Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health
Abstract
:1. Introduction
2. Classification of Carbapenamases in Enterobacterales
2.1. Class A Carbapenemases
KPC
2.2. Class B Carbapenemases
2.2.1. NDM
2.2.2. VIM
2.2.3. IMP
2.3. Class D Carbapenemases
OXA-48-like
3. Epidemiology of the Principal Carbapenemases Worldwide
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bovo, F.; Amadesi, S.; Palombo, M.; Lazzarotto, T.; Ambretti, S.; Gaibani, P. Clonal Dissemination of Klebsiella Pneumoniae Resistant to Cefiderocol, Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam Co-Producing KPC and OXA-181 Carbapenemase. JAC Antimicrob. Resist. 2023, 5, dlad099. [Google Scholar] [CrossRef] [PubMed]
- Boyd, S.E.; Holmes, A.; Peck, R.; Livermore, D.M.; Hope, W. OXA-48-Like β-Lactamases: Global Epidemiology, Treatment Options, and Development Pipeline. Antimicrob. Agents Chemother. 2022, 66, e0021622. [Google Scholar] [CrossRef] [PubMed]
- Grundmann, H.; Glasner, C.; Albiger, B.; Aanensen, D.M.; Tomlinson, C.T.; Andrasević, A.T.; Cantón, R.; Carmeli, Y.; Friedrich, A.W.; Giske, C.G.; et al. Occurrence of Carbapenemase-Producing Klebsiella Pneumoniae and Escherichia Coli in the European Survey of Carbapenemase-Producing Enterobacteriaceae (EuSCAPE): A Prospective, Multinational Study. Lancet Infect. Dis. 2017, 17, 153–163. [Google Scholar] [CrossRef]
- Tenover, F.C.; Nicolau, D.P.; Gill, C.M. Carbapenemase-Producing Pseudomonas Aeruginosa -an Emerging Challenge. Emerg. Microbes Infect. 2022, 11, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Kumarasamy, K.K.; Toleman, M.A.; Walsh, T.R.; Bagaria, J.; Butt, F.; Balakrishnan, R.; Chaudhary, U.; Doumith, M.; Giske, C.G.; Irfan, S.; et al. Emergence of a New Antibiotic Resistance Mechanism in India, Pakistan, and the UK: A Molecular, Biological, and Epidemiological Study. Lancet Infect. Dis. 2010, 10, 597–602. [Google Scholar] [CrossRef]
- Pitout, J.D.D.; Peirano, G.; Kock, M.M.; Strydom, K.-A.; Matsumura, Y. The Global Ascendency of OXA-48-Type Carbapenemases. Clin. Microbiol. Rev. 2019, 33, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Brink, A.J. Epidemiology of Carbapenem-Resistant Gram-Negative Infections Globally. Curr. Opin. Infect. Dis. 2019, 32, 609–616. [Google Scholar] [CrossRef]
- Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; et al. Discovery, Research, and Development of New Antibiotics: The WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis. Lancet Infect. Dis. 2018, 18, 318–327. [Google Scholar] [CrossRef]
- Gaibani, P.; Ambretti, S.; Farruggia, P.; Bua, G.; Berlingeri, A.; Tamburini, M.V.; Cordovana, M.; Guerra, L.; Mazzetti, M.; Roncarati, G.; et al. Outbreak of Citrobacter Freundii Carrying VIM-1 in an Italian Hospital, Identified during the Carbapenemases Screening Actions, June 2012. Int. J. Infect. Dis. 2013, 17, e714–e717. [Google Scholar] [CrossRef] [PubMed]
- Zhanel, G.G.; Lawrence, C.K.; Adam, H.; Schweizer, F.; Zelenitsky, S.; Zhanel, M.; Lagacé-Wiens, P.R.S.; Walkty, A.; Denisuik, A.; Golden, A.; et al. Imipenem-Relebactam and Meropenem-Vaborbactam: Two Novel Carbapenem-β-Lactamase Inhibitor Combinations. Drugs 2018, 78, 65–98. [Google Scholar] [CrossRef]
- Cui, Q.; Wang, C.; Wang, Q.; Qin, J.; Li, M.; Ding, B.; Shen, Z. Ceftazidime/Avibactam Resistance in Carbapenemase-Producing Klebsiella Pneumoniae. Emerg. Infect. Dis. 2023, 29, 2398–2400. [Google Scholar] [CrossRef]
- Gaibani, P.; Lombardo, D.; Bussini, L.; Bovo, F.; Munari, B.; Giannella, M.; Bartoletti, M.; Viale, P.; Lazzarotto, T.; Ambretti, S. Epidemiology of Meropenem/Vaborbactam Resistance in KPC-Producing Klebsiella Pneumoniae Causing Bloodstream Infections in Northern Italy, 2018. Antibiotics 2021, 10, 536. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Burns, K.; Rodríguez Baño, J.; Borg, M.; Daikos, G.; Dumpis, U.; Lucet, J.C.; Moro, M.L.; Tacconelli, E.; Simonsen, G.S.; et al. Infection Prevention and Control Measures and Tools for the Prevention of Entry of Carbapenem-Resistant Enterobacteriaceae into Healthcare Settings: Guidance from the European Centre for Disease Prevention and Control. Antimicrob. Resist. Infect. Control 2017, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Lanckohr, C.; Bracht, H. Antimicrobial Stewardship. Curr. Opin. Crit. Care 2022, 28, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Doyle, M.E. Multidrug-Resistant Pathogens in the Food Supply. Foodborne Pathog. Dis. 2015, 12, 261–279. [Google Scholar] [CrossRef]
