Bacteriophages Biocontrol of Kiwifruit Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae (Psa) in Two Seasons Under Field Conditions
Abstract
1. Introduction
2. Results
2.1. First Season 2019/2020
Bacteriophage Formulations’ Effect on Kiwifruit Bacterial Canker
2.2. Second Season 2020/2021
2.2.1. Bacteriophage Formulations Effect in Kiwifruit Bacterial Canker
2.2.2. Epiphytic Bacterial Populations, LOPAT, and Molecular Identification
2.2.3. Pathogenicity Test
3. Discussion
4. Materials and Methods
4.1. Fields Experiments
4.2. Bacteriophage Formulation
4.3. First Season 2019–2020 Field Trials
4.4. Second Season 2020/2021 Field Trials
4.5. Effect of Treatments Under Kiwifruit Bacterial Canker in Field Trials
4.6. Epiphytic Bacterial Populations in First Season
4.7. Detection and Identification of Pseudomonas spp.
4.7.1. Morphological, Biochemical, and Molecular Test
4.7.2. Bacterial DNA Extraction and Molecular Identification
4.7.3. Pathogenicity Test
4.8. Data Analysis
5. Conclusions
6. Patent
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frampton, R.; Taylor, C.; Holguin, A.; Visnovsky, S.; Petty, N.; Pitman, A.; Finerana, P. Identification of Bacteriophages for Biocontrol of the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Appl. Environ. Microbiol. 2014, 80, 2216–2228. [Google Scholar] [CrossRef] [PubMed]
- Ferrante, P.; Scortichini, M. Redefining the global populations of Pseudomonas syringae pv. actinidiae based on pathogenic, molecular and phenotypic characteristics. Plant Pathol. 2015, 64, 51–62. [Google Scholar] [CrossRef]
- Donati, I.; Cellini, A.; Sangiorgio, D.; Vanneste, J.L.; Scortichini, M.; Balestra, G.M.; Spinelli, F. Pseudomonas syringae pv. actinidiae: Ecology, infection dynamics and disease epidemiology. Microb. Ecol. 2020, 80, 81–102. [Google Scholar] [CrossRef] [PubMed]
- Scortichini, M.; Marcelletti, S.; Ferrante, P.; Petriccione, M.; Firrao, G. Pseudomonas syringae pv. actinidiae: A re-emerging, multifaceted, pandemic pathogen. Mol. Plant Pathol. 2012, 13, 631–664. [Google Scholar] [CrossRef]
- McCann, H.C.; Li, L.; Liu, Y.; Li, D.; Pan, H.; Zhong, C.; Rikkerink, E.H.A.; Templeton, M.D.; Straub, C.; Colombi, E.; et al. Origin and Evolution of the Kiwifruit Canker Pandemic. Genome Biol. Evol. 2017, 9, 932–944. [Google Scholar] [CrossRef]
- Abelleira, A.; López, M.M.; Peñalver, J.; Aguín, O.; Mansilla, J.P.; Picoaga, A.; García, M.J. First report of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae in Spain. Plant Dis. 2011, 95, 1583. [Google Scholar] [CrossRef]
- Vanneste, J. The scientific, economic, and social impacts of the New Zealand outbreak of bacterial canker of kiwifruit (Pseudomonas syringae pv. actinidiae). Annu. Rev. Phytopathol. 2017, 55, 377–399. [Google Scholar] [CrossRef]
- Cameron, A.; De Zoysa, G.H.; Sarojini, V. Antimicrobial peptides against Pseudomonas syringae pv. actinidiae and Erwinia amylovora: Chemical synthesis, secondary structure, efficacy, and mechanistic investigations. Pept. Sci. 2014, 102, 88–96. [Google Scholar] [CrossRef]
- Gao, X.; Huang, Q.; Zhao, Z.; Han, Q.; Ke, X.; Qin, H.; Huang, L. Studies on the infection, colonization, and movement of Pseudomonas syringae pv. actinidiae in kiwifruit tissues using a GFPuv-Labeled strain. PLoS ONE 2016, 11, e0151169. [Google Scholar] [CrossRef]
