State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting
Abstract
:1. Introduction
2. What Is an Antibiotic Stewardship Program (ASP) and a Diagnostic Stewardship Program (DSP)?
3. Which Healthcare Workers Should Be Involved in an ASP? The Antimicrobial Stewardship Team
4. Different Types of ASPs
4.1. What Interventions Are Effective Prior to or at the Time of Prescription?
4.1.1. Core Strategy
- Pre-authorization of restricted antimicrobials: A pharmacist or an ASP clinician must approve the prescription of a specific antimicrobial before the pharmacy releases it. This provides direct control over restricted antimicrobials and mainly improves the empiric use. The pitfalls of this strategy are the reduced autonomy of the prescribers and possible delays in the drug administration [16,26].
4.1.2. Minor Elements
- Local syndrome-specific clinical guidelines and pathways implementation: Local clinical guidelines (LCGs) or clinical pathways (CPs) targeting common syndromes (e.g., respiratory tract infections, urinary tract infections, skin infections, and surgical prophylaxis) are adapted from national or international evidence-based guidelines to fit specific healthcare settings, addressing local epidemiology, diagnostic capabilities, and drug availability [16,24]. According to recommendations from the World Health Organization (WHO) and the IDSA/SHEA regarding ASP implementation, local clinical guidelines should be accompanied by a strategy for implementation (i.e., healthcare worker education, clinical pathways creation, or audit and feedback [24,25]. Moreover, to guide clinical guideline contextualization, tools such as weighted-incidence syndrome combination antibiograms (WISCA) should be adopted. Indeed, WISCA provides highly informative estimates on antibiotic coverage patterns weighted on the most prevalent pathogens, overcoming the limitation of combination antibiograms [26,27,28].
- Healthcare worker education: Face-to-face or online talks, workshops, clinical case simulations, and toolkits are fundamental for optimal patient care to ensure knowledge of the most updated management strategies [29,30,31]. Continuous education will ensure that the most up-to-date treatments, diagnostic tools, and strategies are acknowledged. Healthcare worker education offers different advantages for stewardship training and can effectively improve prescribing behavior, especially when paired with other interventions [32].
- Computerized clinical decision support (CDS): Tools and mobile applications enhance ASPs by personalizing antibiotic regimens based on patient-specific factors and providing instant access to guidelines and dosing calculators, thereby improving adherence to stewardship principles and preventing dosing errors in real-time [33]. Like other ASP tools, CDS should be developed in alignment with guidelines established by national or international professional societies, supported by documented references.
- Caregivers education: Caregivers should be informed about the correct use, administration, storage, and disposal of antimicrobials, including antibiotics, to become allies in combating AMR and improve children’s outcomes. Mass education campaigns informing the public with messages, for example, about the ineffectiveness of antibiotics against viral infections such as respiratory syncytial virus (RSV) and influenza, or the importance of vaccines, can be implemented, as well as direct education from healthcare workers addressing specific syndromes. Messages should be communicated clearly and simply, considering the socio-cultural background, religious beliefs, and knowledge level of the parents being addressed. Leaflets in multiple languages could be distributed to parents to reach a wider audience and overcome language barriers. Including both approaches enhances overall public awareness of AMR and helps counter widespread misinformation and misconceptions about antibiotics. Interventions focusing on improving the quality of parent–healthcare provider communication have repeatedly exhibited the greatest impact on rates of inappropriate prescribing [34,35].
- Guidelines for antibiotic allergy and delabeling of spurious antibiotic allergies: Antibiotics are the cause of 40% of IgE and non-IgE-mediated allergic reactions to drugs, and the most allergenic are the beta-lactams. Still, up to 95% of patients reporting a penicillin allergy can tolerate a rechallenge [36,37]. Performing dedicated antibiotic allergy history-taking, with or without dedicated skin testing to remove false antibiotic allergy labels, can be an effective strategy to prevent the unnecessary avoidance of effective antibiotics and the indiscriminate use of broad-spectrum antibiotics [38].
- Antimicrobial order form: Generic antimicrobial order forms, in which the prescriber specifies the drug and regimen, may be utilized for any anti-infective or solely for restricted antimicrobials. These forms require the clinician to provide an indication for the antimicrobial and may also request the anticipated duration of therapy. By using these forms, documentation and communication regarding antimicrobial therapy can be enhanced, and data collection for medication use evaluations becomes more streamlined [39]. Electronic antimicrobial order forms should be preferred to written types because they reduce errors, standardize prescribing practices, provide decision support, enable better tracking and audits, and enhance overall efficiency and patient safety. When restricted agents are prescribed, these forms may require clinicians to confirm adherence to institution-specific criteria, supporting appropriate prescribing and simplifying the approval process.
4.2. What Interventions Are Effective After the Time of Prescription?
4.2.1. Core Strategy
- Prospective audits and feedback (PAF): Feedback can be provided in real-time or on a defined timing basis and can be delivered directly via the prescription tool or face-to-face during consultation meetings with the AST. This is usually a persuasive intervention where the rationale behind the recommendations is provided to convince the prescriber to modify the antimicrobial prescription but without imposing therapeutic choices (handshake stewardship). Different from the pre-authorization strategy, this intervention preserves the prescriber’s autonomy and allows for collaboration with the AST [40,41,42].
4.2.2. Minor Elements
- Appropriate duration and antibiotic timing out: Ending antibiotic therapy after an appropriate length of treatment is crucial, as extending the duration unnecessarily can increase adverse events without improving patient outcomes. Moreover, setting specified timing-out of antibiotic refills will help reassess the antibiotic duration [16].
- From empiric to target therapy, based on culture results and antibiotic monitoring by pharmacist: Empiric therapy is started based on clinical judgment and likely pathogens, but once culture results are available, therapy should be tailored to the specific pathogens, determining the best possible combination of antibiotics with the help of a pharmacist, when needed, enhancing treatment efficacy and reducing unnecessary broad-spectrum antibiotic use [16,24].
- Switch to oral: Transitioning from intravenous to oral antibiotics when clinically appropriate (based on patient stability, ability to absorb oral medications, and availability of effective oral formulations) reduces hospital length of stay and healthcare costs [16].
5. Different Types of ASP: Does the Same Program Fit All Settings?
5.1. Inpatient Pediatric Care
5.2. Primary Care Setting
5.3. Pediatric Emergency Departments
6. Different Types of Diagnostic Stewardship
7. Different Types of Diagnostic Stewardship: Does the Same Program Fit All Settings?
7.1. Inpatient Pediatric Care
7.2. Primary Care Settings
7.3. Pediatric Emergency Departments (PEDs)
8. How Should the Effectiveness of an ASP and DSP Be Evaluated? The Different Metrics in Pediatric Settings
9. What Is the Cost-Effectiveness of an ASP and a DSP?
- Cost-minimization analysis: Two alternative programs or treatments are compared to ascertain the least expensive. This type of analysis is helpful to ascertain the short-term impact of an ASP, while it does not address the long-term impact, especially AMR;
- Cost–benefit analysis: The costs associated with an ASP strategy should be compared to the potential benefits, including both financial metrics and intangible benefits that encompass health gains, lives saved, and the reduction in adverse events following antimicrobial use (e.g., CDIs);
- Cost-effectiveness analysis: The cost difference between two interventions (or compared to standard care) divided by the difference in their effects, is defined as the incremental cost-effectiveness ratio (ICER). It represents the average incremental cost associated with one additional unit of effect (e.g., the incremental cost per percentage point reduction in antibiotic prescription rate). This is the simplest measure of economic analysis, although it may not account for confounding factors such as hospital occupancy rates, price variations, and cost differences among different producers. This type of analysis should be normalized using consumption metrics such as DDD, DOT, and LOT [110].
