The Significance of Probiotics in Aquaculture: A Review of Research Trend and Latest Scientific Findings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Questions
- What are the key areas of research, research volume, geographical distribution of the literature, co-authoring counties, and leading publishers of the studies that focus on the influence of probiotics in aquaculture? This investigation was based on a selection of keywords, including “aquaculture”, “probiotics”, “growth performance”, and “disease resistance”;
- What are the specific effects of probiotics on fish growth performance, fish feed utilization, and the survival rate of aquaculture species?
- What is the impact of probiotics on disease prevention, water quality (nitrogenous materials), and survival in aquaculture species?
- What is the impact of the interaction between different strains of probiotics and synbiotics in aquaculture?
2.2. Searching and Exclusion Strategy
2.3. Bibliometric Analysis
2.4. Screening and Data Extraction
3. Results and Discussions
3.1. Situation of the Scientific Documents Based on WoS Search on Aquaculture, Probiotics, Growth Performance and Disease Resistance (APGD)
3.1.1. Leading Countries on APGD Research
3.1.2. Years of Publication and Publishing Entities
3.2. Volume of Research on APGD Based on WoS Database
3.2.1. Co-Occurrence of All Keywords
3.2.2. Co-Occurrence of Author Keywords
3.3. Impact of Probiotics on Growth Parameters
3.3.1. Growth Indices
3.3.2. Mechanism of Action
Country | Host × Probiotic | Experimental Condition | Main Outcomes | Reference |
---|---|---|---|---|
China |
|
|
| [42] |
Mexico |
|
|
| [53] |
China |
|
|
| [54] |
China |
|
|
| [52] |
Egypt |
|
|
| [55] |
China |
|
|
| [26] |
Indonesia |
|
|
| [56] |
Spain |
|
|
| [57] |
Pakistan |
|
|
| [58] |
China |
|
|
| [59] |
Iran |
|
|
| [60] |
China |
|
|
| [61] |
Egypt |
|
|
| [62] |
3.4. Impact of Probiotic on Disease Resistance, Immunity and Water Quality
Country | Host × Probiotic | Experimental Condition | Main Outcomes | Reference |
---|---|---|---|---|
China |
|
|
| [42] |
Iran |
|
|
| [65] |
China |
|
|
| [73] |
China |
|
|
| [26] |
China |
|
|
| [67] |
China |
|
|
| [74] |
Bangladesh |
|
|
| [75] |
China |
|
|
| [76] |
China |
|
|
| [77] |
China |
|
|
| [78] |
México |
|
|
| [79] |
China |
|
|
| [49] |
China |
|
|
| [72] |
3.5. Multi-Strain Probiotics and Synbiotics in Aquaculture
3.5.1. Effect of Multi-Strain Probiotics
3.5.2. Synergistic Effect of Probiotics and Prebiotics
Country | Host × Probiotics | Experimental Condition | Main Outcomes | Reference |
---|---|---|---|---|
Bangladesh |
|
|
| [92] |
Kazakhstan |
|
|
| [93] |
Australia |
|
|
| [94] |
China |
|
|
| [95] |
Egypt |
|
|
| [96] |
Republic of Korea |
|
|
| [97] |
Indonesia |
|
|
| [83] |
Republic of Korea |
|
|
| [74] |
Pakistan |
|
|
| [98] |
Pakistan |
|
|
| [99] |
4. Key Limitations of Aquaculture Probiotics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; Food and Agriculture Organization: Rome, Italy, 2016. [Google Scholar]