- Xin, X.; Kvitko, B.; He, S.Y. Pseudomonas syringae: What it takes to be a pathogen. Nat. Rev. Microbiol. 2018, 16, 316–328. [Google Scholar] [CrossRef]
- Ferrante, P.; Fiorillo, E.; Marcelletti, S.; Marocchi, F.; Mastroleo, M.; Simeoni, S.; Scortichini, M. The importance of the main colonization and penetration sites of Pseudomonas syringae pv. actinidiae and prevailing weather conditions in the development of epidemics in yellow kiwifruit, recently observed in central Italy. J. Plant Pathol. 2012, 94, 455–461. [Google Scholar]
- Flores, O.; Prince, C.; Nuñez, M.; Vallejos, A.; Mardones, C.; Yañez, C.; Besoain, X.; Bastias, R. Genetic and Phenotypic Characterization of Indole-Producing Isolates of Pseudomonas syringae pv. actinidiae Obtained from Chilean Kiwifruit Orchards. Front. Microbiol. 2018, 9, 1907. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.; Sarojini, V. Pseudomonas syringae pv. actinidiae: Chemical control, resistance mechanisms and possible alternatives. Plant Pathol. 2014, 63, 1–11. [Google Scholar] [CrossRef]
- Nunes da Silva, M.; Santos, M.G.; Vasconcelos, M.W.; Carvalho, S.M.P. Mitigation of emergent bacterial pathogens using Pseudomonas syringae pv. actinidiae as a case study—From orchard to gene and everything in between. Crops 2022, 2, 351–377. [Google Scholar] [CrossRef]
- Santos, M.G.; Nunes da Silva, M.; Vasconcelos, M.W.; Carvalho, S.M.P. Scientific and technological advances in the development of sustainable disease management tools: A case study on kiwifruit bacterial canker. Front. Plant Sci. 2024, 14, 1306420. [Google Scholar] [CrossRef]
- Lee, Y.S.; Kim, G.H.; Song, Y.-R.; Oh, C.-S.; Koh, Y.J.; Jung, J.S. Streptomycin Resistant Isolates of Pseudomonas syringae pv. actinidiae in Korea. Res. Plant Dis. 2020, 26, 44–47. [Google Scholar] [CrossRef]
- Cesari, E.; Marocchi, F.; L’Aurora, A.; Pucci, N.; Scala, V.; Loreti, S.; Scortichini, M. Occurrence of copper-resistant Pseudomonas syringae pv. actinidiae strains in kiwifruit orchards of Central Italy. J. Phytopath. 2023, 171, 768–774. [Google Scholar] [CrossRef]
- Aono, M.; Miyoshi, T.; Yagi, H.; Shimizu, S.; Shinozaki, T.; Yaeno, T.; Kobayashi, K. Comprehensive survey of copper resistance and analysis of responsible genes in Pseudomonas syringae pv. actinidiae biovar 1 and biovar 3 isolates from Japan. J. Gen. Plant Pathol. 2024, 90, 134–143. [Google Scholar] [CrossRef]
- Thomidis, T.; Pagoulatou, M.G.; Alexandridis, E.; Mpalantinaki, E.; Goumas, D.E. Copper Resistance in Pseudomonas syringae pv. actinidiae Strains from the Prefecture of Pella, Northern Greece, and a Comparison of the Effectiveness of Several Commercial Products to Control. Agriculture 2025, 15, 157. [Google Scholar] [CrossRef]
- Pereira, C.; Costa, P.; Pinheiro, L.; Balcão, V.M.; Almeida, A. Kiwifruit bacterial canker: An integrative view focused on biocontrol strategies. Planta 2021, 253, 49. [Google Scholar] [CrossRef]
- Holtappels, D.; Fortuna, K.; Lavigne, R.; Wagemans, J. The Future of Phage Biocontrol in Integrated Plant Protection for Sustainable Crop Production. Curr. Opin. Biotechnol. 2021, 68, 60–71. [Google Scholar] [CrossRef]