10. Which Are the Most Important Phases to Successfully Implement an ASP?
10.1. Planning Phase
10.2. Implementation Phase
10.3. Monitoring and Sustainability Phase
11. Future Perspectives
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Principi, N.; Esposito, S. Antimicrobial stewardship in paediatrics. BMC Infect. Dis. 2016, 16, 424. [Google Scholar] [CrossRef] [PubMed]
- Tersigni, C.; Montagnani, C.; D’argenio, P.; Duse, M.; Esposito, S.; Hsia, Y.; Sharland, M.; Galli, L. Antibiotic prescriptions in Italian hospitalised children after serial point prevalence surveys (or pointless prevalence surveys): Has anything actually changed over the years? Ital. J. Pediatr. 2019, 45, 127. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, U.; Chiné, V.; Pappalardo, M.; Gismondi, P.; Esposito, S. Improving the Quality of Hospital Antibiotic Use: Impact on Multidrug-Resistant Bacterial Infections in Children. Front. Pharmacol. 2020, 11, 745. [Google Scholar] [CrossRef] [PubMed]
- De Luca, M.; Donà, D.; Montagnani, C.; Vecchio, A.L.; Romanengo, M.; Tagliabue, C.; Centenari, C.; D’argenio, P.; Lundin, R.; Giaquinto, C.; et al. Antibiotic prescriptions and prophylaxis in Italian children. Is it time to change? Data from the ARPEC Project. PLoS ONE 2016, 11, e0154662. [Google Scholar] [CrossRef]
- Versporten, A.; Bielicki, J.; Drapier, N.; Sharland, M.; Goossens, H.; ARPEC Project Group; Calle, G.M.; Garrahan, J.P.; Clark, J.; Cooper, C.; et al. The Worldwide Antibiotic Resistance and Prescribing in European Children (ARPEC) point prevalence survey: Developing hospital-quality indicators of antibiotic prescribing for children. J. Antimicrob. Chemother. 2016, 71, 1106–1117. [Google Scholar] [CrossRef]
- Barbieri, E.; di Chiara, C.; Costenaro, P.; Cantarutti, A.; Giaquinto, C.; Hsia, Y.; Doná, D. Antibiotic prescribing patterns in paediatric primary care in Italy: Findings from 2012–2018. Antibiotics 2022, 11, 18. [Google Scholar] [CrossRef]
- Cook, A.; Sharland, M.; Yau, Y.; PediBSI Group; Bielicki, J. Improving empiric antibiotic prescribing in pediatric bloodstream infections: A potential application of weighted-incidence syndromic combination antibiograms (WISCA). Expert Rev. Anti-Infect. Ther. 2022, 20, 445–456. [Google Scholar] [CrossRef]
- Frati, F.; Salvatori, C.; Incorvaia, C.; Bellucci, A.; Di Cara, G.; Marcucci, F.; Esposito, S. The role of the microbiome in asthma: The gut–lung axis. Int. J. Mol. Sci. 2019, 20, 123. [Google Scholar] [CrossRef]
- Hsia, Y.; Lee, B.R.; Versporten, A.; Yang, Y.; Bielicki, J.; Jackson, C.; Newland, J.; Goossens, H.; Magrini, N.; Sharland, M.; et al. Use of the WHO Access, Watch, and Reserve classification to define patterns of hospital antibiotic use (AWaRe): An analysis of paediatric survey data from 56 countries. Lancet Glob. Health 2019, 7, e861–e871. [Google Scholar] [CrossRef]
- Ballarini, S.; Rossi, G.A.; Principi, N.; Esposito, S. Dysbiosis in pediatrics is associated with respiratory infections: Is there a place for bacterial-derived products? Microorganisms 2021, 9, 448. [Google Scholar] [CrossRef]
- Bossù, G.; Di Sario, R.; Argentiero, A.; Esposito, S. Antimicrobial prophylaxis and modifications of the gut microbiota in children with cancer. Antibiotics 2021, 10, 152. [Google Scholar] [CrossRef] [PubMed]
- Newland, J.G.; Hersh, A.L. Purpose and design of antimicrobial stewardship programs in pediatrics. Pediatr. Infect. Dis. J. 2010, 29, 862–863. [Google Scholar] [CrossRef] [PubMed]
- Tamma, P.D.; Cosgrove, S.E.; Maragakis, L.L. Combination therapy for treatment of infections with gram-negative bacteria. Clin. Microbiol. Rev. 2012, 25, 450–470. [Google Scholar] [CrossRef] [PubMed]
- Fanelli, U.; Pappalardo, M.; Chinè, V.; Gismondi, P.; Neglia, C.; Argentiero, A.; Calderaro, A.; Prati, A.; Esposito, S. Role of artificial intelligence in fighting antimicrobial resistance in pediatrics. Antibiotics 2020, 9, 767. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C.; Nordby, A.; Hudson, D.B.; Struwe, L.; Ruppert, R. Quality improvement: Antimicrobial stewardship in pediatric primary care. J. Pediatr. Nurs. 2023, 70, 54–60. [Google Scholar] [CrossRef]
- Dellit, T.H.; Owens, R.C.; McGowan, J.E.; Gerding, D.N.; Weinstein, R.A.; Burke, J.P.; Huskins, W.C.; Paterson, D.L.; Fishman, N.O.; Carpenter, C.F.; et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship. Clin. Infect. Dis. 2007, 44, 159–177. [Google Scholar] [CrossRef]
- Dyar, O.J.; Huttner, B.; Schouten, J.; Pulcini, C.; ESGAP (ESCMID Study Group for Antimicrobial stewardshiP). What is antimicrobial stewardship? Clin. Microbiol. Infect. 2017, 23, 793–798. [Google Scholar] [CrossRef]
- Dyar, O.; Moran-Gilad, J.; Greub, G.; Pulcini, C. Diagnostic stewardship: Are we using the right term? Clin. Microbiol. Infect. 2019, 25, 272–273. [Google Scholar] [CrossRef]
- Fabre, V.; Davis, A.; Diekema, D.J.; Granwehr, B.; Hayden, M.K.; Lowe, C.F.; Pfeiffer, C.D.; Sick-Samuels, A.C.; Sullivan, K.V.; Van Schooneveld, T.C.; et al. Principles of diagnostic stewardship: A practical guide from the Society for Healthcare Epidemiology of America Diagnostic Stewardship Task Force. Infect. Control Hosp. Epidemiol. 2023, 44, 178–185. [Google Scholar] [CrossRef]
- Donà, D.; Barbieri, E.; Daverio, M.; Lundin, R.; Giaquinto, C.; Zaoutis, T.; Sharland, M. Implementation and impact of pediatric antimicrobial stewardship programs: A systematic scoping review. Antimicrob. Resist. Infect. Control 2020, 9, 3. [Google Scholar] [CrossRef]
- Brigadoi, G.; Rossin, S.; Visentin, D.; Barbieri, E.; Giaquinto, C.; Da Dalt, L.; Donà, D. The impact of Antimicrobial Stewardship Programmes in paediatric emergency departments and primary care: A systematic review. Ther. Adv. Infect. Dis. 2023, 10. [Google Scholar] [CrossRef] [PubMed]
- Shah, P.; Maheshwari, T.; Patel, D.; Patel, Z.; Dikkatwar, M.S.; Rathod, M.M. An overview: Implementation and core elements of antimicrobial stewardship programme. Clin. Epidemiol. Glob. Health 2024, 29, 101543. [Google Scholar] [CrossRef]
- Mozzo, E.; Mardegan, V.; Trafojer, U.; Lago, P.; Salvadori, S.; Baraldi, E.; Giaquinto, C.; Donà, D. Antibiotics Prescriptions in the Neonatal Intensive Care Unit: How to Overcome Everyday Challenges. Am. J. Perinatol. 2017, 34, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- WHO. Antimicrobial Stewardship Interventions: A Practical Guide. 2021. Available online: https://www.who.int/europe/publications/i/item/9789289056267 (accessed on 6 November 2024).
