa | Chicken | Liver Muscle | Tetracycline | 150 ± 30 62.4 ± 15.3 | [19] |
Cameroun | Middle Africa | Cow | Beef | Penicillin Oxytetracycline | 17.580 240 | [20] |
Cameroon | Middle Africa | Raw egg, raw milk and beef | Antibiotic present | Detected | [21] | |
Egypt | Cow | Raw beef | Gentamicin β-lactam Ciprofloxacin Erythromycin Oxytetracyclines Sulfonamide | 46–112.7 20–67.73 56.46–81.91 34.29–45.54 19.9–119 12.67–19.33 | [22] | |
Egypt | Northern Africa | Cow | Beef | Aminoglycoside Penicillin G Ciprofloxacin Macrolides Oxytetracycline Sulfonamide | 46–76 20–55 56.45–81.91 29.29–41.38 19.9–86.7 12.67–19.33 | [22] |
Ethiopia | East Africa | Cattle | Kidney Muscle | Tetracycline | 16–43 6–43 | [23] |
Ethiopia | East Africa | Cow | Beef | Tetracycline Penicillin G Oxyteracycline | 9.35 Not Detected 15.99 ± 13.2–22.32 ± 2.38 | [24] |
Ethiopia | East Africa | Kidney Muscle | Oxytetracycline Doxycycline, Sulphadiazine, penicillin G, and Enrofloxacin | 0–463.35 0–354.55 | [25] | |
Ghana | West Africa | Cow, Chicken | Beef Chicken Egg | Tetracycline, Oxytetracycline, Chlortetracycline, Amoxicillin, Cefazolin, penicillin G), sulfamethoxazole, sulfadoxine, sulfathiazole | 81.35 76.94 234.43 35.76 47.02 41.02 103.98 46.05 68.63 | [26] |
Kenya | East Africa | Milk | β-lactam | Detected | [27] | |
Kenya | East Africa | Milk | Amoxicillin Cloxacillin Tetracycline Sulfamethoxazole Trimethoprim | 6.7 53.3 30.6 5.0 6.2 | [28] | |
Kenya | East Africa | Chicken | Meat | Sulfonamide Sulfadiazine Sulfamethazine | 39.91–101.39 35.21 39.34 | [29] |
Nigeria | West Africa | Fresh Milk Cheese Fermented Milk | Penicillin G | 15.22 ± 0.61 7.60 ± 0.60 8.24 ± 0.50 | [30] | |
Nigeria | West Africa | Milk | Tetracycline | Detected | [31] | |
Nigeria | West Africa | Milk | Tetracycline, oxytetracycline chlortetracycline Doxycycline | 0.01–1.57 Not detected | [32] | |
Nigeria | West Africa | Cattle | Meat Liver Kidney | Oxytetracycline | Above MRL | [33] |
Nigeria | West Africa | Cattle | Beef | Tetracycline Ciprofloxacin Oxytetracycline | 17.57 ± 6.20–594 ± 47.71 22.4 ± 5.20–82.77 ± 12.60 227.2 ± 16.45–474.4 ± 119.74 | [34] |
South Africa | Southern Africa | Chicken Cow Pig | Chicken Muscle Liver Beef Muscle Liver Kidney Muscle Kidney Liver Muscle Liver Muscle Liver Kidney Muscle Liver Kidney Muscle Liver Muscle Liver Kidney Muscle Liver Kidney Muscle Liver Muscle Liver Kidney Muscle Liver Kidney | Ciprofloxacin Streptomycin Sulfonamide Tetracycline | 89.6–175.9 152.2–289.1 89.6–146.1 145.2–316.5 98.2–197.0 42.6–95.8 72.5–140.2 220.0–355.6 98.4–452.9 368.8–986.4 625.9–989.2 498.2–920.1 614.2–1280.6 620.3–875.8 196.5–535.9 14.2–1052.6 32.5–65.9 45.8–81.6 – 19.8–87.9 37.6–73.9 – 48.2–69.9 52.8–92.8 41.2–82.1 42.56–286.2 26.6–61.5 41.2–221.6 41.2–359.2 46.67–86.9 101.3–489.1 43.7–255.9 | [35] |
South Africa | Southern Africa | Goat | Milk | Tetracycline and Streptomycin | Below MRLs | [36] |
Tanzania | East Africa | Chicken | Muscle Liver Kidney | Tetracycline | 2604.1 ± 703.7 3434.4 ± 604.4 3533.1 ± 803.6 | [37] |
Tanzania | East Africa | Cow | Beef | Oxytetracycline | 0.69 ± 0.09 | [38] |
Zambia | East Africa | Cow | Beef | Oxytetracycline Sulfamethazine | 27.26–481.61 11.92–259.98 | [39] |
Antibiotics | Animal Species | Tissues | MRL (μg/kg) |