- Siyanbola, K.F.; Ejiohuo, O.; Ade-adekunle, O.A.; Adekunle, F.O.; Onyeaka, H.; Furr, C.L.L.; Hodges, F.E.; Carvalho, P.; Oladipo, E.K. Bacteriophages: Sustainable and effective solution for climate-resilient agriculture. Sustain. Microbiol. 2024, 1, qvae025. [Google Scholar] [CrossRef]
- Almeida, A.; Cunha, Â.; Gomes, N.; Alves, E.; Costa, L.; Faustino, M.A.F. Phage therapy and photodynamic therapy: Low environmental impact approaches to inactivate microorganisms in fish farming plants. Mar. Drugs 2009, 7, 268–313. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Ni, P.; Deng, B.; Wang, S.; Xu, W.; Wang, D. Isolation and characterization of phages against Pseudomonas syringae pv. actinidiae. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 199–208. [Google Scholar] [CrossRef]
- Luo, J.; Dai, D.; Lv, L.; Ahmed, T.; Chen, L.; Wang, Y.; An, Q.; Sun, G.; Li, B. Advancements in the Use of Bacteriophages to Combat the Kiwifruit Canker Phytopathogen Pseudomonas syringae pv. actinidiae. Viruses 2022, 14, 2704. [Google Scholar] [CrossRef]
- Abedon, S.T.; Kuhl, S.J.; Blasdel, B.G.; Kutter, E.M. Phage Treatment of Human Infections. Bacteriophage 2011, 1, 66–85. [Google Scholar] [CrossRef]
- Skliros, D.; Papazoglou, P.; Gkizi, D.; Paraskevopoulou, E.; Katharios, P.; Goumas, D.E.; Tjamos, S.; Flemetakis, E. In Planta Interactions of a Novel Bacteriophage against Pseudomonas syringae pv. tomato. Appl. Microbiol. Biotechnol. 2023, 107, 3801–3815. [Google Scholar] [CrossRef]
- Drulis-Kawa, Z.; Majkowska-Skrobek, G.; Maciejewska, B.; Delattre, A.-S.; Lavigne, R. Learning from bacteriophages-advantages and limitations of phage and phage-encoded protein applications. Curr. Protein Pept. Sci. 2012, 13, 699–722. [Google Scholar] [CrossRef]
- El-Shibiny, A.; El-Sahhar, S. Bacteriophages: The possible solution to treat infections caused by pathogenic bacteria. Can. J. Microbiol. 2017, 63, 865–879. [Google Scholar] [CrossRef]
- Liu, S.; Quek, S.-Y.; Huang, K. Advanced Strategies to Overcome the Challenges of Bacteriophage-Based Antimicrobial Treatments in Food and Agricultural Systems. Crit. Rev. Food Sci. Nutr. 2023, 64, 12574–12598. [Google Scholar] [CrossRef]
- Puxty, R.J.; Millard, A.D. Functional ecology of bacteriophages in the environment. Curr. Opin. Microbiol. 2023, 71, 102245. [Google Scholar] [CrossRef]
- Elois, M.A.; Silva, R.d.; Pilati, G.V.T.; Rodríguez-Lázaro, D.; Fongaro, G. Bacteriophages as Biotechnological Tools. Viruses 2023, 15, 349. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef]
- Pinheiro, L.A.M.; Pereira, C.; Barreal, M.E.; Gallego, P.P.; Balcao, V.M.; Almeida, A. Use of phage ϕ6 to inactivate Pseudomonas syringae pv. actinidiae in kiwifruit plants: In vitro and ex vivo experiments. Appl. Microbiol. Biotechnol. 2020, 104, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Di Lallo, G.; Evangelisti, M.; Mancuso, F.; Ferrante, P.; Marcelletti, S.; Tinari, A.; Superti, F.; Migliore, L.; D’Addabbo, P.; Frezza, D.; et al. Isolation and partial characterization of bacteriophages infecting Pseudomonas syringae pv. actinidiae, causal agent of kiwifruit bacterial canker. J. Basic Microbiol. 2014, 54, 1210–1221. [Google Scholar] [CrossRef] [PubMed]
