An Investigation into the Prevalence of Clostridioides difficile in Irish Pig Abattoirs and Pork Meat Products as a Potential Source of Human Infection
Abstract
:1. Introduction
2. Results
2.1. Detection of C. difficile in Pig Abattoirs and Meat Products
2.1.1. Detection of C. difficile in Meat Product Samples
2.1.2. C. difficile Recovery from Abattoir Samples
2.2. Antimicrobial Susceptibility of the C. difficile Isolates
3. Discussion
4. Materials and Methods
4.1. Collection of the Meat Products for C. difficile Surveillance
4.2. Collection of the Abattoir Samples
4.3. Culture of C. difficile
4.4. Ribotyping
4.5. Antimicrobial Susceptibility Testing
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Martínez-Meléndez, A.; Morfin-Otero, R.; Villarreal-Treviño, L.; Baines, S.D.; Camacho-Ortíz, A.; Garza-González, E. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes. J. Microbiol. Methods 2020, 175, 105974. [Google Scholar] [CrossRef]
- Collins, D.A.; Selvey, L.A.; Celenza, A.; Riley, T.V. Community-associated Clostridium difficile infection in emergency department patients in Western Australia. Anaerobe 2017, 48, 121–125. [Google Scholar] [CrossRef]
- HPSC. Clostridioides difficile Infection in Ireland 2021; HPSC: Dublin, Ireland, 2021.
- Knight, D.R.; Riley, T.V. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front. Public Health 2019, 7, 164. [Google Scholar] [CrossRef] [PubMed]
- Janezic, S.; Zidaric, V.; Pardon, B.; Indra, A.; Kokotovic, B.; Blanco, J.L.; Seyboldt, C.; Diaz, C.R.; Poxton, I.R.; Perreten, V.; et al. International Clostridium difficile animal strain collection and large diversity of animal associated strains. BMC Microbiol. 2014, 14, 173. [Google Scholar] [CrossRef] [PubMed]
- Stein, K.; Egan, S.; Lynch, H.; Harmanus, C.; Kyne, L.; Herra, C.; McDermott, S.; Kuijper, E.; Fitzpatrick, F.; FitzGerald, S.; et al. PCR-ribotype distribution of Clostridium difficile in Irish pigs. Anaerobe 2017, 48, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Avesani, V.; Van Broeck, J.; Taminiau, B.; Delmée, M.; Daube, G. Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at the slaughterhouse in Belgium. Int. J. Food Microbiol. 2013, 166, 256–262. [Google Scholar] [CrossRef]
- Hawken, P.; Weese, J.S.; Friendship, R.; Warriner, K. Longitudinal study of Clostridium difficile and Methicillin-resistant Staphylococcus aureus associated with pigs from weaning through to the end of processing. J. Food Prot. 2013, 76, 624–630. [Google Scholar] [CrossRef]
- Weese, J.S. Clostridium (Clostridioides) difficile in animals. J. Vet. Diagn. Investig. 2020, 32, 213–221. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Van Broeck, J.; Delmée, M.; Daube, G. Clostridium difficile in Food and Animals: A Comprehensive Review. Adv. Exp. Med. Biol. 2016, 932, 65–92. [Google Scholar] [CrossRef]
- Marcos, P.; Whyte, P.; Rogers, T.; McElroy, M.; Fanning, S.; Frias, J.; Bolton, D. The prevalence of Clostridioides difficile on farms, in abattoirs and in retail foods in Ireland. Food Microbiol. 2021, 98, 103781. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, C.; Hakimi, D.-E.; Vanleyssem, R.; Taminiau, B.; Van Broeck, J.; Delmée, M.; Korsak, N.; Daube, G. Clostridium difficile in beef cattle farms, farmers and their environment: Assessing the spread of the bacterium. Vet. Microbiol. 2017, 210, 183–187. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Van Broeck, J.; Avesani, V.; Delmée, M.; Daube, G. Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 2012, 18, 621–625. [Google Scholar] [CrossRef]