- FAO. Yearbook. Fishery and Aquaculture Statistics 2017; Food and Agriculture Organization of the United Nation: Rome, Italy, 2019. [Google Scholar]
- Lewbart, G.A. Bacteria and Ornamental Fish. Semin. Avian Exot. Pet Med. 2001, 10, 48–56. [Google Scholar] [CrossRef]
- Abarike, E.D.; Jian, J.; Tang, J.; Cai, J.; Yu, H.; Lihua, C.; Jun, L. Influence of Traditional Chinese Medicine and Bacillus Species (TCMBS) on Growth, Immune Response and Disease Resistance in Nile Tilapia, Oreochromis Niloticus. Aquac. Res. 2018, 49, 2366–2375. [Google Scholar] [CrossRef]
- Hasan, K.N.; Banerjee, G. Recent Studies on Probiotics as Beneficial Mediator in Aquaculture: A Review. J. Basic Appl. Zool. 2020, 81, 53. [Google Scholar] [CrossRef]
- Gao, P.; Mao, D.; Luo, Y.; Wang, L.; Xu, B.; Xu, L. Occurrence of Sulfonamide and Tetracycline-Resistant Bacteria and Resistance Genes in Aquaculture Environment. Water Res. 2012, 46, 2355–2364. [Google Scholar] [CrossRef] [PubMed]
- Watts, J.; Schreier, H.; Lanska, L.; Hale, M. The Rising Tide of Antimicrobial Resistance in Aquaculture: Sources, Sinks and Solutions. Mar. Drugs 2017, 15, 158. [Google Scholar] [CrossRef]
- Elsabagh, M.; Mohamed, R.; Moustafa, E.M.; Hamza, A.; Farrag, F.; Decamp, O.; Dawood, M.A.O.; Eltholth, M. Assessing the Impact of Bacillus Strains Mixture Probiotic on Water Quality, Growth Performance, Blood Profile and Intestinal Morphology of Nile Tilapia, Oreochromis niloticus. Aquac. Nutr. 2018, 24, 1613–1622. [Google Scholar] [CrossRef]
- Won, S.; Hamidoghli, A.; Choi, W.; Bae, J.; Jang, W.J.; Lee, S.; Bai, S.C. Evaluation of Potential Probiotics Bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on Growth Performance, Immune Response, Gut Histology and Immune-Related Genes in Whiteleg Shrimp, Litopenaeus vannamei. Microorganisms 2020, 8, 281. [Google Scholar] [CrossRef] [PubMed]
- Zibiene, G.; Zibas, A. Impact of Commercial Probiotics on Growth Parameters of European Catfish (Silurus glanis) and Water Quality in Recirculating Aquaculture Systems. Aquac. Int. 2019, 27, 1751–1766. [Google Scholar] [CrossRef]
- Gismondo, M.R.; Drago, L.; Lombardi, A. Review of Probiotics Available to Modify Gastrointestinal Flora. Int. J. Antimicrob. Agents 1999, 12, 287–292. [Google Scholar] [CrossRef] [PubMed]
- Parker, R. Probiotics, the Other Half of the Antibiotic Story. Anim. Nutr. Health 1974, 4–6. [Google Scholar]
- FAO/WHO. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Liver Lactic Acid Bacteria; Food and Agriculture Organization and World Health Organization Joint Report; FAO/WHO: Geneva, Switzerland, 2001. [Google Scholar]
- Mujeeb Rahiman, K.M.; Jesmi, Y.; Thomas, A.P.; Mohamed Hatha, A.A. Probiotic Effect of Bacillus NL110 and Vibrio NE17 on the Survival, Growth Performance and Immune Response of Macrobrachium Rosenbergii (de Man): Probiotic Effect of Bacteria on M. rosenbergii. Aquac. Res. 2010, 41, e120–e134. [Google Scholar] [CrossRef]
- Vijayan, K.K.; Bright Singh, I.S.; Jayaprakash, N.S.; Alavandi, S.V.; Somnath Pai, S.; Preetha, R.; Rajan, J.J.S.; Santiago, T.C. A Brackishwater Isolate of Pseudomonas PS-102, a Potential Antagonistic Bacterium against Pathogenic Vibrios in Penaeid and Non-Penaeid Rearing Systems. Aquaculture 2006, 251, 192–200. [Google Scholar] [CrossRef]