- Martino, G.; Holtappels, D.; Vallino, M.; Chiapello, M.; Turina, M.; Lavigne, R.; Wagemans, J.; Ciuffo, M. Molecular Characterization and Taxonomic Assignment of Three Phage Isolates from a Collection Infecting Pseudomonas syringae pv. actinidiae and P. syringae pv. phaseolicola from Northern Italy. Viruses 2021, 13, 2083. [Google Scholar] [CrossRef]
- Fiorillo, A.; Frezza, D.; Di Lallo, G.; Visconti, S. A phage therapy model for the prevention of Pseudomonas syringae pv. actinidiae infection of kiwifruit plants. Plant Dis. 2023, 107, 267–271. [Google Scholar] [CrossRef]
- Park, J.; Lim, J.-A.; Yu, J.-G.; Oh, C.-S. Genomic features and lytic activity of the bacteriophage PPPL-1 effective against Pseudomonas syringae pv. actinidiae, a cause of bacterial canker in kiwifruit. J. Microbiol. Biotechnol. 2018, 28, 1542–1546. [Google Scholar] [CrossRef]
- Yu, J.-G.; Lim, J.-A.; Song, Y.-R.; Heu, S.; Kim, G.H.; Koh, Y.J.; Oh, C.-S. Isolation and characterization of bacteriophages against Pseudomonas syringae pv. actinidiae causing bacterial canker disease in kiwifruit. Appl. Microbiol. Biotechnol. 2016, 26, 385–393. [Google Scholar] [CrossRef]
- Ni, P.; Wang, L.; Deng, B.; Jiu, S.; Ma, C.; Zhang, C.; Almeida, A.; Wang, D.; Xu, W.; Wang, S. Characterization of a lytic bacteriophage against Pseudomonas syringae pv. actinidiae and its endolysin. Viruses 2021, 13, 631. [Google Scholar] [CrossRef]
- Córdova, P.; Rivera-González, J.P.; Rojas-Martínez, V.; Fiore, N.; Bastías, R.; Zamorano, A.; Vera, F.; Barrueto, J.; Díaz, B.; Ilabaca-Díaz, C.; et al. Phytopathogenic Pseudomonas syringae as a Threat to Agriculture: Perspectives of a Promising Biological Control Using Bacteriophages and Microorganisms. Horticulturae 2023, 9, 712. [Google Scholar] [CrossRef]
- Flores, O.; Retamales, J.; Núñez, M.; León, M.; Salinas, P.; Besoain, X.; Yañez, C.; Bastías, R. Characterization of Bacteriophages against Pseudomonas syringae pv. actinidiae with Potential Use as Natural Antimicrobials in Kiwifruit Plants. Microorganisms 2020, 8, 974. [Google Scholar] [CrossRef] [PubMed]
- Lelliott, R.A.; Stead, D.E. Methods for the Diagnosis of Bacterial Diseases of Plants; Wiley–Blackwell: Oxford, UK, 1987; ISBN 978-0632012336. [Google Scholar]
- Civerolo, E.L.; Keil, H.L. Inhibition of bacterial spot of peach foliage by Xanthomonas pruni bacteriophage. Phytopathology 1969, 59, 1966–1967. [Google Scholar]
- Saccardi, A.; Gambin, E.; Zaccardelli, M.; Barone, G.; Mazzucchi, U. Xanthomonas campestris pv. pruni control trials with phage treatments on peaches in the orchard. Phytopathol. Mediterr. 1993, 32, 206–210. [Google Scholar]
- Flaherty, J.E.; Somodi, G.C.; Jones, J.B.; Harbaugh, B.K.; Jackson, L.E. Control of bacterial spot on tomato in the greenhouse and field with H-mutant bacteriophages. HortScience 2000, 35, 882–884. [Google Scholar] [CrossRef]
- Balogh, B.; Jones, J.B.; Momol, M.T.; Olson, S.M.; King, P. Improved efficacy of newly formulated bacteriophages for management of bacterial spot on tomato. Plant Dis. 2003, 87, 949–954. [Google Scholar] [CrossRef]
- Obradovic, A.; Jones, J.B.; Momol, M.T.; Balogh, B.; Olson, S.M. Management of tomato bacterial spot in the field by foliar applications of bacteriophages and SAR inducers. Plant Dis. 2004, 88, 736–740. [Google Scholar] [CrossRef]