- Barlam, T.F.; Cosgrove, S.E.; Abbo, L.M.; MacDougall, C.; Schuetz, A.N.; Septimus, E.J.; Srinivasan, A.; Dellit, T.H.; Falck-Ytter, Y.T.; Fishman, N.O.; et al. Implementing an antibiotic stewardship program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin. Infect. Dis. 2016, 62, e51–e77. [Google Scholar] [CrossRef]
- Kinoshita, N.; Komura, M.; Tsuzuki, S.; Shoji, K.; Miyairi, I. The effect of preauthorization and prospective audit and feedback system on oral antimicrobial prescription for outpatients at a children’s hospital in Japan. J. Infect. Chemother. 2020, 26, 582–587. [Google Scholar] [CrossRef]
- Barbieri, E.; Bottigliengo, D.; Tellini, M.; Minotti, C.; Marchiori, M.; Cavicchioli, P.; Gregori, D.; Giaquinto, C.; Da Dalt, L.; Donà, D. Development of a Weighted-Incidence Syndromic Combination Antibiogram (WISCA) to guide the choice of the empiric antibiotic treatment for urinary tract infection in paediatric patients: A Bayesian approach. Antimicrob. Resist. Infect. Control 2021, 10, 74. [Google Scholar] [CrossRef]
- Liberati, C.; Donà, D.; Maestri, L.; Petris, M.G.; Barbieri, E.; Gallo, E.; Gallocchio, J.; Pierobon, M.; Calore, E.; Zin, A.; et al. Application of the Weighted-Incidence Syndromic Combination Antibiogram (WISCA) to guide the empiric antibiotic treatment of febrile neutropenia in oncological paediatric patients: Experience from two paediatric hospitals in Northern Italy. Ann. Clin. Microbiol. Antimicrob. 2024, 23, 16. [Google Scholar] [CrossRef]
- Regev-Yochay, G.; Raz, M.; Dagan, R.; Roizin, H.; Morag, B.; Hetman, S.; Ringel, S.; Ben-Israel, N.; Varon, M.; Somekh, E.; et al. Reduction in antibiotic use following a cluster randomized controlled multifaceted intervention: The israeli judicious antibiotic prescription study. Clin. Infect. Dis. 2011, 53, 33–41. [Google Scholar] [CrossRef]
- Barbieri, E.; De Luca, M.; Minute, M.; D’amore, C.; Degli Atti, M.L.C.; Martelossi, S.; Giaquinto, C.; Da Dalt, L.; Zaoutis, T.; Dona, D. Impact and sustainability of antibiotic stewardship in pediatric emergency departments: Why persistence is the key to success. Antibiotics 2020, 9, 867. [Google Scholar] [CrossRef]
- Gerber, J.S.; Jackson, M.A.; Tamma, P.D.; Zaoutis, T.E. Policy statement: Antibiotic stewardship in pediatrics. Pediatrics 2021, 10, 641–649. [Google Scholar] [CrossRef]
- Dona, D.; Baraldi, M.; Brigadoi, G.; Lundin, R.S.; Perilongo, G.; Hamdy, R.F.; Zaoutis, T.M.; Da Dalt, L.; Giaquinto, C. The Impact of Clinical Pathways on Antibiotic Prescribing for Acute Otitis Media and Pharyngitis in the Emergency Department. Pediatr. Infect. Dis. J. 2018, 37, 901–907. [Google Scholar] [CrossRef] [PubMed]
- McGonagle, E.A.; Karavite, D.J.; Grundmeier, R.W.; Schmidt, S.K.; May, L.S.; Cohen, D.M.; Cruz, A.T.; Tu, S.-P.; Bajaj, L.; Dayan, P.S.; et al. Evaluation of an Antimicrobial Stewardship Decision Support for Pediatric Infections. Appl. Clin. Inform. 2023, 14, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zhang, Z.; Hicks, J.P.; Walley, J.D.; King, R.; Newell, J.N.; Yin, J.; Zeng, J.; Guo, Y.; Lin, M.; et al. Long-term outcomes of an educational intervention to reduce antibiotic prescribing for childhood upper respiratory tract infections in rural China: Follow-up of a cluster-randomised controlled trial. PLoS Med. 2019, 16, e1002733. [Google Scholar] [CrossRef] [PubMed]
- Goggin, K.; Hurley, E.A.; Bradley-Ewing, A.; Bickford, C.; Lee, B.R.; Pina, K.; De Miranda, E.D.; Mackenzie, A.; Yu, D.; Weltmer, K.; et al. Reductions in Parent Interest in Receiving Antibiotics following a 90-Second Video Intervention in Outpatient Pediatric Clinics. J. Pediatr. 2020, 225, 138–145. [Google Scholar] [CrossRef]
- Demoly, P.; Adkinson, N.F.; Brockow, K.; Castells, M.; Chiriac, A.M.; Greenberger, P.A.; Khan, D.A.; Lang, D.M.; Park, H.; Pichler, W.; et al. InternationalConsensus on drug allergy. Allergy 2014, 69, 420–437. [Google Scholar] [CrossRef]
- Gomes, E.R.; Brockow, K.; Kuyucu, S.; Saretta, F.; Mori, F.; Blanca-Lopez, N.; Ott, H.; Atanaskovic-Markovic, M.; Kidon, M.; Caubet, J.; et al. Drug hypersensitivity in children: Report from the pediatric task force of the EAACI Drug Allergy Interest Group. Allergy 2016, 71, 149–161. [Google Scholar] [CrossRef]
- Chow, T.G.; Patel, G.; Mohammed, M.; Johnson, D.; Khan, D.A. Delabeling penicillin allergy in a pediatric primary care clinic. Ann. Allergy Asthma Immunol. 2023, 130, 667–669. [Google Scholar] [CrossRef]
- Diane Al Ashiru-Oredope, D.; Richards, M.; Giles, J.; Smith, N.; Teare, L. Does an antimicrobial section on a drug chart influence prescribing? Pharm J. 2011, 3, 222. [Google Scholar]
- Di Pentima, M.C.; Chan, S.; Hossain, J. Benefits of a pediatric antimicrobial stewardship program at a children’s hospital. Pediatrics 2011, 128, 1062–1070. [Google Scholar] [CrossRef]
- Velasco-Arnaiz, E.; Simó-Nebot, S.; Ríos-Barnés, M.; Ramos, M.G.L.; Monsonís, M.; Urrea-Ayala, M.; Jordan, I.; Mas-Comas, A.; Casadevall-Llandrich, R.; Ormazábal-Kirchner, D.; et al. Benefits of a Pediatric Antimicrobial Stewardship Program in Antimicrobial Use and Quality of Prescriptions in a Referral Children’s Hospital. J. Pediatr. 2020, 225, 222–230.e1. [Google Scholar] [CrossRef]
- Manice, C.; Mularidhar, N.; Campbell, J.; Nakamura, M. Implementation and perceived effectiveness of prospective audit and feedback and preauthorization by US pediatric antimicrobial stewardship programs. J. Pediatr. Infect. Dis. Soc. 2024, 26, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Fratoni, A.J.; Nicolau, D.P.; Kuti, J.L. A guide to therapeutic drug monitoring of β-lactam antibiotics. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2021, 41, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Abdul–Aziz, M.H.; Brady, K.; Cotta, M.O.; Roberts, J.A. Therapeutic Drug Monitoring of Antibiotics: Defining the Therapeutic Range. Ther. Drug Monit. 2022, 44, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Core Elements of Hospital Antibiotic Stewardship Programs. 2021. Available online: https://www.cdc.gov/antibiotic-use/hcp/core-elements/hospital.html (accessed on 6 November 2024).