- Ouwehand, A.C.; Salminen, S.; Isolauri, E. Probiotics: An Overview of Beneficial Effects. Antonie Leeuwenhoek 2002, 82, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Yanbo, W.; Zirong, X. Effect of Probiotics for Common Carp (Cyprinus carpio) Based on Growth Performance and Digestive Enzyme Activities. Anim. Feed Sci. Technol. 2006, 127, 283–292. [Google Scholar] [CrossRef]
- Tovar-Ramírez, D.; Zambonino Infante, J.; Cahu, C.; Gatesoupe, F.J.; Vázquez-Juárez, R. Influence of Dietary Live Yeast on European Sea Bass (Dicentrarchus labrax) Larval Development. Aquaculture 2004, 234, 415–427. [Google Scholar] [CrossRef]
- Kari, Z.A.; Kabir, M.A.; Dawood, M.A.O.; Razab, M.K.A.A.; Ariff, N.S.N.A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Mat, K.; Ismail, T.A.; et al. Effect of Fish Meal Substitution with Fermented Soy Pulp on Growth Performance, Digestive Enzyme, Amino Acid Profile, and Immune-Related Gene Expression of African Catfish (Clarias gariepinus). Aquaculture 2022, 546, 737418. [Google Scholar] [CrossRef]
- Boonthai, T.; Vuthiphandchai, V.; Nimrat, S. Probiotic Bacteria Effects on Growth and Bacterial Composition of Black Tiger Shrimp (Penaeus monodon): Probiotic Bacteria Effects on Black Tiger Shrimp. Aquac. Nutr. 2011, 17, 634–644. [Google Scholar] [CrossRef]
- Kumar, R.; Mukherjee, S.C.; Prasad, K.P.; Pal, A.K. Evaluation of Bacillus subtilis as a Probiotic to Indian Major Carp Labeo rohita (Ham.). Aquac. Res. 2006, 37, 1215–1221. [Google Scholar] [CrossRef]
- Silva, E.F.; Soares, M.A.; Calazans, N.F.; Vogeley, J.L.; Do Valle, B.C.; Soares, R.; Peixoto, S. Effect of Probiotic (Bacillus spp.) Addition during Larvae and Postlarvae Culture of the White Shrimp Litopenaeus vannamei. Aquac. Res. 2012, 44, 13–21. [Google Scholar] [CrossRef]
- Wu, Y.-S.; Chu, Y.-T.; Chen, Y.-Y.; Chang, C.-S.; Lee, B.-H.; Nan, F.-H. Effects of Dietary Lactobacillus reuteri and Pediococcus acidilactici on the Cultured Water Qualities, the Growth and Non-Specific Immune Responses of Penaeus vannamei. Fish Shellfish Immunol. 2022, 127, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Ahmadifar, M.; Esfahani, D.E.; Ahmadifar, E.; Sheikhzadeh, N.; Mood, S.M.; Moradi, S.Z. Combined Effects of Spirulina Platensis and Pediococcus acidilactici on the Growth Performance, Digestive Enzyme Activity, Antioxidative Status, and Immune Genes in Zebrafish. Ann. Anim. Sci. 2023, 23, 1159–1167. [Google Scholar] [CrossRef]
- Newaj-Fyzul, A.; Adesiyun, A.A.; Mutani, A.; Ramsubhag, A.; Brunt, J.; Austin, B. Bacillus Subtilis AB1 Controls Aeromonas Infection in Rainbow Trout (Oncorhynchus mykiss, Walbaum): Control of Aeromonas Infection in Rainbow Trout. J. Appl. Microbiol. 2007, 103, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Song, S.; Cui, C.; Cai, Y.; Zhou, Y.; Wang, J.; Bei, W.; Zhang, D.; Guo, W.; Wang, S. Strain-Specific Benefits of Bacillus Probiotics in Hybrid Grouper: Growth Enhancement, Metabolic Health, Immune Modulation, and Vibrio Harveyi Resistance. Animals 2024, 14, 1062. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Gao, S. Current Status of Industrialized Aquaculture in China: A Review. Environ. Sci. Pollut. Res. 2023, 30, 32278–32287. [Google Scholar] [CrossRef]
