Peri-Operative Antimicrobial Prophylaxis Modulates CD4+ Lymphocyte Immunophenotype Ex Vivo in High-Risk Patients Undergoing Major Elective Surgery—A Preliminary Observational Study
Abstract
1. Introduction
2. Results
2.1. Study Participants
2.2. Effects of Antibiotics on Post-Operative PBMCs in the Immunophenotyping Cohort
2.3. Cefuroxime Promotes CD4+ Lymphocyte Differentiation Towards a Th1 Phenotype in the Lymphocyte Characterisation Cohort
2.4. Cefuroxime Has an Immunomodulatory Effect on Th1 Subset Function in the Lymphocyte Characterisation Cohort
2.5. Effect of Stimulus on Post-Operative Immune Cell Phenotype in the Immunophenotyping Cohort
2.6. Effects of Antibiotics on Stimulated Post-Operative Cells in the Immunophenotyping Cohort
2.7. Post-Operative Infections
3. Discussion
4. Materials and Methods
4.1. Ethics
4.2. Clinical Study Participants
4.3. Sample Processing
4.4. Antibiotic Stimulation
4.5. Flow Cytometry
4.6. Cytokine ELISA
4.7. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The International Surgical Outcomes Study Group. Global patient outcomes after elective surgery: Prospective cohort study in 27 low-, middle- and high-income countries. Br. J. Anaesth. 2017, 119, 553. [Google Scholar] [CrossRef]
- Moonesinghe, S.R.; Harris, S.; Mythen, M.G.; Rowan, K.M.; Haddad, F.S.; Emberton, M.; Grocott, M.P. Survival after postoperative morbidity: A longitudinal observational cohort study. Br. J. Anaesth. 2014, 113, 977–984. [Google Scholar] [CrossRef] [PubMed]
- Desborough, J.P. The stress response to trauma and surgery. Br. J. Anaesth. 2000, 85, 109–117. [Google Scholar] [CrossRef]
- Albertsmeier, M.; Prix, N.J.; Winter, H.; Bazhin, A.; Werner, J.; Angele, M.K. Monocyte-Dependent Suppression of T-Cell Function in Postoperative Patients and Abdominal Sepsis. Shock 2017, 48, 651–656. [Google Scholar] [CrossRef]
- Cheron, A.; Floccard, B.; Allaouchiche, B.; Guignant, C.; Poitevin, F.; Malcus, C.; Crozon, J.; Faure, A.; Guillaume, C.; Marcotte, G.; et al. Lack of recovery in monocyte human leukocyte antigen-DR expression is independently associated with the development of sepsis after major trauma. Crit. Care 2010, 14, R208. [Google Scholar] [CrossRef] [PubMed]
- Torrance, H.D.; Zhang, P.; Longbottom, E.R.; Mi, Y.; Whalley, J.P.; Allcock, A.; Kwok, A.J.; Cano-Gamez, E.; Geoghegan, C.G.; Burnham, K.L.; et al. A Transcriptomic Approach to Understand Patient Susceptibility to Pneumonia After Abdominal Surgery. Ann. Surg. 2023, 279, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Lukaszewski, R.A.; Jones, H.E.; Gersuk, V.H.; Russell, P.; Simpson, A.; Brealey, D.; Walker, J.; Thomas, M.; Whitehouse, T.; Ostermann, M.; et al. Presymptomatic diagnosis of postoperative infection and sepsis using gene expression signatures. Intensive Care Med. 2022, 48, 1133–1143. [Google Scholar] [CrossRef]
- Snow, T.A.C.; Waller, A.V.; Loye, R.; Ryckaert, F.; Cesar, A.; Saleem, N.; Roy, R.; Whittle, J.; Al-Hindawi, A.; Das, A.; et al. Early dynamic changes to monocytes following major surgery are associated with subsequent infections. Front. Immunol. 2024, 15, 1352556. [Google Scholar] [CrossRef]