- Zembles, T.N.; Nakra, N.; Parker, S.K. Extending the Reach of Antimicrobial Stewardship to Pediatric Patients. Infect. Dis. Ther. 2022, 11, 101–110. [Google Scholar] [CrossRef]
- Knowles, R.; Chandler, C.; O’neill, S.; Sharland, M.; Mays, N. A systematic review of national interventions and policies to optimize antibiotic use in healthcare settings in England. J. Antimicrob. Chemother. 2024, 79, 1234–1247. [Google Scholar] [CrossRef]
- Newland, J.G.; Stach, L.M.; De Lurgio, S.A.; Hedican, E.; Yu, D.; Herigon, J.C.; Prasad, P.A.; Jackson, M.A.; Myers, A.L.; Zaoutis, T.E. Impact of a prospective-audit-with-feedback antimicrobial stewardship program at a children’s hospital. J. Pediatr. Infect. Dis. Soc. 2012, 1, 179–186. [Google Scholar] [CrossRef]
- Hersh, A.L.; De Lurgio, S.A.; Thurm, C.; Lee, B.R.; Weissman, S.J.; Courter, J.D.; Brogan, T.V.; Shah, S.S.; Kronman, M.P.; Gerber, J.S.; et al. Antimicrobial Stewardship Programs in Freestanding Children’s Hospitals. Pediatrics 2015, 135, 33–39. [Google Scholar] [CrossRef]
- Zaffagnini, A.; Rigotti, E.; Opri, F.; Opri, R.; Simiele, G.; Tebon, M.; Sibani, M.; Piacentini, G.; Tacconelli, E.; Carrara, E. Enforcing surveillance of antimicrobial resistance and antibiotic use to drive stewardship: Experience in a paediatric setting. J. Hosp. Infect. 2024, 144, 14–19. [Google Scholar] [CrossRef]
- Rossin, S.; Barbieri, E.; Cantarutti, A.; Martinolli, F.; Giaquinto, C.; Da Dalt, L.; Doná, D. Multistep antimicrobial stewardship intervention on antibiotic prescriptions and treatment duration in children with pneumonia. PLoS ONE 2021, 16, e0257993. [Google Scholar] [CrossRef]
- Opondo, C.; Ayieko, P.; Ntoburi, S.; Wagai, J.; Opiyo, N.; Irimu, G.; Allen, E.; Carpenter, J.; English, M. Effect of a multi-faceted quality improvement intervention on inappropriate antibiotic use in children with non-bloody diarrhoea admitted to district hospitals in Kenya. BMC Pediatr. 2011, 11, 109. [Google Scholar] [CrossRef]
- Rahbarimanesh, A.; Mojtahedi, S.Y.; Sadeghi, P.; Ghodsi, M.; Kianfar, S.; Khedmat, L.; Siyahkali, S.J.M.; Yazdi, M.K.; Izadi, A. Antimicrobial stewardship program (ASP): An effective implementing technique for the therapy efficiency of meropenem and vancomycin antibiotics in Iranian pediatric patients. Ann. Clin. Microbiol. Antimicrob. 2019, 18, 6. [Google Scholar] [CrossRef] [PubMed]
- Wattier, R.L.; Levy, E.R.; Sabnis, A.J.; Dvorak, C.C.; Auerbach, A.D. Reducing Second Gram-Negative Antibiotic Therapy on Pediatric Oncology and Hematopoietic Stem Cell Transplantation Services. Infect. Control Hosp. Epidemiol. 2017, 38, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Hussain, K.; Ibrahim, R.; Abbas, Q.; Ahmed, S.A.; Jurair, H.; Ali, S.A. Impact of pharmacist-led antibiotic stewardship program in a PICU of low/middle-income country. BMJ Open Qual. 2018, 7, e000180. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.G.; Palazzi, D.L. Antibiotic stewardship in the pediatric primary care setting. Pediatr. Ann. 2022, 51, e196–e201. [Google Scholar] [CrossRef]
- Frost, H.M.; Hersh, A.L.; Hyun, D.Y. Next Steps in Ambulatory Stewardship. Infect. Dis. Clin. N. Am. 2023, 37, 749–767. [Google Scholar] [CrossRef]
- Dantuluri, K.L.; Bonnet, K.R.; Schlundt, D.G.; Schulte, R.J.; Griffith, H.G.; Luu, A.; Charnogursky, C.; Perkins, J.M.; Whitmore, C.C.; Banerjee, R.; et al. Antibiotic perceptions, adherence, and disposal practices among parents of pediatric patients. PLoS ONE 2023, 18, e0281660. [Google Scholar] [CrossRef]
- Pagano, F.; Amato, C.; De Marco, G.; Micillo, M.; Cecere, G.; Poeta, M.; Guarino, A.; Vecchio, A.L. Reduction in broad-spectrum antimicrobial prescriptions by primary care pediatricians following a multifaceted antimicrobial stewardship program. Front. Pediatr. 2023, 10, 1070325. [Google Scholar] [CrossRef]
- Gerber, J.S.; Prasad, P.A.; Fiks, A.G.; Localio, A.R.; Grundmeier, R.W.; Bell, L.M.; Wasserman, R.C.; Keren, R.; Zaoutis, T.E. Effect of an outpatient antimicrobial stewardship intervention on broad-spectrum antibiotic prescribing by primary care pediatricians. JAMA 2013, 309, 2345–2352. [Google Scholar] [CrossRef]
- Gerber, J.S.; Prasad, P.A.; Fiks, A.G.; Localio, A.R.; Bell, L.M.; Keren, R.; Zaoutis, T.E. Durability of benefits of an outpatient antimicrobial stewardship intervention after discontinuation of audit and feedback. JAMA 2014, 312, 2569–2570. [Google Scholar] [CrossRef]
- Wei, X.; Zhang, Z.; Walley, J.D.; Hicks, J.P.; Zeng, J.; Deng, S.; Zhou, Y.; Yin, J.; Newell, J.N.; Sun, Q.; et al. Effect of a training and educational intervention for physicians and caregivers on antibiotic prescribing for upper respiratory tract infections in children at primary care facilities in rural China: A cluster-randomised controlled trial. Lancet Glob. Health 2017, 5, e1258–e1267. [Google Scholar] [CrossRef]
- Hamdy, R.F.; Nedved, A.; Fung, M.; Fleming-Dutra, K.E.; Liu, C.M.; Obremskey, J.; Montalbano, A. Pediatric Urgent Care Providers’ Approach to Antibiotic Stewardship: A National Survey. Pediatr. Emerg. Care 2022, 38, e1446–e1448. [Google Scholar] [CrossRef] [PubMed]
- Meesters, K.; Buonsenso, D. Antimicrobial Stewardship in Pediatric Emergency Medicine: A Narrative Exploration of Antibiotic Overprescribing, Stewardship Interventions, and Performance Metrics. Children 2024, 11, 276. [Google Scholar] [CrossRef] [PubMed]
- Mistry, R.D.; May, L.S.; Pulia, M.S. Improving antimicrobial stewardship in pediatric emergency care: A pathway forward. Pediatrics 2019, 143, e20182972. [Google Scholar] [CrossRef] [PubMed]
- Nedved, A.; Lee, B.R.; Hamner, M.; Wirtz, A.; Burns, A.; El Feghaly, R.E. Impact of an antibiotic stewardship program on antibiotic choice, dosing, and duration in pediatric urgent cares. Am. J. Infect. Control 2023, 51, 520–526. [Google Scholar] [CrossRef] [PubMed]