- Choruma, D.J.; Balkovic, J.; Odume, O.N. Calibration and Validation of the EPIC Model for Maize Production in the Eastern Cape, South Africa. Agronomy 2019, 9, 494. [Google Scholar] [CrossRef]
- Hyland, K. Enter the Dragon: China and Global Academic Publishing. Learn. Publ. 2023, 36, 394–403. [Google Scholar] [CrossRef]
- Tucciarone, I.; Secci, G.; Contiero, B.; Parisi, G. Sustainable Aquaculture over the Last 30 Years: An Analysis of the Scientific Literature by the Text Mining Approach. Rev. Aquac. 2024, 16, 2064–2076. [Google Scholar] [CrossRef]
- Subasinghe, R.P.; Delamare-Deboutteville, J.; Mohan, C.V.; Phillips, M.J. Vulnerabilities in Aquatic Animal Production: -EN- -FR- Les Vulnérabilités de La Production d’animaux Aquatiques -ES- Factores de Vulnerabilidad de La Producción de Animales Acuáticos. Rev. Sci. Tech. OIE 2019, 38, 423–436. [Google Scholar] [CrossRef] [PubMed]
- Mugimba, K.K.; Chengula, A.A.; Wamala, S.; Mwega, E.D.; Kasanga, C.J.; Byarugaba, D.K.; Mdegela, R.H.; Tal, S.; Bornstein, B.; Dishon, A.; et al. Detection of Tilapia Lake Virus (Ti LV) Infection by PCR in Farmed and Wild Nile Tilapia (Oreochromis niloticus) from Lake Victoria. J. Fish Dis. 2018, 41, 1181–1189. [Google Scholar] [CrossRef]
- Le, N.T.T.; Armstrong, C.W.; Brækkan, E.H.; Eide, A. Climatic Events and Disease Occurrence in Intensive Litopenaeus vannamei Shrimp Farming in the Mekong Area of Vietnam. Aquaculture 2024, 587, 740867. [Google Scholar] [CrossRef]
- Rebl, A.; Korytář, T.; Borchel, A.; Bochert, R.; Strzelczyk, J.E.; Goldammer, T.; Verleih, M. The Synergistic Interaction of Thermal Stress Coupled with Overstocking Strongly Modulates the Transcriptomic Activity and Immune Capacity of Rainbow Trout (Oncorhynchus mykiss). Sci. Rep. 2020, 10, 14913. [Google Scholar] [CrossRef] [PubMed]
- Eissa, E.-S.H.; Baghdady, E.S.; Gaafar, A.Y.; El-Badawi, A.A.; Bazina, W.K.; Abd Al-Kareem, O.M.; Abd El-Hamed, N.N.B. Assessing the Influence of Dietary Pediococcus acidilactici Probiotic Supplementation in the Feed of European Sea Bass (Dicentrarchus labrax L.) (Linnaeus, 1758) on Farm Water Quality, Growth, Feed Utilization, Survival Rate, Body Composition, Blood Biochemical Parameters, and Intestinal Histology. Aquac. Nutr. 2022, 2022, 5841220. [Google Scholar] [CrossRef]
- Eissa, M.E.H.; Alaryani, F.S.; Elbahnaswy, S.; Khattab, M.S.; Elfeky, A.; AbouelFadl, K.Y.; Eissa, E.-S.H.; Ahmed, R.A.; Van Doan, H.; El-Haroun, E. Dietary Inclusion of Pediococcus acidilactici Probiotic Promoted the Growth Indices, Hemato-Biochemical Indices, Enzymatic Profile, Intestinal and Liver Histomorphology, and Resistance of Nile Tilapia against Aspergillus flavus. Anim. Feed Sci. Technol. 2023, 306, 115814. [Google Scholar] [CrossRef]