- Samir, A.; Abdel-Moein, K.A.; Zaher, H.M. Molecular Detection of Toxigenic Clostridioides difficile among Diarrheic Dogs and Cats: A Mounting Public Health Concern. Vet. Sci. 2021, 8, 88. [Google Scholar] [CrossRef] [PubMed]
- Hensgens, M.P.; Keessen, E.C.; Squire, M.M.; Riley, T.V.; Koene, M.G.; de Boer, E.; Lipman, L.J.; Kuijper, E.J. Clostridium difficile infection in the community: A zoonotic disease? Clin. Microbiol. Infect. 2012, 18, 635–645. [Google Scholar] [CrossRef] [PubMed]
- Herbert, R.; Hatcher, J.; Jauneikaite, E.; Gharbi, M.; d’Arc, S.; Obaray, N.; Rickards, T.; Rebec, M.; Blandy, O.; Hope, R.; et al. Two-year analysis of Clostridium difficile ribotypes associated with increased severity. J. Hosp. Infect. 2019, 103, 388–394. [Google Scholar] [CrossRef]
- Marcos, P.; Doyle, A.; Whyte, P.; Rogers, T.R.; McElroy, M.; Fanning, S.; Frias, J.; Bolton, D. Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance. Microorganisms 2023, 11, 1296. [Google Scholar] [CrossRef]
- McElroy, M.C.; Hill, M.; Moloney, G.; Mac Aogain, M.; McGettrick, S.; O’Doherty, A.; Rogers, T.R. Typhlocolitis associated with Clostridium difficile ribotypes 078 and 110 in neonatal piglets from a commercial Irish pig herd. Ir. Vet. J. 2015, 69, 10. [Google Scholar] [CrossRef] [PubMed]
- Keessen, E.C.; Harmanus, C.; Dohmen, W.; Lipman, L.J. Clostridium difficile infection associated with pig farms. Emerg. Infect. Dis. 2013, 19, 1032–1034. [Google Scholar] [CrossRef]
- Knight, D.R.; Squire, M.M.; Collins, D.A.; Riley, T.V. Genome Analysis of Clostridium difficile PCR Ribotype 014 Lineage in Australian Pigs and Humans Reveals a Diverse Genetic Repertoire and Signatures of Long-Range Interspecies Transmission. Front. Microbiol. 2016, 7, 2138. [Google Scholar] [CrossRef] [PubMed]
- Moloney, G.; Eyre, D.W.; Mac Aogain, M.; McElroy, M.C.; Vaughan, A.; Peto, T.E.A.; Crook, D.W.; Rogers, T.R. Human and Porcine Transmission of Clostridioides difficile Ribotype 078, Europe. Emerg. Infect. Dis. 2021, 27, 2294–2300. [Google Scholar] [CrossRef] [PubMed]
- Squire, M.M.; Riley, T.V. Clostridium difficile infection in humans and piglets: A ’One Health’ opportunity. In One Health: The Human-Animal-Environment Interfaces in Emerging Infectious Diseases; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 365, pp. 299–314. [Google Scholar] [CrossRef]
- Debast, S.B.; Bauer, M.P.; Kuijper, E.J. European Society of Clinical Microbiology and Infectious Diseases: Update of the treatment guidance document for Clostridium difficile infection. Clin. Microbiol. Infect. 2014, 20 (Suppl. 2), 1–26. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Pérez, S.; Blanco, J.L.; Astorga, R.J.; Gómez-Laguna, J.; Barrero-Domínguez, B.; Galán-Relaño, A.; Harmanus, C.; Kuijper, E.; García, M.E. Distribution and tracking of Clostridium difficile and Clostridium perfringens in a free-range pig abattoir and processing plant. Food Res. Int. 2018, 113, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Kachrimanidou, M.; Tzika, E.; Filioussis, G. Clostridioides (Clostridium) difficile in Food-Producing Animals, Horses and Household Pets: A Comprehensive Review. Microorganisms 2019, 7, 667. [Google Scholar] [CrossRef] [PubMed]
- Uzal, F.A.; Navarro, M.A.; Asin, J.; Boix, O.; Ballarà-Rodriguez, I.; Gibert, X. Clostridial diarrheas in piglets: A review. Vet. Microbiol. 2023, 280, 109691. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, L.; Calderon Diaz, J.A.; Rodrigues da Costa, M.; Oakes, S.; Leonard, F.C.; Manzanilla, E.G. Risk Factors for Antimicrobial Use on Irish Pig Farms. Animals 2021, 11, 2828. [Google Scholar] [CrossRef]