- Lucignano, B.; Cento, V.; Agosta, M.; Ambrogi, F.; Albitar-Nehme, S.; Mancinelli, L.; Mattana, G.; Onori, M.; Galaverna, F.; Di Chiara, L.; et al. Effective Rapid Diagnosis of Bacterial and Fungal Bloodstream Infections by T2 Magnetic Resonance Technology in the Pediatric Population. J. Clin. Microbiol. 2022, 60, e0029222. [Google Scholar] [CrossRef]
- del Rosal, T.; Bote-Gascón, P.; Falces-Romero, I.; Sainz, T.; Baquero-Artigao, F.; Rodríguez-Molino, P.; Méndez-Echevarría, A.; Bravo-Queipo-De-Llano, B.; Alonso, L.A.; Calvo, C. Multiplex PCR and Antibiotic Use in Children with Community-Acquired Pneumonia. Children 2024, 11, 245. [Google Scholar] [CrossRef]
- Norman-Bruce, H.; Umana, E.; Mills, C.; Mitchell, H.; McFetridge, L.; McCleary, D.; Waterfield, T. Diagnostic test accuracy of procalcitonin and C-reactive protein for predicting invasive and serious bacterial infections in young febrile infants: A systematic review and meta-analysis. Lancet Child Adolesc. Health 2024, 8, 358–368. [Google Scholar] [CrossRef]
- Milcent, K.; Faesch, S.; Guen, C.G.-L.; Dubos, F.; Poulalhon, C.; Badier, I.; Marc, E.; Laguille, C.; de Pontual, L.; Mosca, A.; et al. Use of Procalcitonin Assays to Predict Serious Bacterial Infection in Young Febrile Infants. JAMA Pediatr. 2016, 170, 62–69. [Google Scholar] [CrossRef]
- Barbieri, E.; Rossin, S.; Giaquinto, C.; Da Dalt, L.; Dona’, D. A procalcitonin and c-reactive protein-guided clinical pathway for reducing antibiotic use in children hospitalized with bronchiolitis. Children 2021, 8, 351. [Google Scholar] [CrossRef]
- Li, P.; Liu, J.; Liu, J. Procalcitonin-guided antibiotic therapy for pediatrics with infective disease: A updated meta-analyses and trial sequential analysis. Front. Cell. Infect. Microbiol. 2022, 12, 915463. [Google Scholar] [CrossRef]
- Katz, S.E.; Crook, J.B.; Gillon, J.P.; Stanford, J.E.M.; Wang, L.; Colby, J.M.; Banerjee, R. Use of a Procalcitonin-guided Antibiotic Treatment Algorithm in the Pediatric Intensive Care Unit. Pediatr. Infect. Dis. J. 2021, 40, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Beaumont, R.; Tang, K.; Gwee, A. The Sensitivity and Specificity of Procalcitonin in Diagnosing Bacterial Sepsis in Neonates. Hosp. Pediatr. 2024, 14, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Martínez-González, N.A.; Keizer, E.; Plate, A.; Coenen, S.; Valeri, F.; Verbakel, J.Y.J.; Rosemann, T.; Neuner-Jehle, S.; Senn, O. Point-of-Care c-reactive protein testing to reduce antibiotic prescribing for respiratory tract infections in primary care: Systematic review and meta-analysis of randomised controlled trials. Antibiotics 2020, 9, 610. [Google Scholar] [CrossRef] [PubMed]
- Weragama, K.; Mudgil, P.; Whitehall, J. Paediatric antimicrobial stewardship for respiratory infections in the emergency setting: A systematic review. Antibiotics 2021, 10, 1366. [Google Scholar] [CrossRef]
- Weragama, K.; Mudgil, P.; Whitehall, J. Diagnostic Stewardship—The Impact of Rapid Diagnostic Testing for Paediatric Respiratory Presentations in the Emergency Setting: A Systematic Review. Children 2022, 9, 1226. [Google Scholar] [CrossRef]
- Cohen, J.F.; Pauchard, J.Y.; Hjelm, N.; Cohen, R.; Chalumeau, M. Efficacy and safety of rapid tests to guide antibiotic prescriptions for sore throat. Cochrane Database Syst. Rev. 2020, 6, CD012431. [Google Scholar] [CrossRef]
- Thibeault, R.; Gilca, R.; Côté, S.; De Serres, G.; Boivin, G.; Déry, E.P. Antibiotic use in children is not influenced by the result of rapid antigen detection test for the respiratory syncytial virus. J. Clin. Virol. 2007, 39, 169–174. [Google Scholar] [CrossRef]
- Rader, T.S.; Stevens, M.P.; Bearman, G. Syndromic Multiplex Polymerase Chain Reaction (mPCR) Testing and Antimicrobial Stewardship: Current Practice and Future Directions. Curr. Infect. Dis. Rep. 2021, 23, 5. [Google Scholar] [CrossRef]
- Lee, B.R.; Hassan, F.; Jackson, M.A.; Selvarangan, R. Impact of multiplex molecular assay turn-around-time on antibiotic utilization and clinical management of hospitalized children with acute respiratory tract infections. J. Clin. Virol. 2019, 110, 11–16. [Google Scholar] [CrossRef]
- Rao, S.; Lamb, M.M.; Moss, A.; Mistry, R.D.; Grice, K.; Ahmed, W.; Santos-Cantu, D.; Kitchen, E.; Patel, C.; Ferrari, I.; et al. Effect of Rapid Respiratory Virus Testing on Antibiotic Prescribing Among Children Presenting to the Emergency Department With Acute Respiratory Illness. JAMA Netw. Open 2021, 4, e2111836. [Google Scholar] [CrossRef]
- Keske, Ş.; Zabun, B.; Aksoy, K.; Can, F.; Palaoğlu, E.; Ergönül, Ö. Rapid Molecular Detection of Gastrointestinal Pathogens and Its Role in Antimicrobial Stewardship. J. Clin. Microbiol. 2018, 56, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Gagliardo, C.; Chiu, S.; Di Pentima, M.C. Impact of a rapid diagnostic meningitis/encephalitis panel on antimicrobial use and clinical outcomes in children. Antibiotics 2020, 9, 822. [Google Scholar] [CrossRef] [PubMed]
- Kosmeri, C.; Giapros, V.; Serbis, A.; Baltogianni, M. Application of Advanced Molecular Methods to Study Early-Onset Neonatal Sepsis. Int. J. Mol. Sci. 2024, 25, 2258. [Google Scholar] [CrossRef] [PubMed]
- Clodi-Seitz, T.; Baumgartner, S.; Turner, M.; Mader, T.; Hind, J.; Wenisch, C.; Zoufaly, A.; Presterl, E. Point-of-Care Method T2Bacteria®Panel Enables a More Sensitive and Rapid Diagnosis of Bacterial Blood Stream Infections and a Shorter Time until Targeted Therapy than Blood Culture. Microorganisms 2024, 12, 967. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, R.; Komarow, L.; Virk, A.; Rajapakse, N.; Schuetz, A.N.; Dylla, B.; Earley, M.; Lok, J.; Kohner, P.; Ihde, S.; et al. Randomized Trial Evaluating Clinical Impact of RAPid IDentification and Susceptibility Testing for Gram-negative Bacteremia: RAPIDS-GN. Clin. Infect. Dis. 2021, 73, e39–e46. [Google Scholar] [CrossRef]