- Ambler, R.P. The Structure of β-Lactamases. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1980, 289, 321–331. [Google Scholar] [CrossRef] [PubMed]
- Ambler, R.P.; Coulson, A.F.W.; Frère, J.M.; Ghuysen, J.M.; Joris, B.; Forsman, M.; Levesque, R.C.; Tiraby, G.; Waley, S.G. A Standard Numbering Scheme for the Class A Beta-Lactamases. Biochem. J. 1991, 276, 269–270. [Google Scholar] [CrossRef]
- Bush, K.; Jacoby, G.A.; Medeiros, A.A. A Functional Classification Scheme for Beta-Lactamases and Its Correlation with Molecular Structure. Antimicrob. Agents Chemother. 1995, 39, 1211–1233. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Classification for β-Lactamases: Historical Perspectives. Expert. Rev. Anti Infect. Ther. 2023, 21, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Bush, K.; Jacoby, G.A. Updated Functional Classification of Beta-Lactamases. Antimicrob. Agents Chemother. 2010, 54, 969–976. [Google Scholar] [CrossRef]
- Queenan, A.M.; Bush, K. Carbapenemases: The Versatile β-Lactamases. Clin. Microbiol. Rev. 2007, 20, 440–458. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Mariotte, S.; Naas, T.; Labia, R.; Nicolas, M.H. Biochemical Properties of a Carbapenem-Hydrolyzing Beta-Lactamase from Enterobacter Cloacae and Cloning of the Gene into Escherichia Coli. Antimicrob. Agents Chemother. 1993, 37, 939–946. [Google Scholar] [CrossRef]
- Naas, T.; Vandel, L.; Sougakoff, W.; Livermore, D.M.; Nordmann, P. Cloning and Sequence Analysis of the Gene for a Carbapenem-Hydrolyzing Class A Beta-Lactamase, Sme-1, from Serratia Marcescens S6. Antimicrob. Agents Chemother. 1994, 38, 1262–1270. [Google Scholar] [CrossRef]
- Henriques, I.; Moura, A.; Alves, A.; Saavedra, M.J.; Correia, A. Molecular Characterization of a Carbapenem-Hydrolyzing Class A Beta-Lactamase, SFC-1, from Serratia Fonticola UTAD54. Antimicrob. Agents Chemother. 2004, 48, 2321–2324. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Héritier, C.; Podglajen, I.; Sougakoff, W.; Gutmann, L.; Nordmann, P. Emergence in Klebsiella Pneumoniae of a Chromosome-Encoded SHV Beta-Lactamase That Compromises the Efficacy of Imipenem. Antimicrob. Agents Chemother. 2003, 47, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Naas, T.; Dortet, L.; I.Iorga, B. Structural and Functional Aspects of Class A Carbapenemases. Curr. Drug Targets 2016, 17, 1006–1028. [Google Scholar] [CrossRef]
- Toth, M.; Vakulenko, V.; Antunes, N.T.; Frase, H.; Vakulenko, S.B. Class A Carbapenemase FPH-1 from Francisella Philomiragia. Antimicrob. Agents Chemother. 2012, 56, 2852–2857. [Google Scholar] [CrossRef] [PubMed]
- Bush, K. Past and Present Perspectives on β-Lactamases. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Shen, S.; Chen, J.; Tian, Z.; Shi, Q.; Han, R.; Guo, Y.; Hu, F. Klebsiella Pneumoniae Carbapenemase Variants: The New Threat to Global Public Health. Clin. Microbiol. Rev. 2023, 36, e00008-23. [Google Scholar] [CrossRef] [PubMed]
- Hammoudi Halat, D.; Ayoub Moubareck, C. The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics 2020, 9, 186. [Google Scholar] [CrossRef]
- Hobson, C.A.; Pierrat, G.; Tenaillon, O.; Bonacorsi, S.; Bercot, B.; Jaouen, E.; Jacquier, H.; Birgy, A. Klebsiella Pneumoniae Carbapenemase Variants Resistant to Ceftazidime-Avibactam: An Evolutionary Overview. Antimicrob. Agents Chemother. 2022, 66, e0044722. [Google Scholar] [CrossRef] [PubMed]
- Galdadas, I.; Lovera, S.; Pérez-Hernández, G.; Barnes, M.D.; Healy, J.; Afsharikho, H.; Woodford, N.; Bonomo, R.A.; Gervasio, F.L.; Haider, S. Defining the Architecture of KPC-2 Carbapenemase: Identifying Allosteric Networks to Fight Antibiotics Resistance. Sci. Rep. 2018, 8, 12916. [Google Scholar] [CrossRef]
- Venditti, C.; Nisii, C.; D’Arezzo, S.; Vulcano, A.; Capone, A.; Antonini, M.; Ippolito, G.; Di Caro, A. Molecular and Phenotypical Characterization of Two Cases of Antibiotic-Driven Ceftazidime-Avibactam Resistance in BlaKPC-3 Harboring Klebsiella Pneumoniae. Infect. Drug Resist. 2019, 12, 1935–1940. [Google Scholar] [CrossRef] [PubMed]
- Palombo, M.; Secci, B.; Bovo, F.; Gatti, M.; Ambretti, S.; Gaibani, P. In Vitro Evaluation of Increasing Avibactam Concentrations on Ceftazidime Activity against Ceftazidime/Avibactam-Susceptible and Resistant KPC-Producing Klebsiella Pneumoniae Clinical Isolates. Antibiotics 2023, 12, 1707. [Google Scholar] [CrossRef]