- Jones, J.B.; Jackson, L.E.; Balogh, B.; Obradovic, A.; Iriarte, F.B.; Momol, M.T. Bacteriophages for plant disease control. Annu. Rev. Phytopathol. 2008, 45, 245–262. [Google Scholar] [CrossRef]
- Clavijo-Coppens, F.; Ginet, N.; Cesbron, S.; Briand, M.; Jacques, M.A.; Ansaldi, M. Novel Virulent Bacteriophages Infecting Mediterranean Isolates of the Plant Pest Xylella fastidiosa and Xanthomonas albilineans. Viruses 2021, 13, 725. [Google Scholar] [CrossRef]
- Tarakanov, R.I.; Lukianova, A.A.; Evseev, P.V.; Toshchakov, S.V.; Kulikov, E.E.; Ignatov, A.N.; Miroshnikov, K.A.; Dzhalilov, F.S. Bacteriophage Control of Pseudomonas savastanoi pv. glycinea in Soybean. Plants 2022, 11, 938. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, C.; Liang, C.; Li, B.; Meng, F.; Ai, Y. CRISPR–Cas9 based bacteriophage genome editing. Microbiol. Spectr. 2022, 10, e00820-22. [Google Scholar] [CrossRef]
- Gašić, K.; Kuzmanović, N.; Ivanović, M.; Prokić, A.; Šević, M.; Obradović, A. Complete Genome of the Xanthomonas euvesicatoria Specific Bacteriophage KΦ1, Its Survival and Potential in Control of Pepper Bacterial Spot. Front. Microbiol. 2018, 9, 2021. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, B.; Gadea-Pallás, L.; Rodríguez, A.; Vicedo, B.; Figàs-Segura, À.; Biosca, E.G. Viability, Stability and Biocontrol Activity in Planta of Specific Ralstonia solanacearum Bacteriophages after Their Conservation Prior to Commercialization and Use. Viruses 2022, 14, 183. [Google Scholar] [CrossRef] [PubMed]
- Retamales, J.; Núñez, P.; Alvarado, R.; Campan, E.D.M.; Otto, T.; Segovia, C.; Vasquez, I.; Santander, J. Characterization of Xanthomonas arboricola pv. juglandis Bacteriophages against Bacterial Walnut Blight and Field Evaluation. Viruses 2022, 14, 1380. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Ge, L.; Xiang, D.; Tan, G.; Liu, L.; Yang, L.; Jing, Y.; Liu, Q.; Chen, W.; Li, Y.; et al. Isolation, Characterization, and Genomic Analysis of a Lytic Bacteriophage, PQ43W, with the Potential of Controlling Bacterial Wilt. Front. Microbiol. 2024, 15, 1396213. [Google Scholar] [CrossRef]
- León, M.; Araya, J.; Nuñez, M.; Arce, M.; Guzmán, F.; Yáñez, C.; Besoain, X.; Bastías, R. Evaluation of Different Formulations on the Viability of Phages for Use in Agriculture. Viruses 2024, 16, 1430. [Google Scholar] [CrossRef]
- Amarillas, L.; Estrada-Acosta, M.; León-Chan, R.; López-Orona, C.; Lightbourn, L. Complete genome sequence of Phobos: A novel bacteriophage with unusual genomic features that infects Pseudomonas syringae. Arch. Virol. 2020, 165, 1485–1488. [Google Scholar] [CrossRef]
- Cordova, P.; Rivera-González, J.P.; Rojas-Martínez, V.; Villareal, P.; Zambrano, A.; Fiore, N.; San Martín, D.; Vera, F.; Galvez, E.; Romero, J.; et al. Antimicrobial multiresistant phenotypes of genetically diverse Pseudomonas spp. Isolates associated with tomato plants in Chilean orchards. Horticulturae 2022, 8, 750. [Google Scholar] [CrossRef]
- Zhao, Z.B.; Gao, X.N.; Yang, D.H.; Huang, L.L.; Qin, H.Q.; Kang, Z.S.; Wang, N.N. Field detection of canker-causing bacteria on kiwifruit trees: Pseudomonas syringae pv. actinidiae is the major causal agent. Crop Prot. 2015, 75, 55–62. [Google Scholar] [CrossRef]
- Opgenorth, D.C.; Lai, M.; Sorrell, M.; White, J.B. Pseudomonas canker of kiwifruit. Plant Dis. 1983, 67, 1283–1284. [Google Scholar] [CrossRef]