- Huang, J.-B.; Wu, Y.-C.; Chi, S.-C. Dietary Supplementation of Pediococcus pentosaceus Enhances Innate Immunity, Physiological Health and Resistance to Vibrio anguillarum in Orange-Spotted Grouper (Epinephelus coioides). Fish Shellfish Immunol. 2014, 39, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Amenyogbe, E. Application of Probiotics for Sustainable and Environment-Friendly Aquaculture Management—A Review. Cogent Food Agric. 2023, 9, 2226425. [Google Scholar] [CrossRef]
- Zhou, W.; Liu, B.; Li, Y.; Zhan, H.; Liu, Y.; Xiao, S.; Zhao, Q.; Wang, J. Dietary Supplementation with Sporosarcina Aquimarina MS4 Enhances Juvenile Sea Cucumber (Apostichopus japonicus) Growth, Immunity and Disease Resistance against Vibrio splendidus Infection at Low Temperature. Aquac. Nutr. 2021, 27, 918–926. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Sadegh, T.H.; Dawood, M.A.O.; Dadar, M.; Sheikhzadeh, N. The Effects of Dietary Pediococcus pentosaceus on Growth Performance, Hemato-Immunological Parameters and Digestive Enzyme Activities of Common Carp (Cyprinus carpio). Aquaculture 2020, 516, 734656. [Google Scholar] [CrossRef]
- Chan, C.-H.; Chen, L.-H.; Chen, K.-Y.; Chen, I.-H.; Lee, K.-T.; Lai, L.-C.; Tsai, M.-H.; Chuang, E.Y.; Lin, M.-T.; Yan, T.-R. Single-Strain Probiotics Enhance Growth, Anti-Pathogen Immunity, and Resistance to Nocardia seriolae in Grey Mullet (Mugil cephalus) via Gut Microbiota Modulation. Anim. Microbiome 2024, 6, 67. [Google Scholar] [CrossRef]
- Eliopoulos, C.; Markou, G.; Chorianopoulos, N.; Haroutounian, S.A.; Arapoglou, D. Transformation of Mixtures of Olive Mill Stone Waste and Oat Bran or Lathyrus clymenum Pericarps into High Added Value Products Using Solid State Fermentation. Waste Manag. 2022, 149, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Wang, Y.; Zheng, L.; Peng, M.; Mai, Y.; Wang, X. Comparative Analysis of the Effect of Dietary Supplementation with Fermented and Water-Extracted Leaf Extracts of Eucommia ulmoides on Egg Production and Egg Nutrition. Foods 2024, 13, 1521. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.; Chitrakar, B.; Regenstein, J.M.; Sang, Y.; Zhou, P. Microbiology, Flavor Formation, and Bioactivity of Fermented Soybean Curd (Furu): A Review. Food Res. Int. 2023, 163, 112183. [Google Scholar] [CrossRef] [PubMed]
- Yeganeh, S.; Adel, M.; Nosratimovafagh, A.; Dawood, M.A.O. The Effect of Lactococcus lactis subsp. Lactis PTCC 1403 on the Growth Performance, Digestive Enzymes Activity, Antioxidative Status, Immune Response, and Disease Resistance of Rainbow Trout (Oncorhynchus mykiss). Probiotics Antimicrob. Proteins 2021, 13, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, X.-W.; Zhu, J.-Y.; Liu, L.-L.; Liu, Y.-C.; Zhu, H. Dietary Sanguinarine Affected Immune Response, Digestive Enzyme Activity and Intestinal Microbiota of Koi Carp (Cryprinus carpiod). Aquaculture 2019, 502, 72–79. [Google Scholar] [CrossRef]
- Cao, H.; Yu, R.; Zhang, Y.; Hu, B.; Jian, S.; Wen, C.; Kajbaf, K.; Kumar, V.; Yang, G. Effects of Dietary Supplementation with β-Glucan and Bacillus subtilis on Growth, Fillet Quality, Immune Capacity, and Antioxidant Status of Pengze Crucian Carp (Carassius auratus Var. Pengze). Aquaculture 2019, 508, 106–112. [Google Scholar] [CrossRef]