- Gaibani, P.; Giani, T.; Bovo, F.; Lombardo, D.; Amadesi, S.; Lazzarotto, T.; Coppi, M.; Rossolini, G.M.; Ambretti, S. Resistance to Ceftazidime/Avibactam, Meropenem/Vaborbactam and Imipenem/Relebactam in Gram-Negative MDR Bacilli: Molecular Mechanisms and Susceptibility Testing. Antibiotics 2022, 11, 628. [Google Scholar] [CrossRef]
- Oueslati, S.; Tlili, L.; Exilie, C.; Bernabeu, S.; Iorga, B.; Bonnin, R.A.; Dortet, L.; Naas, T. Different Phenotypic Expression of KPC β-Lactamase Variants and Challenges in Their Detection. J. Antimicrob. Chemother. 2020, 75, 769–771. [Google Scholar] [CrossRef] [PubMed]
- Oelschlaeger, P.; Kaadan, H.; Dhungana, R. Strategies to Name Metallo-β-Lactamases and Number Their Amino Acid Residues. Antibiotics 2023, 12, 1746. [Google Scholar] [CrossRef] [PubMed]
- Palzkill, T. Metallo-β-Lactamase Structure and Function. Ann. N. Y. Acad. Sci. 2013, 1277, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Xu, K.; Zhao, L.; Tong, R.; Xiong, L.; Shi, J. Recent Research and Development of NDM-1 Inhibitors. Eur. J. Med. Chem. 2021, 223, 113667. [Google Scholar] [CrossRef] [PubMed]
- Hall, B.G.; Barlow, M. Revised Ambler Classification of β-Lactamases. J. Antimicrob. Chemother. 2005, 55, 1050–1051. [Google Scholar] [CrossRef]
- Yong, D.; Toleman, M.A.; Giske, C.G.; Cho, H.S.; Sundman, K.; Lee, K.; Walsh, T.R. Characterization of a New Metallo-β-Lactamase Gene, BlaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella Pneumoniae Sequence Type 14 from India. Antimicrob. Agents Chemother. 2009, 53, 5046–5054. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; McNally, A.; Zong, Z. NDM Metallo-β-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, 10–1128. [Google Scholar] [CrossRef]
- Fu, B.; Xu, J.; Yin, D.; Sun, C.; Liu, D.; Zhai, W.; Bai, R.; Cao, Y.; Zhang, Q.; Ma, S.; et al. Transmission of BlaNDM in Enterobacteriaceae among Animals, Food and Human. Emerg. Microbes Infect. 2024, 13, 2337678. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhao, D.; Li, W.; Sun, J.; Zhang, X. Enzyme Inhibitors: The Best Strategy to Tackle Superbug NDM-1 and Its Variants. Int. J. Mol. Sci. 2021, 23, 197. [Google Scholar] [CrossRef] [PubMed]
- González, L.J.; Bahr, G.; Nakashige, T.G.; Nolan, E.M.; Bonomo, R.A.; Vila, A.J. Membrane Anchoring Stabilizes and Favors Secretion of New Delhi Metallo-β-Lactamase. Nat. Chem. Biol. 2016, 12, 516–522. [Google Scholar] [CrossRef] [PubMed]
- Sader, H.S.; Mendes, R.E.; Pfaller, M.A.; Shortridge, D.; Flamm, R.K.; Castanheira, M. Antimicrobial Activities of Aztreonam-Avibactam and Comparator Agents against Contemporary (2016) Clinical Enterobacteriaceae Isolates. Antimicrob. Agents Chemother. 2018, 62, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Lauretti, L.; Riccio, M.L.; Mazzariol, A.; Cornaglia, G.; Amicosante, G.; Fontana, R.; Rossolini, G.M. Cloning and Characterization of BlaVIM, a New Integron-Borne Metallo-β-Lactamase Gene from a Pseudomonas Aeruginosa Clinical Isolate. Antimicrob. Agents Chemother. 1999, 43, 1584–1590. [Google Scholar] [CrossRef] [PubMed]
- Salimraj, R.; Hinchliffe, P.; Kosmopoulou, M.; Tyrrell, J.M.; Brem, J.; van Berkel, S.S.; Verma, A.; Owens, R.J.; McDonough, M.A.; Walsh, T.R.; et al. Crystal Structures of VIM-1 Complexes Explain Active Site Heterogeneity in VIM-class Metallo-β-lactamases. FEBS J. 2019, 286, 169–183. [Google Scholar] [CrossRef]
- Watanabe, M.; Iyobe, S.; Inoue, M.; Mitsuhashi, S. Transferable Imipenem Resistance in Pseudomonas Aeruginosa. Antimicrob. Agents Chemother. 1991, 35, 147–151. [Google Scholar] [CrossRef]
- Pongchaikul, P.; Mongkolsuk, P. Comprehensive Analysis of Imipenemase (IMP)-Type Metallo-β-Lactamase: A Global Distribution Threatening Asia. Antibiotics 2022, 11, 236. [Google Scholar] [CrossRef] [PubMed]
- Concha, N.O.; Janson, C.A.; Rowling, P.; Pearson, S.; Cheever, C.A.; Clarke, B.P.; Lewis, C.; Galleni, M.; Frère, J.-M.; Payne, D.J.; et al. Crystal Structure of the IMP-1 Metallo β-Lactamase from Pseudomonas Aeruginosa and Its Complex with a Mercaptocarboxylate Inhibitor: Binding Determinants of a Potent, Broad-Spectrum Inhibitor. Biochemistry 2000, 39, 4288–4298. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Guo, H.; Gao, Y.; Yang, X.; Li, R.; Li, S.; Sun, C.; Du, W.; Chen, S.; Xu, P.; et al. Comparative Genomic Analysis of Plasmids Harboring BlaOXA-48-like Genes in Klebsiella Pneumoniae. Front. Cell Infect. Microbiol. 2022, 12, 1082813. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Héritier, C.; Tolün, V.; Nordmann, P. Emergence of Oxacillinase-Mediated Resistance to Imipenem in Klebsiella Pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef]