- Hanson, K.E. Multicenter evaluation of biofire filmarray meningitis/encephalitis panel for detection of bacteria, viruses, and yeast in cerebrospinal fluid specimens. J. Clin. Microbiol. 2016, 54, 2251–2261. [Google Scholar] [CrossRef]
- Kadambari, S.F.; Feng, S.; Liu, X.; Andersson, M.M.; Waterfield, R.B.; Fodder, H.B.; Jacquemot, A.B.; Galal, U.M.; Rafferty, A.M.; Drew, R.J.; et al. Evaluating the Impact of the BioFire FilmArray in Childhood Meningitis: An Observational Cohort Study. Pediatr. Infect. Dis. J. 2024, 43, 345–349. [Google Scholar] [CrossRef]
- Banerjee, R.; Patel, R. Molecular diagnostics for genotypic detection of antibiotic resistance: Current landscape and future directions. JAC-Antimicrob. Resist. 2023, 5, dlad018. [Google Scholar] [CrossRef]
- Pai, N.P.; Vadnais, C.; Denkinger, C.; Engel, N.; Pai, M. Point-of-Care Testing for Infectious Diseases: Diversity, Complexity, and Barriers in Low- And Middle-Income Countries. PLoS Med. 2012, 9, e1001306. [Google Scholar] [CrossRef]
- Brigadoi, G.; Gastaldi, A.; Moi, M.; Barbieri, E.; Rossin, S.; Biffi, A.; Cantarutti, A.; Giaquinto, C.; Da Dalt, L.; Donà, D. Point-of-Care and Rapid Tests for the Etiological Diagnosis of Respiratory Tract Infections in Children: A Systematic Review and Meta-Analysis. Antibiotics 2022, 11, 1192. [Google Scholar] [CrossRef]
- Tan, R.; Tan, R.; Kavishe, G.; Kavishe, G.; Luwanda, L.B.; Luwanda, L.B.; Kulinkina, A.V.; Kulinkina, A.V.; Renggli, S.; Renggli, S.; et al. A digital health algorithm to guide antibiotic prescription in pediatric outpatient care: A cluster randomized controlled trial. Nat. Med. 2024, 30, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Kiemde, F.; Valia, D.; Kabore, B.; Rouamba, T.; Kone, A.N.; Sawadogo, S.; Compaore, A.; Salami, O.; Horgan, P.; E Moore, C.; et al. A Randomized Trial to Assess the Impact of a Package of Diagnostic Tools and Diagnostic Algorithm on Antibiotic Prescriptions for the Management of Febrile Illnesses Among Children and Adolescents in Primary Health Facilities in Burkina Faso. Clin. Infect. Dis. 2023, 77, S134–S144. [Google Scholar] [CrossRef] [PubMed]
- Porta, A.; Hsia, Y.; Doerholt, K.; Spyridis, N.; Bielicki, J.; Menson, E.; Tsolia, M.; Esposito, S.; Wong, I.C.K.; Sharland, M. Comparing neonatal and paediatric antibiotic prescribing between hospitals: A new algorithm to help international benchmarking. J. Antimicrob. Chemother. 2012, 67, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Davey, P.; A Marwick, C.; Scott, C.L.; Charani, E.; McNeil, K.; Brown, E.; Gould, I.M.; Ramsay, C.R.; Michie, S. Interventions to improve antibiotic prescribing practices for hospital inpatients. Cochrane Database Syst. Rev. 2017, 2017, CD003543. [Google Scholar] [CrossRef]
- Abel, K.; Agnew, E.; Amos, J.; Armstrong, N.; Armstrong-James, D.; Ashfield, T.; Aston, S.; Baillie, J.K.; Baldwin, S.; Barlow, G.; et al. System-wide approaches to antimicrobial therapy and antimicrobial resistance in the UK: The AMR-X framework. Lancet Microbe 2024, 5, e500–e507. [Google Scholar] [CrossRef]
- Moja, L.; Zanichelli, V.; Mertz, D.; Gandra, S.; Cappello, B.; Cooke, G.S.; Chuki, P.; Harbarth, S.; Pulcini, C.; Mendelson, M.; et al. WHO’s essential medicines and AWaRe: Recommendations on first- and second-choice antibiotics for empiric treatment of clinical infections. Clin. Microbiol. Infect. 2024, 30, S1–S51. [Google Scholar] [CrossRef]
- Hsia, Y.; Sharland, M.; Jackson, C.; Wong, I.C.K.; Magrini, N.; A Bielicki, J. Consumption of oral antibiotic formulations for young children according to the WHO Access, Watch, Reserve (AWaRe) antibiotic groups: An analysis of sales data from 70 middle-income and high-income countries. Lancet Infect. Dis. 2019, 19, 67–75. [Google Scholar] [CrossRef]
- Wattier, R.L.; Thurm, C.W.; Parker, S.K.; Banerjee, R.; Hersh, A.L.; Brogan, T.V.; Courter, J.D.; Gerber, J.S.; Kronman, M.P.; Lee, B.R.; et al. Indirect Standardization as a Case Mix Adjustment Method to Improve Comparison of Children’s Hospitals’ Antimicrobial Use. Clin. Infect. Dis. 2021, 73, 925–932. [Google Scholar] [CrossRef]
- Yusuf, E.; Versporten, A.; Goossens, H. Is there any difference in quality of prescribing between antibacterials and antifungals? Results from the first global point prevalence study (Global PPS) of antimicrobial consumption and resistance from 53 countries. J. Antimicrob. Chemother. 2017, 72, 2906–2909. [Google Scholar] [CrossRef]
- Hersh, A.L.; Shapiro, D.J.; Pavia, A.T.; Shah, S.S. Antibiotic prescribing in ambulatory pediatrics in the United States. Pediatrics 2011, 128, 1053–1061. [Google Scholar] [CrossRef]
- UKHSA. AMR Local Indicators. 2024. Available online: https://fingertips.phe.org.uk/profile/amr-local-indicators#3 (accessed on 6 November 2024).
- Sarma, J.; Marshall, B.; Cleeve, V.; Tate, D.; Oswald, T.; Woolfrey, S. Effects of fluoroquinolone restriction (from 2007 to 2012) on resistance in Enterobacteriaceae: Interrupted time-series analysis. J. Hosp. Infect. 2015, 91, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Lawes, T.; Lopez-Lozano, J.-M.; A Nebot, C.; Macartney, G.; Subbarao-Sharma, R.; Dare, C.R.; Wares, K.D.; Gould, I.M. Effects of national antibiotic stewardship and infection control strategies on hospital-associated and community-associated meticillin-resistant Staphylococcus aureus infections across a region of Scotland: A non-linear time-series study. Lancet Infect. Dis. 2015, 15, 1438–1449. [Google Scholar] [CrossRef] [PubMed]
- Gagliotti, C.; Nobilio, L.; Milandri, M.; Moro, M.L. Macrolide Prescriptions and Erythromycin Resistance of Streptococcus Pyogenes Mycin-Resistant. 2006. Available online: https://academic.oup.com/cid/article/42/8/1153/282887 (accessed on 12 December 2024).