- O’Neill, L.; Rodrigues da Costa, M.; Leonard, F.C.; Gibbons, J.; Calderon Diaz, J.A.; McCutcheon, G.; Manzanilla, E.G. Quantification, description and international comparison of antimicrobial use on Irish pig farms. Porc. Health Manag. 2020, 6, 30. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.M.; Crenshaw, J.D.; Polo, J. The biological stress of early weaned piglets. J. Anim. Sci. Biotechnol. 2013, 4, 19. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Wakeford, T.; Reid-Smith, R.; Rousseau, J.; Friendship, R. Longitudinal investigation of Clostridium difficile shedding in piglets. Anaerobe 2010, 16, 501–504. [Google Scholar] [CrossRef] [PubMed]
- Susick, E.K.; Putnam, M.; Bermudez, D.M.; Thakur, S. Longitudinal study comparing the dynamics of Clostridium difficile in conventional and antimicrobial free pigs at farm and slaughter. Vet. Microbiol. 2012, 157, 172–178. [Google Scholar] [CrossRef]
- Knight, D.R.; Squire, M.M.; Riley, T.V. Laboratory detection of Clostridium difficile in piglets in Australia. J. Clin. Microbiol. 2014, 52, 3856–3862. [Google Scholar] [CrossRef] [PubMed]
- Goldová, J.; Malinová, A.; Indra, A.; Vítek, L.; Branny, P.; Jirásková, A. Clostridium difficile in piglets in the Czech Republic. Folia Microbiol. 2012, 57, 159–161. [Google Scholar] [CrossRef]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic Stewardship in Food-producing Animals: Challenges, Progress, and Opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef] [PubMed]
- WHO. Critically Important Antimicrobials for Human Medicine, 6th ed; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 30 January 2024).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020; Available online: https://www.nih.org.pk/wp-content/uploads/2021/02/CLSI-2020.pdf (accessed on 30 January 2024).
- Vernon, V.J.; Wilcox, M.H.; Jane, F. Antimicrobial resistance progression in the United Kingdom: A temporal comparison of Clostridioides difficile antimicrobial susceptibilities. Anaerobe 2021, 70, 102385. [Google Scholar]
- Bouttier, S.; Barc, M.-C.; Felix, B.; Lambert, S.; Collignon, A.; Barbut, F. Clostridium difficile in ground meat, France. Emerg. Infect. Dis. 2010, 16, 733–735. [Google Scholar] [CrossRef]
- de Boer, E.; Zwartkruis-Nahuis, A.; Heuvelink, A.E.; Harmanus, C.; Kuijper, E.J. Prevalence of Clostridium difficile in retailed meat in The Netherlands. Int. J. Food Microbiol. 2011, 144, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Tkalec, V.; Jamnikar-Ciglenecki, U.; Rupnik, M.; Vadnjal, S.; Zelenik, K.; Biasizzo, M. Clostridioides difficile in national food surveillance, Slovenia, 2015 to 2017. Eurosurveillance 2020, 25, 32–41. [Google Scholar] [CrossRef]
- Licciardi, C.; Primavilla, S.; Roila, R.; Lupattelli, A.; Farneti, S.; Blasi, G.; Petruzzelli, A.; Drigo, I.; Di Raimo Marrocchi, E. Prevalence, Molecular Characterization and Antimicrobial Susceptibility of Clostridioides difficile Isolated from Pig Carcasses and Pork Products in Central Italy. Int. J. Environ. Res. Public Health 2021, 18, 11368. [Google Scholar] [CrossRef]
- Rodriguez, C.; Taminiau, B.; Avesani, V.; Van Broeck, J.; Delmée, M.; Daube, G. Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains isolated from retail meat and humans in Belgium. Food Microbiol. 2014, 42, 166–171. [Google Scholar] [CrossRef]