- Wise, M.G.; Karlowsky, J.A.; Mohamed, N.; Hermsen, E.D.; Kamat, S.; Townsend, A.; Brink, A.; Soriano, A.; Paterson, D.L.; Moore, L.S.P.; et al. Global Trends in Carbapenem- and Difficult-to-Treat-Resistance among World Health Organization Priority Bacterial Pathogens: ATLAS Surveillance Program 2018–2022. J Glob Antimicrob Resist 2024, 37, 168–175. [Google Scholar] [CrossRef]
- Bush, K.; Bradford, P.A. Epidemiology of β-Lactamase-Producing Pathogens. Clin. Microbiol. Rev. 2020, 33, 10–1128. [Google Scholar] [CrossRef]
- Bonnin, R.A.; Jousset, A.B.; Emeraud, C.; Oueslati, S.; Dortet, L.; Naas, T. Genetic Diversity, Biochemical Properties, and Detection Methods of Minor Carbapenemases in Enterobacterales. Front. Med. 2021, 7, 616490. [Google Scholar] [CrossRef]
- Ma, J.; Song, X.; Li, M.; Yu, Z.; Cheng, W.; Yu, Z.; Zhang, W.; Zhang, Y.; Shen, A.; Sun, H.; et al. Global Spread of Carbapenem-Resistant Enterobacteriaceae: Epidemiological Features, Resistance Mechanisms, Detection and Therapy. Microbiol. Res. 2023, 266, 127249. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, N.A. Phenotype-Genotype Correlations among Carbapenem-Resistant Enterobacterales Recovered from Four Egyptian Hospitals with the Report of SPM Carbapenemase. Antimicrob. Resist. Infect. Control 2022, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Dhabaan, G.; Jamal, H.; Ouellette, D.; Alexander, S.; Arane, K.; Campigotto, A.; Tadros, M.; Piché-Renaud, P.-P. Detection of OXA-181 Carbapenemase in Shigella Flexneri. Emerg. Infect. Dis. 2024, 30, 1048. [Google Scholar] [CrossRef] [PubMed]
- Estabrook, M.; Muyldermans, A.; Sahm, D.; Pierard, D.; Stone, G.; Utt, E. Epidemiology of Resistance Determinants Identified in Meropenem-Nonsusceptible Enterobacterales Collected as Part of a Global Surveillance Study, 2018 to 2019. Antimicrob Agents Chemother 2023, 67, e01406-22. [Google Scholar] [CrossRef]
- Qin, X.; Ding, L.; Hao, M.; Li, P.; Hu, F.; Wang, M. Antimicrobial Resistance of Clinical Bacterial Isolates in China: Current Status and Trends. JAC Antimicrob. Resist. 2024, 6, dlae052. [Google Scholar] [CrossRef] [PubMed]
- Kedišaletše, M.; Phumuzile, D.; Angela, D.; Andrew, W.; Mae, N.-F. Epidemiology, Risk Factors, and Clinical Outcomes of Carbapenem-Resistant Enterobacterales in Africa: A Systematic Review. J. Glob. Antimicrob. Resist. 2023, 35, 297–306. [Google Scholar] [CrossRef]
- Takei, K.; Ogawa, M.; Sakata, R.; Kanamori, H. Epidemiological Characteristics of Carbapenem-Resistant Enterobacterales in Japan: A Nationwide Analysis of Data from a Clinical Laboratory Center (2016–2022). Pathogens 2023, 12, 1246. [Google Scholar] [CrossRef]
- Brkic, S.; Cirkovic, I. Carbapenem-Resistant Enterobacterales in the Western Balkans: Addressing Gaps in European AMR Surveillance Map. Antibiotics 2024, 13, 895. [Google Scholar] [CrossRef]
- Ljungquist, O.; Haldorsen, B.; Pöntinen, A.K.; Janice, J.; Josefsen, E.H.; Elstrøm, P.; Kacelnik, O.; Sundsfjord, A.; Samuelsen, Ø. Nationwide, Population-Based Observational Study of the Molecular Epidemiology and Temporal Trend of Carbapenemase-Producing Enterobacterales in Norway, 2015 to 2021. Eurosurveillance 2023, 28, 2200774. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Falgenhauer, L.; Falgenhauer, J.; Hauri, A.M.; Heinmüller, P.; Domann, E.; Chakraborty, T.; Imirzalioglu, C. Carbapenem-Resistant Citrobacter spp. as an Emerging Concern in the Hospital-Setting: Results From a Genome-Based Regional Surveillance Study. Front. Cell Infect. Microbiol. 2021, 11, 744431. [Google Scholar] [CrossRef]
- Hussein, K.; Geffen, Y.; Eluk, O.; Warman, S.; Aboalheja, W.; Alon, T.; Firan, I.; Paul, M. The Changing Epidemiology of Carbapenemase-Producing Enterobacterales. Rambam Maimonides Med. J. 2022, 13, e0004. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Control Antimicrobial Resistance in the EU/EEA (EARS-Net). 2023. Available online: https://www.ecdc.europa.eu/en/about-us/networks/disease-networks-and-laboratory-networks/ears-net-data (accessed on 1 January 2025).