- Boomer, J.S.; To, K.; Chang, K.C.; Takasu, O.; Osborne, D.F.; Walton, A.H.; Bricker, T.L.; Jarman, S.D., 2nd; Kreisel, D.; Krupnick, A.S.; et al. Immunosuppression in patients who die of sepsis and multiple organ failure. JAMA 2011, 306, 2594–2605. [Google Scholar] [CrossRef]
- de Jonge, S.W.; Boldingh, Q.J.J.; Solomkin, J.S.; Dellinger, E.P.; Egger, M.; Salanti, G.; Allegranzi, B.; Boermeester, M.A. Effect of postoperative continuation of antibiotic prophylaxis on the incidence of surgical site infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2020, 20, 1182–1192. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence (NICE). Surgical Site Infections: Prevention and Treatment: NG125; NICE: Manchester, UK, 2020. [Google Scholar]
- Fowler, A.J.; Dias, P.; Hui, S.; Cashmore, R.; Laloo, R.; Ahmad, A.N.; Gillies, M.A.; Wan, Y.I.; Pearse, R.M.; Abbott, T.E.F. Liberal or restrictive antimicrobial prophylaxis for surgical site infection: Systematic review and meta-analysis of randomised trials. Br. J. Anaesth. 2022, 129, 104–113. [Google Scholar] [CrossRef]
- British National Formulary (BNF). Antibacterials, Use for Prophylaxis. 2024. Available online: https://bnfc.nice.org.uk/treatment-summaries/antibacterials-use-for-prophylaxis/ (accessed on 1 October 2025).
- Stavropoulou, E.; Atkinson, A.; Eisenring, M.C.; Fux, C.A.; Marschall, J.; Senn, L.; Troillet, N. Association of antimicrobial perioperative prophylaxis with cefuroxime plus metronidazole or amoxicillin/clavulanic acid and surgical site infections in colorectal surgery. Antimicrob. Resist. Infect. Control 2023, 12, 105. [Google Scholar] [CrossRef]
- Snow, T.A.C.; Singer, M.; Arulkumaran, N. Antibiotic-Induced Immunosuppression-A Focus on Cellular Immunity. Antibiotics 2024, 13, 1034. [Google Scholar] [CrossRef]
- Barath, B.; Jasz, D.K.; Horvath, T.; Barath, B.; Maroti, G.; Strifler, G.; Varga, G.; Sandor, L.; Perenyi, D.; Tallosy, S.; et al. Mitochondrial Side Effects of Surgical Prophylactic Antibiotics Ceftriaxone and Rifaximin Lead to Bowel Mucosal Damage. Int. J. Mol. Sci. 2022, 23, 5064. [Google Scholar] [CrossRef]
- Wakefield, C.H.; Carey, P.D.; Foulds, S.; Monson, J.R.; Guillou, P.J. Changes in major histocompatibility complex class II expression in monocytes and T cells of patients developing infection after surgery. Br. J. Surg. 1993, 80, 205–209. [Google Scholar] [CrossRef] [PubMed]
- Dietz, A.; Heimlich, F.; Daniel, V.; Polarz, H.; Weidauer, H.; Maier, H. Immunomodulating effects of surgical intervention in tumors of the head and neck. Otolaryngol. Head. Neck Surg. 2000, 123, 132–139. [Google Scholar] [CrossRef]