- Rees-George, J.; Vanneste, J.L.; Cornish, D.A.; Pushparajah, I.P.S.; Yu, J.; Templeton, M.D.; Everett, K.R. Detection of Pseudomonas syringae pv. actinidiae Using Polymerase Chain Reaction (PCR) Primers Based on the 16S–23S RDNA Intertranscribed Spacer Region and Comparison with PCR Primers Based on Other Gene Regions. Plant Pathol. 2010, 59, 453–464. [Google Scholar] [CrossRef]
- Balestra, G.M.; Mazzaglia, A.; Rossetti, A. Outbreak of bacterial blossom blight caused by Pseudomonas viridiflava on Actinidia chinensis kiwifruit plants in Italy. Plant Dis. 2008, 92, 1707. [Google Scholar] [CrossRef]
- Petriccione, M.; Zampella, L.; Mastrobuoni, F.; Scortichini, M. Occurrence of copper-resistant Pseudomonas syringae pv. syringae strains isolated from rain and kiwifruit orchards also infected by P. s. pv. actinidiae. Eur. J. Plant Pathol. 2017, 149, 953–968. [Google Scholar] [CrossRef]
- Purahong, W.; Orrù, L.; Donati, I.; Perpetuini, G.; Cellini, A.; Lamontanara, A.; Michelotti, V.; Tacconi, G.; Spinelli, F. Plant Microbiome and Its Link to Plant Health: Host Species, Organs and Pseudomonas syringae pv. actinidiae Infection Shaping Bacterial Phyllosphere Communities of Kiwifruit Plants. Front. Plant Sci. 2018, 9, 1563. [Google Scholar] [CrossRef] [PubMed]
- Servicio Agrícola y Ganadero [SAG]. Estadísticas de Prospección de Psa en Kiwi 2018. 2018. Available online: https://www.sag.gob.cl/ambitos-de-accion/bacteriosis-del-kiwi-psa (accessed on 2 September 2025).
- Kutter, E. Phage host range and efficiency of plating. Meth. Mol. Biol. 2009, 501, 141–149. [Google Scholar] [CrossRef]
- King, E.O.; Ward, M.K.; Raney, D.E. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 1954, 44, 301–307. [Google Scholar]
- Lane, D.J.; Pace, B.; Olsen, G.J.; Stahl, D.A.; Sogin, M.L.; Pace, N.R. Rapid determination of 16s ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 1985, 82, 6955–6959. [Google Scholar] [PubMed]
- Lane, D.J. 6S/23S rRNA Sequencing. In Nucleic Acid Techniques in Bacterial Systematic; Stackebrandt, E., Goodfellow, M., Eds.; John Wiley and Sons: New York, NY, USA, 1991; pp. 115–175. [Google Scholar]
- Balestra, G.M.; Taratufolo, M.C.; Vinatzer, B.A.; Mazzaglia, A. A Multiplex PCR Assay for Detection of Pseudomonas syringae pv. actinidiae and Differentiation of Populations with Different Geographic Origin. Plant Dis. 2013, 97, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, K.N.; Kim, K.-H.; Takemoto, J.Y. PCR Detection of cyclic lipodepsinonapeptide-producing Pseudomonas syringae pv. syringae and similarity of strains. Appl. Environ. Microbiol. 1998, 64, 226–230. [Google Scholar] [CrossRef]
- Alimi, M.; Rahimian, H.; Hassanzadeh, N.; Darzi, M.T.; Ahmadikhah, A.; Heydari, A.; Balestra, G.M. First Detection of Pseudomonas viridiflava, the Causal Agent of Blossom Blight in Apple by Using Specific Designed Primers. Afr. J. Microbiol. Res. 2011, 5, 4708–4713. [Google Scholar] [CrossRef]
- Di Rienzo, J.; Balzarini, M.; Gonzalez, L.; Casanoves, F.; Tablada, M.; Walter Robledo, C. Infostat: Software Para Análisis Estadístico; Universidad Nacional de Córdoba: Cordoba, Argentina, 2017. [Google Scholar]