- UK Health Security Agency English Surveillance Programme for Antimicrobial Utilisation and Resistance (ESPAUR) Report 2022 to 2023. 2023. Available online: https://webarchive.nationalarchives.gov.uk/ukgwa/20240127185100mp_/https://assets.publishing.service.gov.uk/media/6555026e544aea000dfb2e19/ESPAUR-report-2022-to-2023.pdf (accessed on 1 January 2025).
- Luo, Q.; Lu, P.; Chen, Y.; Shen, P.; Zheng, B.; Ji, J.; Ying, C.; Liu, Z.; Xiao, Y. ESKAPE in China: Epidemiology and Characteristics of Antibiotic Resistance. Emerg. Microbes Infect. 2024, 13, 2317915. [Google Scholar] [CrossRef]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel Carbapenem-Hydrolyzing β-Lactamase, KPC-1, from a Carbapenem-Resistant Strain of Klebsiella Pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef]
- Sader, H.S.; Mendes, R.E.; Carvalhaes, C.G.; Kimbrough, J.H.; Castanheira, M. Changing Epidemiology of Carbapenemases Among Carbapenem-Resistant Enterobacterales From United States Hospitals and the Activity of Aztreonam-Avibactam Against Contemporary Enterobacterales (2019–2021). Open Forum Infect. Dis. 2023, 10, ofad046. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.-T.; Nguyen, H.-T.V.; Ke, S.-C.; Lin, Y.-P.; Pang, Y.-C.; Guo, M.-K.; Chen, C.-M. High Prevalence of Carbapenem-Resistant Enterobacterales; Producing OXA-48 among Carbapenem-Resistant Isolates in a Regional Hospital in Central Taiwan. Jpn. J. Infect. Dis. 2024, 77, JJID.2023.213. [Google Scholar] [CrossRef] [PubMed]
- Chiu, S.-K.; Ma, L.; Chan, M.-C.; Lin, Y.-T.; Fung, C.-P.; Wu, T.-L.; Chuang, Y.-C.; Lu, P.-L.; Wang, J.-T.; Lin, J.-C.; et al. Carbapenem Nonsusceptible Klebsiella Pneumoniae in Taiwan: Dissemination and Increasing Resistance of Carbapenemase Producers During 2012–2015. Sci. Rep. 2018, 8, 8468. [Google Scholar] [CrossRef]
- Li, Y.; Sun, X.; Dong, N.; Wang, Z.; Li, R. Global Distribution and Genomic Characteristics of Carbapenemase-Producing Escherichia Coli among Humans, 2005–2023. Drug Resist. Updates 2024, 72, 101031. [Google Scholar] [CrossRef]
- Fu, P.; Luo, X.; Shen, J.; He, L.; Rong, H.; Li, C.; Chen, S.; Zhang, L.; Wang, A.; Wang, C. The Molecular and Epidemiological Characteristics of Carbapenemase-Producing Enterobacteriaceae Isolated from Children in Shanghai, China, 2016–2021. J. Microbiol. Immunol. Infect. 2023, 56, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Nagaraj, G.; Shamanna, V.; Govindan, V.; Rose, S.; Sravani, D.; Akshata, K.P.; Shincy, M.R.; Venkatesha, V.T.; Abrudan, M.; Argimón, S.; et al. High-Resolution Genomic Profiling of Carbapenem-Resistant Klebsiella Pneumoniae Isolates: A Multicentric Retrospective Indian Study. Clin. Infect. Dis. 2021, 73, S300–S307. [Google Scholar] [CrossRef] [PubMed]
- Perovic, O.; Ismail, H.; Quan, V.; Bamford, C.; Nana, T.; Chibabhai, V.; Bhola, P.; Ramjathan, P.; Swe Swe-Han, K.; Wadula, J.; et al. Carbapenem-Resistant Enterobacteriaceae in Patients with Bacteraemia at Tertiary Hospitals in South Africa, 2015 to 2018. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.; Shuping, L.; Perovic, O. Carbapenem-Resistant Enterobacterales in Patients with Bacteraemia at Tertiary Academic Hospitals in South Africa, 2019–2020: An Update. S. Afr. Med. J. 2022, 112, 542–552. [Google Scholar] [CrossRef] [PubMed]
- Kuzmenkov, A.Y.; Trushin, I.V.; Vinogradova, A.G.; Avramenko, A.A.; Sukhorukova, M.V.; Malhotra-Kumar, S.; Dekhnich, A.V.; Edelstein, M.V.; Kozlov, R.S. AMRmap: An Interactive Web Platform for Analysis of Antimicrobial Resistance Surveillance Data in Russia. Front. Microbiol. 2021, 12, 620002. [Google Scholar] [CrossRef]
- Lian, S.; Liu, C.; Cai, M.; Cao, Y.; Xu, X. Risk Factors and Molecular Characterization of Carbapenem Resistant Escherichia Coli Recovered from a Tertiary Hospital in Fujian, China from 2021 to 2023. BMC Microbiol 2024, 24, 374. [Google Scholar] [CrossRef] [PubMed]
- Beta-Lactamase DataBase—Structure and Function. Available online: http://bldb.eu/ (accessed on 17 December 2024).