- Tan, D.T.; Mulvey, M.R.; Zhanel, G.G.; Bay, D.C.; Reid-Smith, R.J.; Janecko, N.; Golding, G.R. A Clostridioides difficile surveillance study of Canadian retail meat samples from 2016–2018. Anaerobe 2022, 74, 102551. [Google Scholar] [CrossRef] [PubMed]
- Weese, J.S.; Avery, B.P.; Rousseau, J.; Reid-Smith, R.J. Detection and enumeration of Clostridium difficile spores in retail beef and pork. Appl. Environ. Microbiol. 2009, 75, 5009–5011. [Google Scholar] [CrossRef]
- Songer, J.G.; Trinh, H.T.; Killgore, G.E.; Thompson, A.D.; McDonald, L.C.; Limbago, B.M. Clostridium difficile in retail meat products, USA, 2007. Emerg. Infect. Dis. 2009, 15, 819–821. [Google Scholar] [CrossRef] [PubMed]
- Rani, Z.T.; Mhlongo, L.C.; Hugo, A. Microbial profiles of meat at different stages of the distribution chain from the abattoir to retail outlets. Int. J. Environ. Res. Public Health 2023, 20, 1986. [Google Scholar] [CrossRef] [PubMed]
- Wheatley, P.; Giotis, E.S.; McKevitt, A.I. Effects of slaughtering operations on carcass contamination in an Irish pork production plant. Ir. Vet. J. 2014, 67, 1. [Google Scholar] [CrossRef] [PubMed]
- EU. Commission Delegated Regulation (EU) 2021/1374 of 12 April 2021 Amending Annex III to Regulation (EC) No 853/2004 of the European Parliament and of the Council on Specific Hygiene Requirements for Food of Animal Origin (Text with EEA Rele-Vance). Off. J. Eur. Union 2021, 297, 1–15. [Google Scholar]
- Lawley, T.D.; Croucher, N.J.; Yu, L.; Clare, S.; Sebaihia, M.; Goulding, D.; Pickard, D.J.; Parkhill, J.; Choudhary, J.; Dougan, G. Proteomic and Genomic Characterization of Highly Infectious Clostridium difficile 630 Spores. J. Bacteriol. 2009, 191, 5377–5386. [Google Scholar] [CrossRef]
- Truong, C.; Schroeder, L.F.; Gaur, R.; Anikst, V.E.; Komo, I.; Watters, C.; McCalley, E.; Kulik, C.; Pickham, D.; Lee, N.J.; et al. Clostridium difficile rates in asymptomatic and symptomatic hospitalized patients using nucleic acid testing. Diagn. Microbiol. Infect. Dis. 2017, 87, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Le Monnier, A.; Candela, T.; Mizrahi, A.; Bille, E.; Bourgeois-Nicolaos, N.; Cattoir, V.; Farfour, E.; Grall, I.; Lecointe, D.; Limelette, A.; et al. One-day prevalence of asymptomatic carriage of toxigenic and non-toxigenic Clostridioides difficile in 10 French hospitals. J. Hosp. Infect. 2022, 129, 65–74. [Google Scholar] [CrossRef]
- Hopman, N.; Keessen, E.; Harmanus, C.; Sanders, I.; Van Leengoed, L.; Kuijper, E.; Lipman, L. Acquisition of Clostridium difficile by piglets. Vet. Microbiol. 2011, 149, 186–192. [Google Scholar] [CrossRef]
- Lawley, T.D.; Clare, S.; Deakin, L.J.; Goulding, D.; Yen, J.L.; Raisen, C.; Brandt, C.; Lovell, J.; Cooke, F.; Clark, T.G.; et al. Use of purified Clostridium difficile spores to facilitate evaluation of health care disinfection regimens. Appl. Environ. Microbiol. 2010, 76, 6895–6900. [Google Scholar] [CrossRef] [PubMed]
- Sjöberg, M.; Eriksson, M.; Andersson, J.; Norén, T. Transmission of Clostridium difficile spores in isolation room environments and through hospital beds. APMIS 2014, 122, 800–803. [Google Scholar] [CrossRef] [PubMed]
- Rupnik, M.; Viprey, V.; Janezic, S.; Tkalec, V.; Davis, G.; Sente, B.; Devos, N.; Muller, B.H.; Santiago-Allexant, E.; Cleuziat, P.; et al. Distribution of Clostridioides difficile ribotypes and sequence types across humans, animals and food in 13 European countries. Emerg. Microbes Infect. 2024, 13, 2427804. [Google Scholar] [CrossRef] [PubMed]