Isolates | Orchard | DAA | Levan Type Colonies | Oxidasa Reaction | Potato Root | Arginine Dihydrolase | Tabacco Hyper-Sensitivity | Species |
---|---|---|---|---|---|---|---|---|
FF4 | Peumo | 0 | + | + | − | + | − | P. fluorescens |
FF6 | Peumo | 30 | + | + | − | + | − | P. fluorescens |
FF2 | Peumo | 30 | + | + | − | + | − | P. fluorescens |
3C | Peumo | 60 | + | − | − | − | + | P. syringae |
BP2 | Peumo | 30 | + | − | − | − | + | P. syringae |
BP4 | Peumo | 30 | + | − | − | − | + | P. syringae |
BP10 | Peumo | 0 | + | − | − | − | + | P. syringae |
F1 | Peumo | 0 | + | − | − | − | + | P. syringae |
BM1 | Peumo | 60 | + | − | − | − | + | P. syringae |
BP7 | Peumo | 0 | + | − | − | − | + | P. syringae |
BP1 | Peumo | 60 | + | − | − | − | + | P. syringae |
AM3 | Peumo | 60 | + | − | − | − | + | P. syringae |
BP12 | Peumo | 0 | + | − | − | − | + | P. syringae |
BP8 | Peumo | 60 | − | − | + | − | + | P. viridiflava |
FGL5 | Linares | 30 | + | + | − | + | − | P. fluorescens |
FGL10 | Linares | 30 | + | + | − | + | − | P. fluorescens |
FPL8 | Linares | 60 | − | + | − | + | − | P. fluorescens |
FPL7 | Linares | 60 | + | − | − | − | + | P. syringae |
FPL11 | Linares | 30 | + | − | − | − | + | P. syringae |
BML4 | Linares | 60 | + | − | − | − | − | P. putida * |
BML2 | Linares | 60 | − | + | − | + | − | P. putida * |
FPL5 | Linares | 60 | + | + | + | − | − | P. marginalis |
FPL3 | Linares | 60 | − | − | − | − | − | P. umsongensis * |
Code Isolates | Species by LOPAT | Primers Psa/Pv PCR | Gen rDNA 16s PCR | Ident (%) | Acc. Number Reference | Gen syrB PCR | Acc. Number Reference | Ident (%) | Species |
---|---|---|---|---|---|---|---|---|---|
FGL5 | P. fluorescens | P. fluorescens | 100 | MN511732 | P. fluorescens | ||||
FF2 | P. fluorescens | P. fluorescens | 100 | MN511732 | P. fluorescens | ||||
FGL10 | P. fluorescens | P. fluorescens | 100 | MN511732.1 | P. fluorescens | ||||
FPL7 | P. syringae | P.s. actinidia | Psa | ||||||
3C | P. syringae | P.s. actinidia | Psa | ||||||
FPL11 | P. syringae | P.s. actinidia | Psa | ||||||
BP2 | P. syringae | P. syringae | 99.8 | MK388374.1 | P.s. syringae | MK453199 | 93.2 | Pss | |
BP4 | P. syringae | P. syringae | 100 | CP047267 | P.s. syringae | MK453199 | 93.3 | Pss | |
BP10 | P. syringae | P. syringae | 100 | CP047267 | P.s. syringae | MK453199 | 93.1 | Pss | |
F1 | P. syringae | P. syringae | 100 | CP047267 | P.s. syringae | MK453199 | 93.8 | Pss | |
BM1 | P. syringae | P. syringae | 100 | KC816628.1 | P.s. syringae | MK453199 | 93.6 | Pss | |
BP7 | P. syringae | P. syringae | 100 | MK637897 | P.s. syringae | MK453199 | 93.2 | Pss | |
BP1 | P. syringae | P. syringae | 100 | LC508793.1 | P.s. syringae | MK453199 | 93.2 | Pss | |
AM3 | P. syringae | P. syringae | 100 | MK637897 | P.s. syringae | MK453199 | 93.2 | Pss | |
BP12 | P. syringae | P. syringae | 96.86 | KF681132 | P. syringae | ||||
BML4 | n.i. | P. putida | 99.87 | KM187292 | P. putida | ||||
FPL5 | P. marginalis | P. marginalis | |||||||
FPL3 | n.i. | P. umsongensis | 99.62 | CP044409 | P. umsongensis | ||||
BML2 | n.i. | P. putida | 100 | KM187292 | P. putida | ||||
BP8 | P. viridiflava | P. vidiriflava | - | 99.63 | MN989115 | P. viridiflava | |||
BPL12 | n.c. | Acinetobacter guillouiae | 100 | MT322954 | A. guillouiae | ||||