- Schroeder, M.R.; Stephens, D.S. Macrolide Resistance in Streptococcus pneumoniae. Front. Cell. Infect. Microbiol. 2016, 6, 98. [Google Scholar] [CrossRef] [PubMed]
- Shaughnessy, M.K.; Amundson, W.H.; Kuskowski, M.A.; DeCarolis, D.D.; Johnson, J.R.; Drekonja, D.M. Unnecessary Antimicrobial Use in Patients with Current or Recent Clostridium difficile Infection. Infect. Control Hosp. Epidemiol. 2013, 34, 109–116. [Google Scholar] [CrossRef]
- Cooke, J.; Stephens, P.; Ashiru-Oredope, D.; Charani, E.; Dryden, M.; Fry, C.; Hand, K.; Holmes, A.; Howard, P.; Johnson, A.P.; et al. Longitudinal trends and cross-sectional analysis of English national hospital antibacterial use over 5 years (2008-13): Working towards hospital prescribing quality measures. J. Antimicrob. Chemother. 2015, 70, 279–285. [Google Scholar] [CrossRef]
- Keshavarzi, F. Practical Concerns about the Metrics and Methods of Financial Outcome Measurement in Antimicrobial Stewardship Programs: A Narrative Review. Iran. J. Med. Sci. 2022, 47, 394–405. [Google Scholar] [CrossRef]
- Zhang, Z.; Dawkins, B.; Hicks, J.P.; Walley, J.D.; Hulme, C.; Elsey, H.; Deng, S.; Lin, M.; Zeng, J.; Wei, X. Cost-effectiveness analysis of a multi-dimensional intervention to reduce inappropriate antibiotic prescribing for children with upper respiratory tract infections in China. Trop. Med. Int. Health 2018, 23, 1092–1100. [Google Scholar] [CrossRef]
- Borek, A.J.; Anthierens, S.; Allison, R.; Mcnulty, C.A.M.; Anyanwu, P.E.; Costelloe, C.; Walker, A.S.; Butler, C.C.; Tonkin-Crine, S.; on behalf of the STEP-UP Study Team. Social and contextual influences on antibiotic prescribing and antimicrobial stewardship: A qualitative study with clinical commissioning group and general practice professionals. Antibiotics 2020, 9, 859. [Google Scholar] [CrossRef]
- Goycochea-Valdivia, W.A.; Pérez, S.M.; Aguilera-Alonso, D.; Escosa-Garcia, L.; Campos, L.M.; Baquero-Artigao, F. Position statement of the Spanish Society of Paediatric Infectious Diseases on the introduction, implementation and assessment of antimicrobial stewardship programmes in paediatric hospitals. An. Pediatría 2022, 97, 351.e1–351.e12. [Google Scholar] [CrossRef]
- Lubell, Y.; Do, N.T.T.; Nguyen, K.V.; Ta, N.T.D.; Tran, N.T.H.; Than, H.M.; Hoang, L.B.; Shrestha, P.; van Doorn, R.H.; Nadjm, B.; et al. C-reactive protein point of care testing in the management of acute respiratory infections in the Vietnamese primary healthcare setting—A cost benefit analysis. Antimicrob. Resist. Infect. Control 2018, 7, 119. [Google Scholar] [CrossRef]
- Poudel, A.N.; Zhu, S.; Cooper, N.; Little, P.; Tarrant, C.; Hickman, M.; Yao, G. The economic burden of antibiotic resistance: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0285170. [Google Scholar] [CrossRef] [PubMed]
- Network, T.G.-O.; Morel, C.M.; Alm, R.A.; Årdal, C.; Bandera, A.; Bruno, G.M.; Carrara, E.; Colombo, G.L.; de Kraker, M.E.A.; Essack, S.; et al. A one health framework to estimate the cost of antimicrobial resistance. Antimicrob. Resist. Infect. Control 2020, 9, 187. [Google Scholar] [CrossRef]
- Turner, R.B.; Valcarlos, E.; Loeffler, A.M.; Gilbert, M.; Chan, D. Impact of an antimicrobial stewardship program on antibiotic use at a nonfreestanding children’s hospital. J. Pediatr. Infect. Dis. Soc. 2017, 6, e36–e40. [Google Scholar] [CrossRef] [PubMed]
- Srinivasan, A. Antibiotic stewardship: Why we must, how we can. Clevel. Clin. J. Med. 2017, 84, 673–679. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, M.; Morris, A.M.; Thursky, K.; Pulcini, C. How to start an antimicrobial stewardship programme in a hospital. Clin. Microbiol. Infect. 2020, 26, 447–453. [Google Scholar] [CrossRef] [PubMed]
- Cosgrove, S.E.; Hermsen, E.D.; Rybak, M.J.; File, T.M.; Parker, S.K.; Barlam, T.F. Guidance for the Knowledge and Skills Required for Antimicrobial Stewardship Leaders. Infect. Control Hosp. Epidemiol. 2014, 35, 1444–1451. [Google Scholar] [CrossRef]
- Wubishet, B.L.; Merlo, G.; Ghahreman-Falconer, N.; Hall, L.; Comans, T. Economic evaluation of antimicrobial stewardship in primary care: A systematic review and quality assessment. J. Antimicrob. Chemother. 2022, 77, 2373–2388. [Google Scholar] [CrossRef]
- Villanueva, P.M.; Coffin, S.E.; Mekasha, A.M.; McMullan, B.B.; Cotton, M.F.; Bryant, P.A. Comparison of Antimicrobial Stewardship and Infection Prevention and Control Activities and Resources Between Low-/Middle- and High-income Countries. Pediatr. Infect. Dis. J. 2022, 41, S3–S9. [Google Scholar] [CrossRef]
- Ecdc. Antimicrobial Consumption in the EU/EEA (ESAC-NET)—AER for 2022. 2022. Available online: https://www.ecdc.europa.eu/en/publications-data/surveillance-antimicrobial-consumption-europe-2022 (accessed on 12 December 2024).
- Kopsidas, I.; Vergnano, S.M.; Spyridis, N.; Zaoutis, T.M.; Patel, S.M. A Survey on National Pediatric Antibiotic Stewardship Programs, Networks and Guidelines in 23 European Countries. Pediatr. Infect. Dis. J. 2020, 39, e359–e362. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. Core Elements of Outpatient Antibiotic Stewardship The Core Elements of Outpatient Antibiotic Stewardship Facility Checklist. 2021. Available online: https://www.cdc.gov/antibiotic-use/hcp/core-elements/outpatient-antibiotic-stewardship.html#:~:text=The%20four%20core%20elements%20of,reporting%2C%20and%20education%20and%20expertise (accessed on 6 November 2024).