- Keel, K.; Brazier, J.S.; Post, K.W.; Weese, S.; Songer, J.G. Prevalence of PCR ribotypes among Clostridium difficile isolates from pigs, calves, and other species. J. Clin. Microbiol. 2007, 45, 1963–1964. [Google Scholar] [CrossRef] [PubMed]
- Krutova, M.; Zouharova, M.; Matejkova, J.; Tkadlec, J.; Krejčí, J.; Faldyna, M.; Nyc, O.; Bernardy, J. The emergence of Clostridium difficile PCR ribotype 078 in piglets in the Czech Republic clusters with Clostridium difficile PCR ribotype 078 isolates from Germany, Japan and Taiwan. Int. J. Med. Microbiol. 2018, 308, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Pirš, T.; Avberšek, J.; Zdovc, I.; Krt, B.; Andlovic, A.; Lejko-Zupanc, T.; Rupnik, M.; Ocepek, M. Antimicrobial susceptibility of animal and human isolates of Clostridium difficile by broth microdilution. J. Med. Microbiol. 2013, 62, 1478–1485. [Google Scholar] [CrossRef]
- Greentree, D.H.; Rice, L.B.; Donskey, C.J. Houston, We Have a Problem: Reports of Clostridioides difficile Isolates with Reduced Vancomycin Susceptibility. Clin. Infect. Dis. 2022, 75, 1661–1664. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.; Vernon, J.; Pilling, S.; Morris, K.; Nicholson, S.; Shearman, S.; Longshaw, C.; Wilcox, M.H.; Pan-European Longitudinal Surveillance of Antibiotic Resistance among Prevalent Clostridium difficile Ribotypes Study Group. The ClosER study: Results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011–2014. Clin. Microbiol. Infect. 2018, 24, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Knight, D.R.; Kullin, B.; Androga, G.O.; Barbut, F.; Eckert, C.; Johnson, S.; Spigaglia, P.; Tateda, K.; Tsai, P.-J.; Riley, T.V. Evolutionary and Genomic Insights into Clostridioides difficile Sequence Type 11: A Diverse Zoonotic and Antimicrobial-Resistant Lineage of Global One Health Importance. mBio 2019, 10, e00446-19. [Google Scholar] [CrossRef]
- Blagojevic, B.; Antic, D. Assessment of potential contribution of official meat inspection and abattoir process hygiene to biological safety assurance of final beef and pork carcasses. Food Control 2014, 36, 174–182. [Google Scholar] [CrossRef]
- Bolton, D.; Sheridan, J.J. HACCP for Irish Beef, Pork and Lamb Slaughter; TEAGASC, Food Research Centre: Dublin, Ireland, 2002. [Google Scholar]
- Testore, G.P.; Pantosti, A.; Cerquetti, M.; Babudieri, S.; Panichi, G.; Mastrantonio, G.P. Evidence for cross-infection in an outbreak of Clostridium difficile-associated diarrhoea in a surgical unit. J. Med. Microbiol. 1988, 26, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-C.; Chen, C.-M.; Kuo, C.-J.; Lee, J.-J.; Chen, P.-C.; Chang, Y.-C.; Chen, T.-H. Prevalence and molecular characterization of Clostridium difficile isolates from a pig slaughterhouse, pork, and humans in Taiwan. Int. J. Food Microbiol. 2017, 242, 37–44. [Google Scholar] [CrossRef]
- Keessen, E.C.; Donswijk, C.J.; Hol, S.P.; Hermanus, C.; Kuijper, E.J.; Lipman, L.J. Aerial dissemination of Clostridium difficile on a pig farm and its environment. Environ. Res. 2011, 111, 1027–1032. [Google Scholar] [CrossRef] [PubMed]
- DAFM. National Pig Identification and Tracing System (NPITS). Available online: https://www.gov.ie/en/publication/51fca-national-pig-identification-and-tracing-system-npits/# (accessed on 1 December 2023).
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on microbiological criteria for foodstuffs. Off. J. Eur. Union 2005, 338, 1–26. [Google Scholar]
- ECDC (European Centre for Disease Prevention and Control). Laboratory Procedures for Diagnosis and Typing of Human Clostridium difficile Infection; ECDC: Stockholm, Sweden, 2018.