- Delogu, G.; Moretti, S.; Antonucci, A.; Marcellini, S.; Masciangelo, R.; Famularo, G.; Signore, L.; De Simone, C. Apoptosis and surgical trauma: Dysregulated expression of death and survival factors on peripheral lymphocytes. Arch. Surg. 2000, 135, 1141–1147. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.R.; Sultan, P.; del Arroyo, A.G.; Whittle, J.; Karmali, S.N.; Moonesinghe, S.R.; Haddad, F.S.; Mythen, M.G.; Singer, M.; Ackland, G.L. Metabolic dysfunction in lymphocytes promotes postoperative morbidity. Clin. Sci. 2015, 129, 423–437. [Google Scholar] [CrossRef]
- Zhou, C.; Wang, Z.; Jiang, B.; Di, J.; Su, X. Monitoring Pre- and Post-Operative Immune Alterations in Patients With Locoregional Colorectal Cancer Who Underwent Laparoscopy by Single-Cell Mass Cytometry. Front. Immunol. 2022, 13, 807539. [Google Scholar] [CrossRef] [PubMed]
- Kruse, B.; Buzzai, A.C.; Shridhar, N.; Braun, A.D.; Gellert, S.; Knauth, K.; Pozniak, J.; Peters, J.; Dittmann, P.; Mengoni, M.; et al. CD4+ T cell-induced inflammatory cell death controls immune-evasive tumours. Nature 2023, 618, 1033–1040. [Google Scholar] [CrossRef]
- Sulzgruber, P.; Thaler, B.; Koller, L.; Baumgartner, J.; Pilz, A.; Steininger, M.; Schnaubelt, S.; Fleck, T.; Laufer, G.; Steinlechner, B.; et al. CD4+CD28 (null) T Lymphocytes are Associated with the Development of Atrial Fibrillation after Elective Cardiac Surgery. Sci. Rep. 2018, 8, 9624. [Google Scholar] [CrossRef]
- Ross, S.H.; Cantrell, D.A. Signaling and Function of Interleukin-2 in T Lymphocytes. Annu. Rev. Immunol. 2018, 36, 411–433. [Google Scholar] [CrossRef]
- White, M.; Mahon, V.; Grealy, R.; Doherty, D.G.; Stordeur, P.; Kelleher, D.P.; McManus, R.; Ryan, T. Post-operative infection and sepsis in humans is associated with deficient gene expression of gammac cytokines and their apoptosis mediators. Crit. Care 2011, 15, R158. [Google Scholar] [CrossRef]
- Li, H.; Xiong, S.T.; Zhang, S.X.; Liu, S.B.; Luo, Y. Effects of surgical trauma on interleukin 2 production and interleukin 2 receptor expression. J. Tongji Med. Univ. 1992, 12, 160–163. [Google Scholar] [CrossRef] [PubMed]
- Berguer, R.; Bravo, N.; Bowyer, M.; Egan, C.; Knolmayer, T.; Ferrick, D. Major surgery suppresses maximal production of helper T-cell type 1 cytokines without potentiating the release of helper T-cell type 2 cytokines. Arch. Surg. 1999, 134, 540–544. [Google Scholar] [CrossRef] [PubMed]
- Nichols, P.H.; Ramsden, C.W.; Ward, U.; Sedman, P.C.; Primrose, J.N. Perioperative immunotherapy with recombinant interleukin 2 in patients undergoing surgery for colorectal cancer. Cancer Res. 1992, 52, 5765–5769. [Google Scholar]
- Manzella, J.P.; Clark, J.K. Effects of moxalactam and cefuroxime on mitogen-stimulated human mononuclear leukocytes. Antimicrob. Agents Chemother. 1983, 23, 360–363. [Google Scholar] [CrossRef]
- Clot, J.; Pelous, C.; Carriere, V.; Dessaint, J.P. Effect of cephalosporins on lymphocyte proliferation and immunoglobulin E production. Pathol. Biol. 1987, 35, 1457–1460. [Google Scholar] [PubMed]
- Villa, M.L.; Armelloni, S.; Ferrario, E.; Ottaviani, F.; Clerici, M. Interference of cephalosporins with immune response: Effects of cefonicid on human T-helper cells. Int. J. Immunopharmacol. 1991, 13, 1099–1107. [Google Scholar] [CrossRef]