- Matsumura, Y.; Peirano, G.; Devinney, R.; Bradford, P.A.; Motyl, M.R.; Adams, M.D.; Chen, L.; Kreiswirth, B.; Pitout, J.D.D. Genomic Epidemiology of Global VIM-Producing Enterobacteriaceae. J. Antimicrob. Chemother. 2017, 72, 2249–2258. [Google Scholar] [CrossRef]
- Kishi, R.; Nakano, R.; Nakano, A.; Harimoto, T.; Taniguchi, R.; Ando, S.; Suzuki, Y.; Yamaguchi, K.; Kitagawa, D.; Horiuchi, S.; et al. Prevalence of Carbapenem-Resistant Enterobacterales with Bla IMP-6 Predominance in Hospitals from 2018 to 2021 in Nara, Japan. JAC Antimicrob. Resist. 2024, 6, dlae135. [Google Scholar] [CrossRef]
- Oka, K.; Matsumoto, A.; Tetsuka, N.; Morioka, H.; Iguchi, M.; Ishiguro, N.; Nagamori, T.; Takahashi, S.; Saito, N.; Tokuda, K.; et al. Clinical Characteristics and Treatment Outcomes of Carbapenem-Resistant Enterobacterales Infections in Japan. J. Glob. Antimicrob. Resist. 2022, 29, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Mirović, V.; Carević, B.; Stepanović, S.; Lepšanović, Z. An Outbreak of Infection Due to Metallo-ß-Lactamase-Producing Proteus Mirabilis in the Surgical Intensive Care Unit. Scr. Med. 2011, 42, 75–79. [Google Scholar] [CrossRef]
- Mirovic, V.; Tomanovic, B.; Lepsanovic, Z.; Jovcic, B.; Kojic, M. Isolation of Klebsiella Pneumoniae Producing NDM-1 Metallo-β-Lactamase from the Urine of an Outpatient Baby Boy Receiving Antibiotic Prophylaxis. Antimicrob. Agents Chemother. 2012, 56, 6062–6063. [Google Scholar] [CrossRef] [PubMed]
- Bogaerts, P.; Bouchahrouf, W.; de Castro, R.R.; Deplano, A.; Berhin, C.; Piérard, D.; Denis, O.; Glupczynski, Y. Emergence of NDM-1-Producing Enterobacteriaceae in Belgium. Antimicrob. Agents Chemother. 2011, 55, 3036–3038. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, S.N.; Marschall, J.; Perreten, V.; Carattoli, A.; Furrer, H.; Endimiani, A. Emergence of Klebsiella Pneumoniae Co-Producing NDM-1, OXA-48, CTX-M-15, CMY-16, QnrA and ArmA in Switzerland. Int. J. Antimicrob. Agents 2014, 44, 260–262. [Google Scholar] [CrossRef] [PubMed]
- Ranieri, S.C.; Fabbrizi, V.; D’ Amario, A.M.; Frascella, M.G.; Di Biase, V.; Di Francesco, C.; Di Sante, S.; De Berardis, L.; De Martinis, M.; Partenza, M.; et al. First Report of a BlaNDM-Producing Extensively Drug Resistant Klebsiella Pneumoniae ST437 in Italy. Front. Cell Infect. Microbiol. 2024, 14, 1426817. [Google Scholar] [CrossRef] [PubMed]
- Di Marcantonio, S.; Perilli, M.; Alloggia, G.; Segatore, B.; Miconi, G.; Bruno, G.; Frascaria, P.; Piccirilli, A. Coexistence of BlaNDM-5, BlaCTX-M-15, BlaOXA-232, BlaSHV-182 Genes in Multidrug-Resistant K. Pneumoniae ST437-Carrying OmpK36 and OmpK37 Porin Mutations: First Report in Italy. J. Glob. Antimicrob. Resist. 2024, 37, 24–27. [Google Scholar] [CrossRef] [PubMed]
- Takei, S.; Tabe, Y.; Miida, T.; Hishinuma, T.; Khasawneh, A.; Kirikae, T.; Sherchand, J.B.; Tada, T. Multidrug-Resistant Klebsiella Pneumoniae Clinical Isolates Producing NDM- and OXA-Type Carbapenemase in Nepal. J. Glob. Antimicrob. Resist. 2024, 37, 233–243. [Google Scholar] [CrossRef] [PubMed]
- Pathak, A.; Tejan, N.; Dubey, A.; Chauhan, R.; Fatima, N.; Jyoti; Singh, S.; Bhayana, S.; Sahu, C. Outbreak of Colistin Resistant, Carbapenemase (BlaNDM, BlaOXA-232) Producing Klebsiella Pneumoniae Causing Blood Stream Infection among Neonates at a Tertiary Care Hospital in India. Front. Cell Infect. Microbiol. 2023, 13, 1051020. [Google Scholar] [CrossRef] [PubMed]
- Markovska, R.; Stankova, P.; Popivanov, G.; Gergova, I.; Mihova, K.; Mutafchiyski, V.; Boyanova, L. Emergence of BlaNDM-5 and BlaOXA-232 Positive Colistin- and Carbapenem-Resistant Klebsiella Pneumoniae in a Bulgarian Hospital. Antibiotics 2024, 13, 677. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, C.; Oueslati, S.; Rima, M.; Nermont, R.; Dortet, L.; Hopkins, K.L.; Iorga, B.I.; Bonnin, R.A.; Naas, T. Molecular, Genetic, and Biochemical Characterization of OXA-484 Carbapenemase, a Difficult-to-Detect R214G Variant of OXA-181. Microorganisms 2024, 12, 1391. [Google Scholar] [CrossRef] [PubMed]
- European Centre for Disease Prevention and Contro Increase in OXA-244-Producing Escherichia Coli in the European Union/European Economic Area and the UK since 2013—First Update; Stockholm. 2021. Available online: https://www.ecdc.europa.eu/sites/default/files/documents/OXA-244-producing-E-coli-in-EU-EEA-since-2013-first-update.pdf (accessed on 1 January 2025).