- Zhang, M.; Dong, B.; Lai, X.; Chen, Z.; Hou, L.; Shu, R.; Huang, Y.; Shu, H. Effects of Clostridium Butyricum on Growth, Digestive Enzyme Activity, Antioxidant Capacity and Gut Microbiota in Farmed Tilapia (Oreochromis niloticus). Aquac. Res. 2021, 52, 1573–1584. [Google Scholar] [CrossRef]
- Zuo, Z.; Shang, B.; Shao, Y.; Li, W.; Sun, J. Screening of Intestinal Probiotics and the Effects of Feeding Probiotics on the Growth, Immune, Digestive Enzyme Activity and Intestinal Flora of Litopenaeus vannamei. Fish Shellfish Immunol. 2019, 86, 160–168. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wang, B.; Jiang, K.; Wang, M.; Zhou, S.; Liu, M.; Wang, L. Exploring the Influence of the Surface Proteins on Probiotic Effects Performed by Lactobacillus pentosus HC-2 Using Transcriptome Analysis in Litopenaeus vannamei Midgut. Fish Shellfish Immunol. 2019, 87, 853–870. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.-Y.; Zhu, X.-Z.; Chen, J.-C.; Wang, Y.; Zhang, D.-F.; Liu, L.-Y.; Wang, Q.; Shi, C.-B.; Wang, Y.-Y.; Wang, Y.-J. In Vitro Antiviral Effect of Compound Chinese Herbal Medicine and Probiotic Fermentation Effect on Siniperca chuatsi. Aquac. Res. 2024, 2024, 9976156. [Google Scholar] [CrossRef]
- Pérez-Jiménez, G.M.; Alvarez-Villagomez, C.S.; Martínez-Porchas, M.; Garibay-Valdez, E.; Sepúlveda-Quiroz, C.A.; Méndez-Marín, O.; Martínez-García, R.; Jesús-Contreras, R.; Alvarez-González, C.A.; De La Rosa-García, S.D.C. The Indigenous Probiotic Lactococcus lactis PH3-05 Enhances the Growth, Digestive Physiology, and Gut Microbiota of the Tropical Gar (Atractosteus tropicus) Larvae. Animals 2024, 14, 2663. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Z.; He, H.; He, W.; Zhang, Z.; Sun, S.; Wang, W. Multi-Omics Analysis Reveals the Regulatory Mechanism of Different Probiotics on Growth Performance and Intestinal Health of Salmo trutta (S. trutta). Microorganisms 2024, 12, 1410. [Google Scholar] [CrossRef] [PubMed]
- Redhwan, A.; Eissa, E.-S.H.; Ezzo, O.H.; Abdelgeliel, A.S.; Munir, M.B.; Chowdhury, A.J.K.; Kari, Z.A.; Syafaat, M.N.; Suryani, A.E.; Eissa, M.E.H.; et al. Effects of Water Additive Mixed Probiotics on Water Quality, Growth Performance, Feed Utilization, Biochemical Analyses and Disease Resistance against Aeromonas sobria of Nile Tilapia. Desalination Water Treat. 2024, 319, 100480. [Google Scholar] [CrossRef]
- Mawardi, M.; Indrawati, A.; Lusiastuti, A.M.; Wibawan, I.W.T. Antibiotic Resistance Gene-Free Probiont Administration to Tilapia for Growth Performance and Streptococcus agalactiae Resistance. Vet. World 2023, 16, 2504–2514. [Google Scholar] [CrossRef]
- Messina, C.M.; Madia, M.; Manuguerra, S.; Espinosa-Ruiz, C.; Esteban, M.A.; Santulli, A. Dietary Inclusion of Halobacterium Salinarum Modulates Growth Performances and Immune Responses in Farmed Gilthead Seabream (Sparus aurata L.). Animals 2023, 13, 2743. [Google Scholar] [CrossRef]