BPL7 | n.c. | A. guillouiae | 99.89 | MG517433 | A. guillouiae | ||||
BPL10 | n.c. | A. guillouiae | 100 | MH144279 | A. guillouiae | ||||
BP5 | n.c. | A. guillouiae | 99.76 | MT322954 | A. guillouiae | ||||
AM2 | n.c. | Curtobacterium flaccumfaciens | 99.8 | MN826580 | C. flaccumfaciens | ||||
AML2 | n.c. | C. flaccumfaciens | 100 | MN826580 | C. flaccumfaciens |
Phage | Genome Size (pb) | %GC | ORFs a | Genus | Identity (%) phiPSA2 b |
---|---|---|---|---|---|
CHF1 | 40.999 | 57.3 | 49 | T7-like | 94.0% |
CHF7 | 40.557 | 57.4 | 48 | T7-like | 96.4% |
CHF19 | 40.882 | 57.3 | 48 | T7-like | 93.2% |
CHF21 | 40.557 | 57.4 | 48 | T7-like | 93.8% |
Code | Treatment | Composition | Rate |
---|---|---|---|
T0 | Control | Water | - |
T1 | Farmer’s management based on intercalary bactericides | Copper sulfate; Streptomycin (25%), Oxytetracycline (3.2%), and co-formulants | 60 g/100 L (m/v) |
T2 | Phage formulation 1 * | A mixture of four lytic bacteriophage | 1 × 106 (PFU/mL) |
T3 | Phage formulation 2 * | A mixture of four lytic bacteriophages | 1 × 107 (PFU/mL) |
T4 | Intercalary application of bactericides and phage Formulation 2 | Copper sulfate, a mixture of four lytic bacteriophage | 60 g/100 L; 1 × 107 (PFU/mL) |
Code | Treatment | Composition | Rate |
---|---|---|---|
T0 | Control | Water | - |
T1 | Farmer’s management based on intercalary bactericides | Copper sulfate; Streptomycin (25%), Oxytetracycline (3.2), and co-formulants | 60 g/100 L (m/v) |
T2 | Only Milk | low-fat milk 5% (m/v) | 5 kg/100 L (m/v) |
T3 | Phage formulation 1 * | Mixture of four lytic bacteriophages and LB (Lysogeny Broth) Medium | 1 × 107 (PFU/mL) |
T4 | Phage formulation 2 * | Mixture of four lytic bacteriophages and low-fat milk 5% (m/v) | 1 × 107 (PFU/mL); 5 kg/100 L (m/v) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanhueza, P.; Riquelme, N.; Leon, M.; Morales, J.G.; Prince, C.; Flores, M.F.; Yañez, C.; Cuneo, I.F.; Bastías, R.; Besoain, X. Bacteriophages Biocontrol of Kiwifruit Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae (Psa) in Two Seasons Under Field Conditions. Antibiotics 2025, 14, 1023. https://doi.org/10.3390/antibiotics14101023
Sanhueza P, Riquelme N, Leon M, Morales JG, Prince C, Flores MF, Yañez C, Cuneo IF, Bastías R, Besoain X. Bacteriophages Biocontrol of Kiwifruit Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae (Psa) in Two Seasons Under Field Conditions. Antibiotics. 2025; 14(10):1023. https://doi.org/10.3390/antibiotics14101023
Chicago/Turabian StyleSanhueza, Paulina, Natalia Riquelme, Marcela Leon, Javiera Gaete Morales, Camila Prince, M. Fernanda Flores, Carolina Yañez, Italo F. Cuneo, Roberto Bastías, and Ximena Besoain. 2025. "Bacteriophages Biocontrol of Kiwifruit Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae (Psa) in Two Seasons Under Field Conditions" Antibiotics 14, no. 10: 1023. https://doi.org/10.3390/antibiotics14101023
APA StyleSanhueza, P., Riquelme, N., Leon, M., Morales, J. G., Prince, C., Flores, M. F., Yañez, C., Cuneo, I. F., Bastías, R., & Besoain, X. (2025). Bacteriophages Biocontrol of Kiwifruit Bacterial Canker Caused by Pseudomonas syringae pv. actinidiae (Psa) in Two Seasons Under Field Conditions. Antibiotics, 14(10), 1023. https://doi.org/10.3390/antibiotics14101023