- Lindemann, P.C.; Pedersen, T.; Oma, D.H.; Janice, J.; Grøvan, F.; Chedid, G.M.; Hafne, L.J.; Josefsen, E.H.; Kacelnik, O.; Sundsfjord, A.; et al. Intraregional Hospital Outbreak of OXA-244-Producing Escherichia Coli ST38 in Norway, 2020. Eurosurveillance 2023, 28, 2200773. [Google Scholar] [CrossRef] [PubMed]
- Grevskott, D.H.; Radisic, V.; Salvà-Serra, F.; Moore, E.R.B.; Akervold, K.S.; Victor, M.P.; Marathe, N.P. Emergence and Dissemination of Epidemic-Causing OXA-244 Carbapenemase-Producing Escherichia Coli ST38 through Hospital Sewage in Norway, 2020–2022. J. Hosp. Infect. 2024, 145, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Biedrzycka, M.; Izdebski, R.; Gniadkowski, M.; Żabicka, D. Several Epidemic and Multiple Sporadic Genotypes of OXA-244-Producing Escherichia Coli in Poland; Predominance of the ST38 Clone. Eur. J. Clin. Microbiol. Infect. Dis. 2024, 43, 2465–2472. [Google Scholar] [CrossRef] [PubMed]
- Izdebski, R.; Biedrzycka, M.; Urbanowicz, P.; Żabicka, D.; Błauciak, T.; Lechowicz, D.; Gałecka-Ziółkowska, B.; Gniadkowski, M. Large Hospital Outbreak Caused by OXA-244-Producing Escherichia Coli Sequence Type 38, Poland, 2023. Eurosurveillance 2024, 29, 2300666. [Google Scholar] [CrossRef]
- Badinski, T.; Seiffert, S.N.; Grässli, F.; Babouee Flury, B.; Besold, U.; Betschon, E.; Biggel, M.; Brucher, A.; Cusini, A.; Dörr, T.; et al. Colonization with Resistant Bacteria in Hospital Employees: An Epidemiological Surveillance and Typing Study. Antimicrob. Agents Chemother. 2024, 68, e00985-24. [Google Scholar] [CrossRef]
- Wu, S.; He, Y.; Feng, Y.; Zong, Z. A Rare Class A Carbapenemase FRI-11 in Enterobacter Clinical Strain. Eur. J. Clin. Microbiol. Infect. Dis. 2023, 42, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, K.L.; Findlay, J.; Meunier, D.; Cummins, M.; Curtis, S.; Kustos, I.; Mustafa, N.; Perry, C.; Pike, R.; Woodford, N. Serratia Marcescens Producing SME Carbapenemases: An Emerging Resistance Problem in the UK? J. Antimicrob. Chemother. 2017, 72, 1535–1537. [Google Scholar] [CrossRef]
- Creighton, J.; Anderson, T.; Howard, J. Serratia Marcescens Enzyme SME-2 Isolated from Sputum in New Zealand. JAC Antimicrob. Resist. 2023, 5, dlad126. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization Ten Threats to Global Health in 2019. Available online: https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019 (accessed on 1 January 2025).