- Noshair, I.; Kanwal, Z.; Jabeen, G.; Arshad, M.; Yunus, F.-U.-N.; Hafeez, R.; Mairaj, R.; Haider, I.; Ahmad, N.; Alomar, S.Y. Assessment of Dietary Supplementation of Lactobacillus rhamnosus Probiotic on Growth Performance and Disease Resistance in Oreochromis niloticus. Microorganisms 2023, 11, 1423. [Google Scholar] [CrossRef]
- Li, W.; Huang, X.; Lu, X.; Jiang, B.; Liu, C.; Huang, Y.; Su, Y. Effects of Dietary Lactobacillus Reuteri on Growth Performance, Nutrient Retention, Gut Health and Microbiota of the Nile Tilapia (Oreochromis niloticus). Aquac. Rep. 2022, 26, 101275. [Google Scholar] [CrossRef]
- Safari, R.; Imanpour, M.R.; Hoseinifar, S.H.; Faheem, M.; Dadar, M.; Van Doan, H. Effects of Dietary Lactobacillus casei on the Immune, Growth, Antioxidant, and Reproductive Performances in Male Zebrafish (Danio rerio). Aquac. Rep. 2022, 25, 101176. [Google Scholar] [CrossRef]
- Xia, R.; Hao, Q.; Xie, Y.; Zhang, Q.; Ran, C.; Yang, Y.; Zhou, W.; Chu, F.; Zhang, X.; Wang, Y.; et al. Effects of Dietary Saccharomyces cerevisiae on Growth, Intestinal and Liver Health, Intestinal Microbiota and Disease Resistance of Channel Catfish (Ictalurus punctatus). Aquac. Rep. 2022, 24, 101157. [Google Scholar] [CrossRef]
- Abou-El-Atta, M.E.; Abdel-Tawwab, M.; Abdel-Razek, N.; Abdelhakim, T.M.N. Effects of Dietary Probiotic Lactobacillus plantarum and Whey Protein Concentrate on the Productive Parameters, Immunity Response and Susceptibility of Nile Tilapia, Oreochromis niloticus (L.), to Aeromonas Sobria Infection. Aquac. Nutr. 2019, 25, 1367–1377. [Google Scholar] [CrossRef]
- Zokaeifar, H.; Balcázar, J.L.; Saad, C.R.; Kamarudin, M.S.; Sijam, K.; Arshad, A.; Nejat, N. Effects of Bacillus Subtilis on the Growth Performance, Digestive Enzymes, Immune Gene Expression and Disease Resistance of White Shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 2012, 33, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Cao, H.; Jiang, W.; Hu, B.; Jian, S.; Wen, C.; Kajbaf, K.; Kumar, V.; Tao, Z.; Peng, M. Dietary Supplementation of Bacillus cereus as Probiotics in Pengze Crucian Carp (Carassius auratus Var. Pengze): Effects on Growth Performance, Fillet Quality, Serum Biochemical Parameters and Intestinal Histology. Aquac. Res. 2019, 50, 2207–2217. [Google Scholar] [CrossRef]
- Hoseinifar, S.H.; Hoseini, S.M.; Taheri Mirghaed, A.; Ghelichpour, M.; Shirzad-Aski, H.; Van Doan, H.; El-Haroun, E.; Safari, R.; Khanzadeh, M. Comparison of the Effects of Host-Associated (Autochthonous) and Commercial Probiotics on Immune Responses, Growth Parameters and Intestinal Microbiota of Caspian Whitefish (Rutilus frisii kutum) Fry. Front. Mar. Sci. 2024, 11, 1446927. [Google Scholar] [CrossRef]
- Wang, J.; Yang, H.-L.; Xia, H.-Q.; Ye, J.-D.; Lu, K.-L.; Hu, X.; Feng, Y.; Ruan, L.; Sun, Y.-Z. Supplementation of Heat-Inactivated Bacillus clausii DE5 in Diets for Grouper, Epinephelus coioides, Improves Feed Utilization, Intestinal and Systemic Immune Responses and Not Growth Performance. Aquac. Nutr. 2018, 24, 821–831. [Google Scholar] [CrossRef]