- Zyzynska-Granica, B.; Trzaskowski, B.; Dutkiewicz, M.; Zegrocka-Stendel, O.; Machcinska, M.; Bocian, K.; Kowalewska, M.; Koziak, K. The anti-inflammatory potential of cefazolin as common gamma chain cytokine inhibitor. Sci. Rep. 2020, 10, 2886. [Google Scholar] [CrossRef]
- Mor, F.; Cohen, I.R. Beta-lactam antibiotics modulate T-cell functions and gene expression via covalent binding to cellular albumin. Proc. Natl. Acad. Sci. USA 2013, 110, 2981–2986. [Google Scholar] [CrossRef] [PubMed]
- Refaeli, Y.; Van Parijs, L.; London, C.A.; Tschopp, J.; Abbas, A.K. Biochemical mechanisms of IL-2-regulated Fas-mediated T cell apoptosis. Immunity 1998, 8, 615–623. [Google Scholar] [CrossRef]
- Hieronymus, T.; Blank, N.; Gruenke, M.; Winkler, S.; Haas, J.P.; Kalden, J.R.; Lorenz, H.M. CD 95-independent mechanisms of IL-2 deprivation-induced apoptosis in activated human lymphocytes. Cell Death Differ. 2000, 7, 538–547. [Google Scholar] [CrossRef]
- Chen, D.; Falsetti, S.C.; Frezza, M.; Milacic, V.; Kazi, A.; Cui, Q.C.; Long, T.E.; Turos, E.; Dou, Q.P. Anti-tumor activity of N-thiolated beta-lactam antibiotics. Cancer Lett. 2008, 268, 63–69. [Google Scholar] [CrossRef]
- Smith, D.M.; Kazi, A.; Smith, L.; Long, T.E.; Heldreth, B.; Turos, E.; Dou, Q.P. A novel beta-lactam antibiotic activates tumor cell apoptotic program by inducing DNA damage. Mol. Pharmacol. 2002, 61, 1348–1358. [Google Scholar] [CrossRef]
- Yoshioka, D.; Kajiwara, C.; Ishii, Y.; Umeki, K.; Hiramatsu, K.; Kadota, J.; Tateda, K. Efficacy of beta-Lactam-plus-Macrolide Combination Therapy in a Mouse Model of Lethal Pneumococcal Pneumonia. Antimicrob. Agents Chemother. 2016, 60, 6146–6154. [Google Scholar] [CrossRef]
- Cheng, R.Y.; Li, M.; Li, S.S.; He, M.; Yu, X.H.; Shi, L.; He, F. Vancomycin and ceftriaxone can damage intestinal microbiota and affect the development of the intestinal tract and immune system to different degrees in neonatal mice. Pathog. Dis. 2017, 75, ftx104. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.L.; Yao, Y.; Zhang, X.; Chen, F.; Meng, X.L.; Chen, X.S.; Wang, C.L.; Liu, Y.C.; Tian, X.; Shou, S.T.; et al. Regulatory T Cells: Angels or Demons in the Pathophysiology of Sepsis? Front. Immunol. 2022, 13, 829210. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Shimada, M.; Utsunomiya, T.; Morine, Y.; Imura, S.; Ikemoto, T.; Mori, H.; Hanaoka, J.; Iwahashi, S.; Yamada, S.; et al. Regulatory T cells in the blood: A new marker of surgical stress. Surg. Today 2013, 43, 608–612. [Google Scholar] [CrossRef]
- Tang, F.; Tie, Y.; Tu, C.; Wei, X. Surgical trauma-induced immunosuppression in cancer: Recent advances and the potential therapies. Clin. Transl. Med. 2020, 10, 199–223. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, S.; Sun, H.; Wu, X.; Gu, J.; Wu, H.; Liao, Y.; Ben-Ami, R.; Miao, C.; Shen, R.; et al. Targeting NEDD8 suppresses surgical stress-facilitated metastasis of colon cancer via restraining regulatory T cells. Cell Death Dis. 2024, 15, 8. [Google Scholar] [CrossRef]