- Salam, M.A.; Al-Amin, M.Y.; Salam, M.T.; Pawar, J.S.; Akhter, N.; Rabaan, A.A.; Alqumber, M.A.A. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health. Healthcare 2023, 11, 1946. [Google Scholar] [CrossRef]
- Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug Resist. 2019, 12, 3903–3910. [Google Scholar] [CrossRef]
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-Negative Bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [Google Scholar] [CrossRef] [PubMed]
- Bucataru, A.; Turcu-Stiolica, A.; Calina, D.; Balasoiu, A.T.; Zlatian, O.M.; Osman, A.; Balasoiu, M.; Ghenea, A.E. Systematic Review and Meta-Analysis of Clinical Efficacy and Safety of Meropenem-Vaborbactam versus Best-Available Therapy in Patients with Carbapenem-Resistant Enterobacteriaceae Infections. Int. J. Mol. Sci. 2024, 25, 9574. [Google Scholar] [CrossRef] [PubMed]
- Logan, L.K.; Weinstein, R.A. The Epidemiology of Carbapenem-Resistant Enterobacteriaceae: The Impact and Evolution of a Global Menace. J. Infect. Dis. 2017, 215, S28–S36. [Google Scholar] [CrossRef] [PubMed]
- Barbier, F.; Hraiech, S.; Kernéis, S.; Veluppillai, N.; Pajot, O.; Poissy, J.; Roux, D.; Zahar, J.-R. Rationale and Evidence for the Use of New Beta-Lactam/Beta-Lactamase Inhibitor Combinations and Cefiderocol in Critically Ill Patients. Ann. Intensive Care 2023, 13, 65. [Google Scholar] [CrossRef] [PubMed]
KPC | NDM | VIM | IMP | OXA-48-like | |
---|---|---|---|---|---|
Discovery | USA, 1996 | India, 2008 | Italy, 1997 | Japan, 1988 | Turkey, 2001 |
Ambler classification | A | B | B | B | D |
Bush–Jacoby–Medeiros classification | 2f | 3a | 3a | 3a | 2d, 2de, 2df |
Substrate | Penicillins Cephalosporins Monobactams Carbapenems | Penicillins Cephalosporins Carbapenems | Penicillins Cephalosporins Carbapenems | Penicillins, cephalosporins carbapenems, (monobactam) | Penicillins Carbapenems |
Inhibitors | Boronic acid Avibactam Relebactam Vaborbactam | EDTA DPA 2-mercaptopropionic acid | EDTA DPA | EDTA DPA | Avibactam |
Plasmids | ColE1 IncA/C IncF IncI2 IncR IncX | ColE10 IncA/C2 IncB/O/K/Z IncC IncFIA IncFIB IncFIC IncFII IncFIII IncHI1 IncHI2 IncHI3 IncI1 IncN IncN1 IncN2 IncL/M IncQ1 IncP IncR IncT IncX1 IncX3 IncX4 IncY IncY1 | IncA/C or IncN group | IncL/M | ColKP3 IncC IncFIA(HI1) IncFII IncHI1B IncL/M IncR IncX3 |
Main Enterobacterales producers | K. pneumoniae (ST258, ST512, ST11) E. coli | K. pneumoniae (ST11, ST14, ST15, ST147 E. coli (ST167, ST410, ST617) E. cloacae complex | Enterobacter spp.
E. coli | Enterobacter spp. | K. pneumoniae E. coli E. cloacae complex |
Antimicrobial Agent | Type of Carbapenemase | ||||
---|---|---|---|---|---|
KPC | OXA-48-like | NDM | VIM | IMP | |
Ceftolozane/tazobactam | + | +/− | − | − | − |
Ceftazidime/avibactam | + | + | − | − | − |
Cefiderocol | + | + | + | + | + |
Meropenem/vaborbactam | + | − | − | − | − |
Imipenem/relabactam | + | − | − | − | − |
Plazomicin | + | + | + | + | + |
Eravacycline | + | + | + | + | + |
Omadacycline | − | NA | + | + | + |
Cefepime/zidebactam | + | + | + | + | + |
Aztreonam/avibactam | + | + |
Ambler | Bush | Carbapenemases | Localization | Variants |
---|---|---|---|---|
A | 2f | KPC | Plasmidic | >150 variants |
GES | Plasmidic | >20 variants | ||
IMI | Chromosomic/ plasmidic | ~ 50 variants | ||
NMC-A | Chromosomic | - | ||
SME | Chromosomic | 6 variants | ||
SFC | Chromosomic | - | ||
2b, 2be, 2br | SHV | Chromosomic | 189 variants | |
TEM | Plasmidic | 243 variants | ||
Pen-A | Chromosomic | >40 variants | ||
B | 3a | NDM | Chromosomic/ plasmidic | 24 variants |
VIM | Chromosomic/ plasmidic | >40 variants 3 major clusters | ||
IMP | Chromosomic/ plasmidic | 88 variants 3 major clusters | ||
- | SPM | Plasmidic | - | |
GIM | Chromosomic/ Plasmidic | - | ||
SIM | Chromosomic/ plasmidic | - | ||
DIM | Chromosomic/ plasmidic | - | ||
KHM | 2 variants | |||
TMB | 2 variants | |||
D | 2d, 2de, 2df | OXA-48-like | Plasmidic | >520 variants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvisi, G.; Curtoni, A.; Fonnesu, R.; Piazza, A.; Signoretto, C.; Piccinini, G.; Sassera, D.; Gaibani, P. Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health. Antibiotics 2025, 14, 141. https://doi.org/10.3390/antibiotics14020141
Alvisi G, Curtoni A, Fonnesu R, Piazza A, Signoretto C, Piccinini G, Sassera D, Gaibani P. Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health. Antibiotics. 2025; 14(2):141. https://doi.org/10.3390/antibiotics14020141
Chicago/Turabian StyleAlvisi, Gualtiero, Antonio Curtoni, Rossella Fonnesu, Aurora Piazza, Caterina Signoretto, Giorgia Piccinini, Davide Sassera, and Paolo Gaibani. 2025. "Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health" Antibiotics 14, no. 2: 141. https://doi.org/10.3390/antibiotics14020141
APA StyleAlvisi, G., Curtoni, A., Fonnesu, R., Piazza, A., Signoretto, C., Piccinini, G., Sassera, D., & Gaibani, P. (2025). Epidemiology and Genetic Traits of Carbapenemase-Producing Enterobacterales: A Global Threat to Human Health. Antibiotics, 14(2), 141. https://doi.org/10.3390/antibiotics14020141