- Keller, S.C.; Cosgrove, S.E.; Miller, M.A.; Tamma, P. A framework for implementing antibiotic stewardship in ambulatory care: Lessons learned from the Agency for Healthcare Research and Quality Safety Program for Improving Antibiotic Use. Antimicrob. Steward. Health Epidemiol. 2022, 2, e109. [Google Scholar] [CrossRef]
- Zakhour, J.; Haddad, S.F.; Kerbage, A.; Wertheim, H.; Tattevin, P.; Voss, A.; Ünal, S.; Ouedraogo, A.S.; Kanj, S.S. Diagnostic stewardship in infectious diseases: A continuum of antimicrobial stewardship in the fight against antimicrobial resistance. Int. J. Antimicrob. Agents 2023, 62, 106816. [Google Scholar] [CrossRef] [PubMed]
- Pansa, P.; Hsia, Y.; Bielicki, J.; Lutsar, I.; Walker, A.S.; Sharland, M.; Folgori, L. Evaluating Safety Reporting in Paediatric Antibiotic Trials, 2000–2016: A Systematic Review and Meta-Analysis. Drugs 2018, 78, 231–244. [Google Scholar] [CrossRef] [PubMed]
- McDermott, J.H.; Mahaveer, A.; James, R.A.; Booth, N.; Turner, M.; Harvey, K.E.; Miele, G.; Beaman, G.M.; Stoddard, D.C.; Tricker, K.; et al. Rapid Point-of-Care Genotyping to Avoid Aminoglycoside-Induced Ototoxicity in Neonatal Intensive Care. JAMA Pediatr. 2022, 176, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Rudnick, W.; Conly, J.; Thirion, D.J.G.; Choi, K.; Pelude, L.; Cayen, J.; Bautista, J.; Beique, L.; Comeau, J.L.; Dalton, B.; et al. Antimicrobial use among paediatric inpatients at hospital sites within the Canadian Nosocomial Infection Surveillance Program, 2017/2018. Antimicrob. Resist. Infect. Control 2023, 12, 35. [Google Scholar] [CrossRef]
- Wicha, S.G.; Märtson, A.; Nielsen, E.I.; Koch, B.C.; Friberg, L.E.; Alffenaar, J.; Minichmayr, I.K.; The International Society of Anti-Infective Pharmacology (ISAP), the PK/PD study group of the European Society of Clinical Microbiology, Infectious Diseases (EPASG). From Therapeutic Drug Monitoring to Model-Informed Precision Dosing for Antibiotics. Clin. Pharmacol. Ther. 2021, 109, 928–941. [Google Scholar] [CrossRef]
- Cojutti, P.G.; Gatti, M.; Bonifazi, F.; Caramelli, F.; Castelli, A.; Cavo, M.; Cescon, M.; Corvaglia, L.T.; Lanari, M.; Marinelli, S.; et al. Impact of a newly established expert clinical pharmacological advice programme based on therapeutic drug monitoring results in tailoring antimicrobial therapy hospital-wide in a tertiary university hospital: Findings after the first year of implementation. Int. J. Antimicrob. Agents 2023, 62, 106884. [Google Scholar] [CrossRef]
- Liu, L.; Oza, S.; Hogan, D.; Chu, Y.; Perin, J.; Zhu, J.; Lawn, J.E.; Cousens, S.; Mathers, C.; Black, R.E. Global, regional, and national causes of under-5 mortality in 2000–15: An updated systematic analysis with implications for the Sustainable Development Goals. Lancet 2016, 388, 3027–3035. [Google Scholar] [CrossRef]
- Cox, J.; Vlieghe, E.; Mendelson, M.; Wertheim, H.; Ndegwa, L.; Villegas, M.; Gould, I.; Hara, G.L. Antibiotic stewardship in low- and middle-income countries: The same but different? Clin. Microbiol. Infect. 2017, 23, 812–818. [Google Scholar] [CrossRef]
- Boracchini, R.; Brigadoi, G.; Barbieri, E.; Liberati, C.; Rossin, S.; Tesser, F.; Chiusaroli, L.; Demarin, G.C.; Maestri, L.; Tirelli, F.; et al. Validation of Administrative Data and Timing of Point Prevalence Surveys for Antibiotic Monitoring. JAMA Netw. Open 2024, 7, e2435127. [Google Scholar] [CrossRef]
- Johnson, A.P.; Ashiru-Oredope, D.; Beech, E. Antibiotic stewardship initiatives as part of the UK 5-year antimicrobial resistance strategy. Antibiotics 2015, 4, 467–479. [Google Scholar] [CrossRef]
- Moehring, R.W.; Phelan, M.; Lofgren, E.; Nelson, A.; Ashley, E.D.; Anderson, D.J.; Goldstein, B.A. Development of a Machine Learning Model Using Electronic Health Record Data to Identify Antibiotic Use Among Hospitalized Patients. JAMA Netw. Open 2021, 4, e213460. [Google Scholar] [CrossRef] [PubMed]
- Giacobbe, D.R.; Marelli, C.; Guastavino, S.; Mora, S.; Rosso, N.; Signori, A.; Campi, C.; Giacomini, M.; Bassetti, M. Explainable and Interpretable Machine Learning for Antimicrobial Stewardship: Opportunities and Challenges. Clin. Ther. 2024, 46, 474–480. [Google Scholar] [CrossRef] [PubMed]
- Feretzakis, G.; Loupelis, E.; Sakagianni, A.; Kalles, D.; Martsoukou, M.; Lada, M.; Skarmoutsou, N.; Christopoulos, C.; Valakis, K.; Velentza, A.; et al. Using machine learning techniques to aid empirical antibiotic therapy decisions in the intensive care unit of a general hospital in Greece. Antibiotics 2020, 9, 50. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, M.; Kabanza, F.; Nault, V.; Valiquette, L. Evaluation of a machine learning capability for a clinical decision support system to enhance antimicrobial stewardship programs. Artif. Intell. Med. 2016, 68, 29–36. [Google Scholar] [CrossRef]
- Liu, G.-Y.; Yu, D.; Fan, M.-M.; Zhang, X.; Jin, Z.-Y.; Tang, C.; Liu, X.-F. Antimicrobial resistance crisis: Could artificial intelligence be the solution? Mil. Med. Res. 2024, 11, 7. [Google Scholar] [CrossRef]
- Driesnack, S.; Rücker, F.; Dietze-Jergus, N.; Bondarenko, A.; Pletz, M.W.; Viehweger, A. A practice-based approach to teaching antimicrobial therapy using artificial intelligence and gamified learning. JAC-Antimicrob. Resist. 2024, 6, dlae099. [Google Scholar] [CrossRef]
- Howard, A.; Aston, S.; Gerada, A.; Reza, N.; Bincalar, J.; Mwandumba, H.; Butterworth, T.; Hope, W.; Buchan, I. Antimicrobial learning systems: An implementation blueprint for artificial intelligence to tackle antimicrobial resistance. Lancet Digit. Health 2024, 6, e79–e86. [Google Scholar] [CrossRef]
- Stenehjem, E.; Hersh, A.L.; Buckel, W.R.; Jones, P.; Sheng, X.; Evans, R.S.; Burke, J.P.; Lopansri, B.K.; Srivastava, R.; Greene, T.; et al. Impact of implementing antibiotic stewardship programs in 15 small hospitals: A cluster-randomized intervention. Clin. Infect. Dis. 2018, 67, 525–532. [Google Scholar] [CrossRef]
Setting | Incremental Cost | Potential Saving/Benefit |
---|---|---|
Inpatient | Clinical pathways implementation:
Implementation (operational) cost:
| Direct costs:
Indirect costs:
|
Outpatient | Medical consultations and revisits; Nursing support and data monitoring; Clinical pathways implementation:
Training for healthcare professionals:
|
|
Direct Costs: | Indirect Costs: | Associated Probabilities: |
---|---|---|
Costs of any treatment or prophylaxis:
Costs of long-term consequences of AMR infection:
Out-of-pocket expenditure by the patient for care:
Training of health care professionals and information/communication Legal and insurance costs:
| Productivity loss:
Psychological impact on the patient and family (factored in as QALY). Financial burden on the government for disability benefits. Hospital costs:
Research and development of new antibiotics. Additional costs non directly related to human health. | Mortality (overall): deaths WITH a MDR infection. Mortality (attributable): deaths FROM an MDR infection. Morbidity:
Screening programs. Insurance to cover extra AMR costs. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donà, D.; Barbieri, E.; Brigadoi, G.; Liberati, C.; Bosis, S.; Castagnola, E.; Colomba, C.; Galli, L.; Lancella, L.; Lo Vecchio, A.; et al. State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting. Antibiotics 2025, 14, 132. https://doi.org/10.3390/antibiotics14020132
Donà D, Barbieri E, Brigadoi G, Liberati C, Bosis S, Castagnola E, Colomba C, Galli L, Lancella L, Lo Vecchio A, et al. State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting. Antibiotics. 2025; 14(2):132. https://doi.org/10.3390/antibiotics14020132
Chicago/Turabian StyleDonà, Daniele, Elisa Barbieri, Giulia Brigadoi, Cecilia Liberati, Samantha Bosis, Elio Castagnola, Claudia Colomba, Luisa Galli, Laura Lancella, Andrea Lo Vecchio, and et al. 2025. "State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting" Antibiotics 14, no. 2: 132. https://doi.org/10.3390/antibiotics14020132
APA StyleDonà, D., Barbieri, E., Brigadoi, G., Liberati, C., Bosis, S., Castagnola, E., Colomba, C., Galli, L., Lancella, L., Lo Vecchio, A., Meschiari, M., Montagnani, C., De Luca, M., Mercadante, S., & Esposito, S. (2025). State of the Art of Antimicrobial and Diagnostic Stewardship in Pediatric Setting. Antibiotics, 14(2), 132. https://doi.org/10.3390/antibiotics14020132