Ampicillin | All food-producing species |
Milk Liver Fat Kidney Muscle |
4 50 50 50 50 |
Amoxicillin | All food-producing species |
Milk Liver Fat Kidney Milk |
4 50 50 50 50 |
Avilamycin | Poultry, porcine, rabbit |
Kidney Liver Fat Muscle |
200 300 100 50 |
Benzylpenicillin | All food-producing species |
Milk Liver Fat Kidney Muscle |
4 50 50 50 50 |
Bacitracin | Bovine | Milk | 100 |
Cefapirin | Bovine |
Muscle Fat Kidney Milk |
50 50 100 60 |
Clavulanic acid | Bovine, porcine |
Kidney Fat Liver Muscle |
400 100 200 100 |
Cefacetrile | Bovine | Milk | 125 |
Cefazolin | Bovine, ovine, caprine | Milk | 50 |
Cloxacillin | All food-producing species |
Milk Liver Fat Kidney Muscle |
30 300 300 300 300 |
Chlortetracycline | All food-producingspecies |
Muscle Liver Kidney Milk Eggs |
100 300 600 100 200 |
Clavulanic acid | Bovine, porcine |
Muscle Fat Liver Kidney |
100 100 200 400 |
Cloxacillin | All food-producing species |
Muscle Fat Liver Kidney Milk |
300 300 300 300 30 |
Colistin | All food-producing species |
Muscle Fat Liver Kidney Milk Eggs |
150 150 150 200 50 300 |
Doxycycline | Bovine Porcine, poultry |
Muscle Liver Kidney |
100 300 600 |
Not for use in animals from which milk is produced for human consumption | |||
Muscle Skin and fat Liver Kidney |
100 300 300 600 | ||
Not for use in animals from which eggs are produced for human consumption | |||
Dicloxacillin | All food-producing species |
Muscle Fat Liver Kidney Milk |
300 300 300 300 30 |
Erythromycin A | All other food-producing species |
Muscle Fat Liver Kidney Milk Eggs |
200 200 200 200 40 150 |
Gentamicin | Bovine, porcine |
Muscle Fat Liver Kidney Milk |
50 50 200 750 100 |
Kanamycin A | All food-producing species except fin fish |
Muscle Fat Liver Kidney Milk |
100 100 600 2500 150 |
Oxytetracycline | All food-producing species |
Muscle Liver Kidney Milk Eggs |
100 300 600 100 200 |
Oxacillin | All food-producing species |
Muscle Fat Liver Kidney Milk |
300 300 300 300 30 |
Sulfonamides | All food-producing species |
Muscle Fat Liver Kidney |
100 100 100 100 |
Streptomycin | All ruminants, porcine, rabbit |
Muscle Fat Liver Kidney |
500 500 500 1000 |
Tylosin A | All food-producing species |
Muscle Fat Liver Kidney Milk Egg |
100 100 100 100 50 200 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oladeji, O.M.; Mugivhisa, L.L.; Olowoyo, J.O. Antibiotic Residues in Animal Products from Some African Countries and Their Possible Impact on Human Health. Antibiotics 2025, 14, 90. https://doi.org/10.3390/antibiotics14010090
Oladeji OM, Mugivhisa LL, Olowoyo JO. Antibiotic Residues in Animal Products from Some African Countries and Their Possible Impact on Human Health. Antibiotics. 2025; 14(1):90. https://doi.org/10.3390/antibiotics14010090
Chicago/Turabian StyleOladeji, Oluwaseun Mary, Liziwe Lizbeth Mugivhisa, and Joshua Oluwole Olowoyo. 2025. "Antibiotic Residues in Animal Products from Some African Countries and Their Possible Impact on Human Health" Antibiotics 14, no. 1: 90. https://doi.org/10.3390/antibiotics14010090
APA StyleOladeji, O. M., Mugivhisa, L. L., & Olowoyo, J. O. (2025). Antibiotic Residues in Animal Products from Some African Countries and Their Possible Impact on Human Health. Antibiotics, 14(1), 90. https://doi.org/10.3390/antibiotics14010090