- Natusch, L.; Heiduk, M.; Klimova, A.; Beer, C.; Willms, T.; Digomann, D.; Reiche, C.; Aust, D.E.; Hempel, S.; Oehme, F.; et al. The Value of Blood T Cell Frequencies for Risk Prediction of Postoperative Complications in Pancreatic Cancer Surgery. Ann. Surg. Open 2025, 6, e545. [Google Scholar] [CrossRef]
- Scholz, A.S.; Handke, J.; Gillmann, H.J.; Zhang, Q.; Dehne, S.; Janssen, H.; Arens, C.; Espeter, F.; Sander, A.; Giannitsis, E.; et al. Frontline Science: Low regulatory T cells predict perioperative major adverse cardiovascular and cerebrovascular events after noncardiac surgery. J. Leukoc. Biol. 2020, 107, 717–730. [Google Scholar] [CrossRef]
- Ivashkiv, L.B. IFNgamma: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol. 2018, 18, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Longbottom, E.R.; Torrance, H.D.; Owen, H.C.; Fragkou, P.C.; Hinds, C.J.; Pearse, R.M.; O’Dwyer, M.J. Features of Postoperative Immune Suppression Are Reversible With Interferon Gamma and Independent of Interleukin-6 Pathways. Ann. Surg. 2016, 264, 370–377. [Google Scholar] [CrossRef]
- Rentenaar, R.J.; de Metz, J.; Bunders, M.; Wertheim-van Dillen, P.M.; Gouma, D.J.; Romijn, J.A.; Sauerwein, H.P.; ten Berge, I.J.; van Lier, R.A. Interferon-gamma administration after abdominal surgery rescues antigen-specific helper T cell immune reactivity. Clin. Exp. Immunol. 2001, 125, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Sacha, P.T.; Zaremba, M.L.; Jakoniuk, P. The effect of selected antibacterial antibiotics on production of interferon gamma (IFN-G) by mouse T lymphocytes stimulated by Listeria monocytogenes. Med. Dosw. Mikrobiol. 1999, 51, 413–419. [Google Scholar] [PubMed]
- Neftel, K.A.; Muller, M.R.; Widmer, U.; Hugin, A.W. Beta-lactam antibiotics inhibit human in vitro granulopoiesis and proliferation of some other cell types. Cell Biol. Toxicol. 1986, 2, 513–521. [Google Scholar] [CrossRef]
- Hertl, M.; Geisel, J.; Boecker, C.; Merk, H.F. Selective generation of CD8+ T-cell clones from the peripheral blood of patients with cutaneous reactions to beta-lactam antibiotics. Br. J. Dermatol. 1993, 128, 619–626. [Google Scholar] [CrossRef]
- Yang, L.; Cai, Y.; Fu, X. Impact of Perioperative Multiple Doses of Glucocorticoids on Peripheral Blood Lymphocyte Subsets and Inflammatory Cytokines in Patients With Non-small Cell Lung Cancer. Front. Surg. 2022, 9, 859984. [Google Scholar] [CrossRef]
- Martin, D.; Mantziari, S.; Demartines, N.; Hubner, M.; Group, E.S.A.S. Defining Major Surgery: A Delphi Consensus Among European Surgical Association (ESA) Members. World J. Surg. 2020, 44, 2211–2219. [Google Scholar] [CrossRef]
- Protopapa, K.L.; Simpson, J.C.; Smith, N.C.; Moonesinghe, S.R. Development and validation of the Surgical Outcome Risk Tool (SORT). Br. J. Surg. 2014, 101, 1774–1783. [Google Scholar] [CrossRef]
- Barnes, J.; Hunter, J.; Harris, S.; Shankar-Hari, M.; Diouf, E.; Jammer, I.; Kalkman, C.; Klein, A.A.; Corcoran, T.; Dieleman, S.; et al. Systematic review and consensus definitions for the Standardised Endpoints in Perioperative Medicine (StEP) initiative: Infection and sepsis. Br. J. Anaesth. 2019, 122, 500–508. [Google Scholar] [CrossRef]