- Bidet, P.; Barbut, F.; Lalande, V.; Burghoffer, B.; Petit, J.-C. Development of a new PCR-ribotyping method for Clostridium difficile based on ribosomal RNA gene sequencing. FEMS Microbiol. Lett. 1999, 175, 261–266. [Google Scholar] [CrossRef]
- Erikstrup, L.T.; Danielsen, T.K.; Hall, V.; Olsen, K.E.; Kristensen, B.; Kahlmeter, G.; Fuursted, K.; Justesen, U.S. Antimicrobial susceptibility testing of Clostridium difficile using EUCAST epidemiological cut-off values and disk diffusion correlates. Clin. Microbiol. Infect. 2012, 18, E266–E272. [Google Scholar] [CrossRef] [PubMed]
- Mitka, M. Antibiotic breakpoints. JAMA 2012, 307, 1015. [Google Scholar] [CrossRef]
Abattoir Code | Positive Swabs (Total Samples) | PCR Ribotypes Obtained (n) | |
---|---|---|---|
Lairage | Carcase | ||
Abattoir 1 | 3 (10) | 0 (50) | 078 (2) |
413 | |||
Abattoir 2 | 3 (10) | 0 (50) | 078 |
066 | |||
015 | |||
Abattoir 3 | 4 (10) | 1 (50) | 002 |
003 | |||
015 (2) |
Isolate | RT | Antimicrobial Susceptibility (S), Intermediate Resistance (I) or Resistance (R) in µg/mL | ||||||
---|---|---|---|---|---|---|---|---|
VAN a | MRD a | FID a | RI c | TET b | CM b | CI b | ||
Lairage | 078 | S (0.38) | S (0.064) | S (<1) | S (<0.002) | R (8) | S (1.5) | R (>32) |
078 | S (0.38) | S (0.125) | S (<1) | S (<0.002) | I (6) | S (0.25) | R (>32) | |
002 | S (0.38) | S (0.125) | S (<1) | S (<0.002) | S (0.047) | S (1.0) | R (>32) | |
003 | S (0.38) | S (0.125) | S (<1) | S (<0.002) | S (0.032) | S (0.38) | R (>32) | |
078 | S (0.38) | S (0.094) | S (<1) | S (<0.002) | I (4) | S (1.5) | R (>32) | |
015 | S (0.38) | S (0.125) | S (<1) | S (<0.002) | S (0.023) | S (0.064) | R (>32) | |
413 | S (0.38) | S (0.19) | S (<1) | S (<0.002) | S (0.047) | S (1.5) | R (>32) | |
015 | S (0.38) | S (0.19) | S (<1) | S (<0.002) | S (0.047) | S (0.75) | R (>32) | |
066 | S (0.38) | S (0.125) | S (<1) | S (<0.002) | S (0.023) | S (0.38) | R (>32) | |
015 | S (0.38) | S (0.19) | S (<1) | S (<0.002) | S (0.032) | S (0.38) | R (>32) | |
Carcase | 078 | S (0.38) | S (0.19) | S (<1) | S (<0.002) | I (6) | S (1.5) | R (>32) |
Type of Meat | Product | Number |
---|---|---|
Raw meat | Pork belly | 25 |
Pork fillet | 25 | |
Back bacon joint | 25 | |
Pork chops | 25 | |
Sausages | 15 | |
Bacon | 15 | |
Medallions | 10 | |
Pork mince | 5 | |
Cooked meat | Cooked ham | 25 |
Pulled pork | 5 | |
Total | 180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doyle, A.; Rogers, T.R.; Bolton, D.; Burgess, C.M.; Whyte, P.; Frias, J.; Fanning, S.; McElroy, M.C. An Investigation into the Prevalence of Clostridioides difficile in Irish Pig Abattoirs and Pork Meat Products as a Potential Source of Human Infection. Antibiotics 2025, 14, 151. https://doi.org/10.3390/antibiotics14020151
Doyle A, Rogers TR, Bolton D, Burgess CM, Whyte P, Frias J, Fanning S, McElroy MC. An Investigation into the Prevalence of Clostridioides difficile in Irish Pig Abattoirs and Pork Meat Products as a Potential Source of Human Infection. Antibiotics. 2025; 14(2):151. https://doi.org/10.3390/antibiotics14020151
Chicago/Turabian StyleDoyle, Aoife, Thomas R. Rogers, Declan Bolton, Catherine M. Burgess, Paul Whyte, Jesus Frias, Séamus Fanning, and Máire C. McElroy. 2025. "An Investigation into the Prevalence of Clostridioides difficile in Irish Pig Abattoirs and Pork Meat Products as a Potential Source of Human Infection" Antibiotics 14, no. 2: 151. https://doi.org/10.3390/antibiotics14020151
APA StyleDoyle, A., Rogers, T. R., Bolton, D., Burgess, C. M., Whyte, P., Frias, J., Fanning, S., & McElroy, M. C. (2025). An Investigation into the Prevalence of Clostridioides difficile in Irish Pig Abattoirs and Pork Meat Products as a Potential Source of Human Infection. Antibiotics, 14(2), 151. https://doi.org/10.3390/antibiotics14020151