A Precision Medicine Model for Targeted Antibiotic Therapy in Urinary Tract Infections: A Valuable Tool to Reduce Hospitalization Stay and the Time to Switch to Oral Treatment
Abstract
:1. Introduction
2. Results
2.1. Empirical Antibiotic Treatment
2.2. Clinical and Microbiological Success Rates
2.3. Need for Re-Evaluation and Change of Antibiotic Treatment During the Hospital Stay
2.4. Switch to Oral Treatment
2.5. Length of Hospitalization
3. Discussion
3.1. Major Findings
3.2. Results in Comparison with Other Studies
3.3. Methodological Aspects
3.4. Strengths and Limitations of the Present Study
4. Materials and Methods
4.1. Study Schedule and Patient Population
4.2. Clinical Presentations and Diagnostic Pathways at the Time of Enrollment
4.3. Choice of Empirical Antibiotic Treatment, Randomization, and Assignment to Study Groups
4.4. Development of the Precision Model Used in the Intervention Group
4.5. Outcome Measures
4.6. Microbiological and Laboratory Examinations
4.7. Statistical Analysis and Ethical Considerations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UTIs | Urinary Tract Infections |
uAPN | acute uncomplicated pyelonephritis |
cUTIs | Complicated Urinary Tract Infections |
EAU | European Association of Urology |
AMR | Antimicrobial Resistance |
WHO | World Health Organization |
ESBL | Extended-Spectrum Beta-Lactamase |
AI | Artificial Intelligence |
CRP | C-Reactive Protein |
References
- Nguyen, H.Q.; Nguyen, N.T.Q.; Hughes, C.M.; O’Neill, C. Trends and impact of antimicrobial resistance on older inpatients with urinary tract infections (UTIs): A national retrospective observational study. PLoS ONE 2019, 14, e0223409. [Google Scholar] [CrossRef] [PubMed]
- EAU. European Association of Urology Guidelines on Urological Infections, Update 2023. Available online: http://uroweb.org/guideline/urological-infections/ (accessed on 26 July 2024).
- Kranz, J.; Bartoletti, R.; Bruyère, F.; Cai, T.; Geerlings, S.; Köves, B.; Schubert, S.; Pilatz, A.; Veeratterapillay, R.; Wagenlehner, F.M.E.; et al. European Association of Urology Guidelines on Urological Infections: Summary of the 2024 Guidelines. Eur. Urol. 2024, 86, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Aldea, M.; Friboulet, L.; Apcher, S.; Jaulin, F.; Mosele, F.; Sourisseau, T.; Soria, J.C.; Nikolaev, S.; André, F. Precision medicine in the era of multi-omics: Can the data tsunami guide rational treatment decision? ESMO Open 2023, 8, 101642. [Google Scholar] [CrossRef] [PubMed]
- Isali, I.; Wong, T.R.; Batur, A.F.; Wu, C.W.; Schumacher, F.R.; Pope, R.; Hijaz, A.; Sheyn, D. Recurrent urinary tract infection genetic risk: A systematic review and gene network analysis. Int. Urogynecol. J. 2023, 35, 259–271. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Tamanini, I.; Collini, L.; Brugnolli, A.; Migno, S.; Mereu, L.; Tateo, S.; Pilatz, A.; Rizzo, M.; Liguori, G.; et al. Management of Recurrent Cystitis in Women: When Prompt Identification of Risk Factors Might Make a Difference. Eur. Urol. Focus. 2022, 8, 1476–1482. [Google Scholar] [CrossRef]
- Watkins, R.R. Antibiotic stewardship in the era of precision medicine. JAC Antimicrob. Resist. 2022, 4, dlac066. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, B.; Fang, D.; Lv, Q.; Wang, Z.; Liu, Y. Targeted Therapeutic Strategies in the Battle Against Pathogenic Bacteria. Front. Pharmacol. 2021, 12, 673239. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- World Health Organization. Manuale Antibiotici AWaRe (Access, Watch, Reserve); WHO: Geneva, Switzerland, 2022. Available online: https://www.aifa.gov.it/documents/20142/1811463/Manuale_antibiotici_AWaRe.pdf (accessed on 3 August 2023).