- Marti, C.; Stirnemann, J.; Lescuyer, P.; Tonoli, D.; von Dach, E.; Group, O.T.S.; Huttner, A. Therapeutic drug monitoring and clinical outcomes in severely ill patients receiving amoxicillin: A single-centre prospective cohort study. Int. J. Antimicrob. Agents 2022, 59, 106601. [Google Scholar] [CrossRef] [PubMed]
- Carlier, M.; Noe, M.; Roberts, J.A.; Stove, V.; Verstraete, A.G.; Lipman, J.; De Waele, J.J. Population pharmacokinetics and dosing simulations of cefuroxime in critically ill patients: Non-standard dosing approaches are required to achieve therapeutic exposures. J. Antimicrob. Chemother. 2014, 69, 2797–2803. [Google Scholar] [CrossRef] [PubMed]
- Frasca, D.; Dahyot-Fizelier, C.; Adier, C.; Mimoz, O.; Debaene, B.; Couet, W.; Marchand, S. Metronidazole and hydroxymetronidazole central nervous system distribution: 2. cerebrospinal fluid concentration measurements in patients with external ventricular drain. Antimicrob. Agents Chemother. 2014, 58, 1024–1027. [Google Scholar] [CrossRef]
- Lonsdale, D.O.; Kipper, K.; Baker, E.H.; Barker, C.I.S.; Oldfield, I.; Philips, B.J.; Johnston, A.; Rhodes, A.; Sharland, M.; Standing, J.F. beta-Lactam antimicrobial pharmacokinetics and target attainment in critically ill patients aged 1 day to 90 years: The ABDose study. J. Antimicrob. Chemother. 2020, 75, 3625–3634. [Google Scholar] [CrossRef]
- Walsh, R.; Snow, T.A.C.; Martinez, A.Z.; Brealey, D.; Singer, M.; Das, A.; Arulkumaran, N. The amphiregulin- epidermal growth factor receptor axis as a therapeutic target in sepsis. Front. Immunol. 2025, 16, 1638244. [Google Scholar] [CrossRef] [PubMed]
- Boomer, J.S.; Shuherk-Shaffer, J.; Hotchkiss, R.S.; Green, J.M. A prospective analysis of lymphocyte phenotype and function over the course of acute sepsis. Crit. Care 2012, 16, R112. [Google Scholar] [CrossRef]
Variable | Antibiotic Characterisation Cohort (n = 28) | Immunophenotyping Cohort (n = 12) | Lymphocyte Characterisation Cohort (n = 16) | |
---|---|---|---|---|
Age (years) | 64 (54–75) | 61 (50–70) | 64 (57–77) | |
Biological Sex (% male) | 15 (54%) | 8 (67%) | 7 (44%) | |
BMI | 25 (21–30) | 24 (21–27) | 26 (22–32) | |
Co-morbidities | ||||
Hypertension (%) | 13 (46%) | 7 (58%) | 6 (38%) | |
Cardiovascular disease (%) | 5 (18%) | 3 (25%) | 2 (13%) | |
Respiratory disease (%) | 6 (21%) | 3 (25%) | 3 (19%) | |
Type 2 diabetes (%) | 6 (21%) | 4 (33%) | 2 (13%) | |
ASA Grade (%) | 3 (3–3) | 3 (3–3) | 3 (3–3) | |
Active cancer (%) | 27 (96%) | 12 (100%) | 15 (94%) | |
Cancer staging | 2 (2–3) | 2 (2–2) | 2 (2–2) | |
Neoadjuvant chemotherapy (%) | 17 (61%) | 8 (67%) | 9 (56%) | |
SORT Score (%) | 1.48 (0.0–2.1) | 1.5 (1.4–3.2) | 1.1 (0.7–1.6%) | |
Type of surgery | ||||
Upper GI (%) | 16 (57%) | 9 (75%) | 7 (44%) | |
Lower GI (%) | 2 (7%) | 0% | 2 (13%) | |
Maxillofacial (%) | 5 (18%) | 2 (17%) | 2 (13%) | |