- Bolton, W.J.; Wilson, R.; Gilchrist, M.; Georgiou, P.; Holmes, A.; Rawson, T.M. Personalising intravenous to oral antibiotic switch decision making through fair interpretable machine learning. Nat. Commun. 2024, 15, 506. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Davar, K.; Clark, D.; Centor, R.M.; Dominguez, F.; Ghanem, B.; Lee, R.; Lee, T.C.; McDonald, E.G.; Phillips, M.C.; Sendi, P.; et al. Can the Future of ID Escape the Inertial Dogma of Its Past? The Exemplars of Shorter Is Better and Oral Is the New IV. Open Forum Infect. Dis. 2022, 10, ofac706. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Spellberg, B.; Chambers, H.F.; Musher, D.M.; Walsh, T.L.; Bayer, A.S. Evaluation of a Paradigm Shift from Intravenous Antibiotics to Oral Step-Down Therapy for the Treatment of Infective Endocarditis: A Narrative Review. JAMA Intern. Med. 2020, 180, 769–777. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Scarborough, M.; Li, H.K.; Rombach, I.; Zambellas, R.; Walker, A.S.; McNally, M.; Atkins, B.; Kümin, M.; Lipsky, B.A.; Hughes, H.; et al. Oral versus intravenous antibiotics for bone and joint infections: The OVIVA non-inferiority RCT. Health Technol. Assess. 2019, 23, 1–92. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gamble, K.C.; Rose, D.T.; Sapozhnikov, J. Intravenous to oral antibiotics versus intravenous antibiotics: A step-up or a step-down for extended spectrum β-lactamase (ESBL)-producing urinary tract infections without concomitant bacteraemia? Int. J. Antimicrob. Agents 2022, 59, 106541. [Google Scholar] [CrossRef] [PubMed]
- Gohil, S.K.; Septimus, E.; Kleinman, K.; Varma, N.; Avery, T.R.; Heim, L.; Rahm, R.; Cooper, W.S.; Cooper, M.; McLean, L.; et al. Stewardship Prompts to Improve Antibiotic Selection for Urinary Tract Infection: The INSPIRE Randomized Clinical Trial. JAMA 2024, 331, 2018–2028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pizzuti, M.; Tsai, Y.V.; Winders, H.R.; Bookstaver, P.B.; Al-Hasan, M.N. Application of Precision Medicine Concepts in Ambulatory Antibiotic Management of Acute Pyelonephritis. Pharmacy 2023, 11, 169. [Google Scholar] [CrossRef]
- Cai, T.; Anceschi, U.; Prata, F.; Collini, L.; Brugnolli, A.; Migno, S.; Rizzo, M.; Liguori, G.; Gallelli, L.; Wagenlehner, F.M.E.; et al. Artificial Intelligence Can Guide Antibiotic Choice in Recurrent UTIs and Become an Important Aid to Improve Antimicrobial Stewardship. Antibiotics 2023, 12, 375. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Overly, S.; Hayes, S.; Mehta, J.; Hamilton, K.; Peterson, D. Evaluating Patient-Specific Antibiograms. Open Forum Infect. Dis. 2017, 4 (Suppl. S1), S258. [Google Scholar] [CrossRef]