Gynaecological (%) | 5 (18%) | 1 (8%) | 4 (25%) | |
Peri-operative antibiotics | ||||
Prophylaxis administered (%) | 28 (100%) | 12 (100%) | 16 (100%) | |
Duration of prophylaxis (days) | 1 (1–1) | 1 (1–1) | 1 (1–1) | |
Cefuroxime and metronidazole | 17 (61%) | 9 (75%) | 8 (50%) | |
Co-amoxiclav | 5 (18%) | 2 (17%) | 3 (19%) | |
Co-amoxiclav and gentamicin | 1 (4%) | 0% | 1 (6%) | |
Co-amoxiclav and teicoplanin | 1 (4%) | 0% | 1 (6%) | |
Ciprofloxacin and clindamycin | 2 (7%) | 1 (8%) | 1 (6%) | |
Ciprofloxacin and metronidazole | 1 (4%) | 0% | 1 (6%) | |
Gentamicin | 1 (4%) | 0% | 1 (6%) | |
Intra-operative dexamethasone use (%) | 23 (82%) | 11 (92%) | 12 (75%) | |
Operation duration (mins) | 302 (220–409) | 247 (211–380) | 328 (252–446) | |
Blood loss (mls) | 300 (200–600) | 200 (200–625) | 300 (200–525) | |
Peri-operative blood transfusion (%) | 2 (7%) | 1 (8%) | 3 (19%) | |
Post-op infection | 11 (39%) | 4 (33%) | 7 (44%) | |
Chest | 7 (25%) | 2 (17%) | 5 (31%) | |
Wound | 3 (11%) | 2 (17%) | 1 (6%) | |
Other/Unclear | 2 (7%) | 0% | 2 (13%) | |
Clavien–Dindo classification | 2 (1–2) | 2 (2–2) | 2 (1–2) | |
Hospital length of stay (days) | 12 (8–20) | 10 (8–13) | 13 (8–23) | |
In-hospital death (%) | 2 (7%) | 2 (9%) | 0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paketci, S.; Williams, J.; Pisciotta, W.; Loye, R.; Waller, A.V.; Haque, R.; Brealey, D.; Singer, M.; Whittle, J.; Moonesinghe, R.; et al. Peri-Operative Antimicrobial Prophylaxis Modulates CD4+ Lymphocyte Immunophenotype Ex Vivo in High-Risk Patients Undergoing Major Elective Surgery—A Preliminary Observational Study. Antibiotics 2025, 14, 1026. https://doi.org/10.3390/antibiotics14101026
Paketci S, Williams J, Pisciotta W, Loye R, Waller AV, Haque R, Brealey D, Singer M, Whittle J, Moonesinghe R, et al. Peri-Operative Antimicrobial Prophylaxis Modulates CD4+ Lymphocyte Immunophenotype Ex Vivo in High-Risk Patients Undergoing Major Elective Surgery—A Preliminary Observational Study. Antibiotics. 2025; 14(10):1026. https://doi.org/10.3390/antibiotics14101026
Chicago/Turabian StylePaketci, Susi, Jack Williams, Walter Pisciotta, Richard Loye, Alessia V. Waller, Rahila Haque, David Brealey, Mervyn Singer, John Whittle, Ramani Moonesinghe, and et al. 2025. "Peri-Operative Antimicrobial Prophylaxis Modulates CD4+ Lymphocyte Immunophenotype Ex Vivo in High-Risk Patients Undergoing Major Elective Surgery—A Preliminary Observational Study" Antibiotics 14, no. 10: 1026. https://doi.org/10.3390/antibiotics14101026
APA StylePaketci, S., Williams, J., Pisciotta, W., Loye, R., Waller, A. V., Haque, R., Brealey, D., Singer, M., Whittle, J., Moonesinghe, R., Arulkumaran, N., Snow, T. A. C., & the University College London Hospitals Critical Care Research Team. (2025). Peri-Operative Antimicrobial Prophylaxis Modulates CD4+ Lymphocyte Immunophenotype Ex Vivo in High-Risk Patients Undergoing Major Elective Surgery—A Preliminary Observational Study. Antibiotics, 14(10), 1026. https://doi.org/10.3390/antibiotics14101026