- Stone, T.J.; DeWitt, M.; Johnson, J.W.; Beardsley, J.R.; Munawar, I.; Palavecino, E.; Luther, V.P.; Ohl, C.A.; Williamson, J.C. Analysis of infections among patients with historical culture positive for extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli or Klebsiella pneumoniae: Is ESBL-targeted therapy always needed? Antimicrob. Steward. Healthc. Epidemiol. 2023, 3, e47. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Stone, K.; Zwiggelaar, R.; Jones, P.; Mac Parthaláin, N. A systematic review of the prediction of hospital length of stay: Towards a unified framework. PLoS Digit. Health 2022, 1, e0000017. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cai, T.; Verze, P.; Arcaniolo, D.; Pandolfo, S.D.; Smarrazzo, F.; Manfredi, C.; Tascini, C.; Caciagli, P.; Lanzafame, M.; De Sio, M.; et al. Antibiotic Resistance Patterns Among Uropathogens in Female Outpatients Affected by Uncomplicated Cystitis: Focus on Fosfomycin Trometamol. Int. J. Antimicrob. Agents 2023, 62, 106974. [Google Scholar] [CrossRef] [PubMed]
- Neamatullah, I.; Douglass, M.M.; Lehman, L.W.; Reisner, A.; Villarroel, M.; Long, W.J.; Szolovits, P.; Moody, G.B.; Mark, R.G.; Clifford, G.D. Automated de-identification of free-text medical records. BMC Med. Inform. Decis. Mak. 2008, 8, 32. [Google Scholar] [CrossRef]
- Wawrysiuk, S.; Naber, K.; Rechberger, T.; Miotla, P. Prevention and treatment of uncomplicated lower urinary tract infections in the era of increasing antimicrobial resistance-non-antibiotic approaches: A systemic review. Arch. Gynecol. Obstet. 2019, 300, 821–828. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Study Group | Control Group | p | |
---|---|---|---|
Mean (SD* or %) | Mean (SD* or %) | ||
Patients (n°) | 77 | 80 | |
Age | 65.8 ± 8.1 | 67.1 ± 9.0 | 0.34 |
Sex | |||
Male | 47 (61.1) | 49 (61.3) | 0.99 |
Female | 30 (38.9) | 31 (38.7) | |
Comorbidities | 0.52 | ||
Hypertension or Cardiovascular diseases | 43 (55.8) | 49 (61.2) | |
Diabetes mellitus | 12 (15.6) | 15 (18.7) | |
No | 22 (28.6) | 16 (20.1) | |
Clinical presentation | 0.85 | ||
uAPN | 17 (22.1) | 19 (23.7) | |
cUTI | 60 (77.9) | 61 (76.3) | |
fever and symptoms | 77 (100) | 80 (100) | - |
symptoms, only | - | - | |
Inflammation markers | |||
C-reactive Protein (mg/L) | 156.8 ± 38.3 | 163.7 ± 40.7 | 0.27 |
Procalcitonin | 3.5 ± 2.4 | 4.3 ± 3.9 | 0.12 |
White blood cells (×103/mm3) | 17.291 ± 2.127 | 16.573 ± 3.740 | 0.14 |
Isolated strain (105 CFU/mL) | 0.99 | ||
Escherichia coli | 65 (84.5) | 68 (85.0) | |
Enterococcus spp. | 2 (2.6) | 1 (1.3) | |
Klebsiella spp. | 7 (9.1) | 9 (11.2) | |
Other | 3 (3.8) | 2 (2.5) | |
Empirical antibiotics prescribed | |||
Amikacin | 5 (6.5) | - | |
Amoxicillin-clavulanic acid | 42 (54.8) | 3 (3.7) | |
Ampicillin | 1 (1.3) | - | |
Ceftriaxone | 8 (10.1) | 13 (16.4) | |
Ceftazidime | 4 (5.2) | 1 (1.3) | |
Cefepime | - | - | |
Ciprofloxacin | 2 (2.6) | 3 (3.7) | |
Gentamicin | 7 (9.1) | - | |
Levofloxacin | 1 (1.3) | 3 (3.7) | |
Meropenem | 2 (2.6) | 2 (2.5) | |
Piperacillin/tazobactam | 5 (6.5) | 55 (68.7) |
Study Group | Control Group | p | |
---|---|---|---|
Mean (SD* or %) | Mean (SD* or %) | ||
Clinical success | 72 (93.5) | 75 (93.7) | 0.97 |
Time to defervescence (h) | 81 ± 11 | 78 ± 12 | 0.12 |
Time to inflammation markers halving (h) | 19 ± 12 | 21 ± 11 | 0.27 |
Microbiological success | 74 (96.1) | 76 (95.0) | 0.99 |
Antibiotic change | 6 (7.8) | 12 (15.0) | 0.04 |
lack of clinical response | 4 (66.6) | 9 (75.0) | |
lack of inflammation markers halving | 2 (33.4) | 3 (25.0) | |
Time to oral treatment switching (h) | 72 ± 4 | 96 ± 8 | <0.001 |
Amikacin | 70 ± 2 | - | |
Amoxicillin-clavulanic acid | 65 ± 1 | 64 ± 3 | |
Ampicillin | 68 ± 2 | - | |
Ceftriaxone | 75 ± 3 | 81 ± 3 | |
Ceftazidime | 70 ± 1 | 70 ± 9 | |
Cefepime | - | - | |
Ciprofloxacin | 69 ± 2 | 71 ± 3 | |
Gentamicin | 69 ± 3 | - | |
Levofloxacin | 70 ± 1 | 70 ± 7 | |
Meropenem | 77 ± 4 | 76 ± 3 | |
Piperacillin/tazobactam | 78 ± 3 | 99 ± 5 | |
Length of hospitalization (days) | 5 ± 2 | 8 ± 3 | <0.001 |
Sensibility (%) | ||
---|---|---|
Escherichia coli | Klebsiella pneumoniae | |
Antibiotics | ||
Amikacin | 98.5 | 98.7 |
Amoxicillin-clavulanic acid | 86.8 | 87.5 |
Ceftriaxone | 82.8 | 80.1 |
Ceftazidime | 86.1 | 81.8 |
Cefepime | 86.3 | 82.9 |
Ciprofloxacin | 78.7 | 87.6 |
Cotrimoxazole | 77.9 | 83.5 |
Colistin | 99.2 | 99.0 |
Gentamicin | 90.5 | 95.3 |
Meropenem | 99.9 | 98.3 |
Piperacillin/tazobactam | 96.0 | 89.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, T.; Brugnolli, A.; Lanzafame, M.; Dellai, F.; Tascini, C.; Scarparo, C.; Racanelli, V.; Massidda, O.; Bonkat, G.; Gallelli, L.; et al. A Precision Medicine Model for Targeted Antibiotic Therapy in Urinary Tract Infections: A Valuable Tool to Reduce Hospitalization Stay and the Time to Switch to Oral Treatment. Antibiotics 2025, 14, 211. https://doi.org/10.3390/antibiotics14020211
Cai T, Brugnolli A, Lanzafame M, Dellai F, Tascini C, Scarparo C, Racanelli V, Massidda O, Bonkat G, Gallelli L, et al. A Precision Medicine Model for Targeted Antibiotic Therapy in Urinary Tract Infections: A Valuable Tool to Reduce Hospitalization Stay and the Time to Switch to Oral Treatment. Antibiotics. 2025; 14(2):211. https://doi.org/10.3390/antibiotics14020211
Chicago/Turabian StyleCai, Tommaso, Anna Brugnolli, Massimiliano Lanzafame, Fabiana Dellai, Carlo Tascini, Claudio Scarparo, Vito Racanelli, Orietta Massidda, Gernot Bonkat, Luca Gallelli, and et al. 2025. "A Precision Medicine Model for Targeted Antibiotic Therapy in Urinary Tract Infections: A Valuable Tool to Reduce Hospitalization Stay and the Time to Switch to Oral Treatment" Antibiotics 14, no. 2: 211. https://doi.org/10.3390/antibiotics14020211
APA StyleCai, T., Brugnolli, A., Lanzafame, M., Dellai, F., Tascini, C., Scarparo, C., Racanelli, V., Massidda, O., Bonkat, G., Gallelli, L., & Johansen, T. E. B. (2025). A Precision Medicine Model for Targeted Antibiotic Therapy in Urinary Tract Infections: A Valuable Tool to Reduce Hospitalization Stay and the Time to Switch to Oral Treatment. Antibiotics, 14(2), 211. https://doi.org/10.3390/antibiotics14020211