- Yu, G.; Zhao, S.; Ou, W.; Ai, Q.; Zhang, W.; Mai, K.; Zhang, Y. Host-Associated Bacillus Velezensis T20 Improved Disease Resistance and Intestinal Health of Juvenile Turbot (Scophthalmus maximus). Aquac. Rep. 2024, 35, 101927. [Google Scholar] [CrossRef]
- Nathanailides, C.; Kolygas, M.; Choremi, K.; Mavraganis, T.; Gouva, E.; Vidalis, K.; Athanassopoulou, F. Probiotics Have the Potential to Significantly Mitigate the Environmental Impact of Freshwater Fish Farms. Fishes 2021, 6, 76. [Google Scholar] [CrossRef]
- Hancz, C. Application of Probiotics for Environmentally Friendly and Sustainable Aquaculture: A Review. Sustainability 2022, 14, 15479. [Google Scholar] [CrossRef]
- Iribarren, D.; Dagá, P.; Moreira, M.T.; Feijoo, G. Potential environmental effects of probiotics used in aquaculture. Aquac. Int. 2012, 20, 779–789. [Google Scholar] [CrossRef]
- Randall, D.J.; Tsui, T.K.N. Ammonia Toxicity in Fish. Mar. Pollut. Bull. 2002, 45, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, W.; Xu, X.; Wang, Y.; Yu, T.; Wang, J.; Zheng, Q.; Changru, X.; Wu, P. Rhodopseudomonas palustris in Effluent Enhances the Disease Resistance, TOR and NF-κB Signalling Pathway, Intestinal Microbiota and Aquaculture Water Quality of Pelteobagrus vachelli. Aquac. Res. 2020, 51, 3959–3971. [Google Scholar] [CrossRef]
- Hu, X.; Xu, W.; Li, H.; Lu, B.; Du, Y.; Chen, J. Investigation of the Protective Effect of Probiotic Lactobacillus plantarum Ep-M17 on the Hepatopancreas of Penaeus vannamei. Aquac. Nutr. 2024, 2024, 8216782. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-C.; Chang, C.-C.; Lin, Y.-H.; Lin, Y.-H. Effect of Fermented Lemon Peel as a Functional Feed Additive on Growth, Non-Specific Immune Responses, and Vibrio alginolyticus Resistance in Whiteleg Shrimp, Litopenaeus vannamei. Aquac. Rep. 2024, 34, 101918. [Google Scholar] [CrossRef]
- Ferdous, Z.; Hossain, M.K.; Hadiuzzaman, M.; Rafiquzzaman, S.M.; Halim, K.A.; Rahman, T.; Faruk, M.A.R.; Kari, Z.A.; Shahjahan, M. Multi-Species Probiotics Enhance Survival, Growth, Intestinal Microbiota and Disease Resistance of Rohu (Labeo rohita) Larvae. Water Biol. Secur. 2024, 3, 100234. [Google Scholar] [CrossRef]
- Ji, Z.; Zhu, C.; Zhu, X.; Ban, S.; Yu, L.; Tian, J.; Dong, L.; Wen, H.; Lu, X.; Jiang, M. Dietary Host-Associated Bacillus subtilis Supplementation Improves Intestinal Microbiota, Health and Disease Resistance in Chinese Perch (Siniperca chuatsi). Anim. Nutr. 2023, 13, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.-H.; Chen, S.-W.; Wen, Z.-H.; Hu, S.-Y. Administration of the Potential Probiotic Paenibacillus ehimensis NPUST1 Enhances Expression of Indicator Genes Associated with Nutrient Metabolism, Growth and Innate Immunity against Aeromonas hydrophila and Streptococcus indie Infections in Zebrafish (Danio rerio). Fishes 2022, 7, 386. [Google Scholar] [CrossRef]
- Xue, M.; Wu, Y.; Hong, Y.; Meng, Y.; Xu, C.; Jiang, N.; Li, Y.; Liu, W.; Fan, Y.; Zhou, Y. Effects of Dietary Bacillus amyloliquefaciens on the Growth, Immune Responses, Intestinal Microbiota Composition and Disease Resistance of Yellow Catfish, Pelteobagrus fulvidraco. Front. Cell. Infect. Microbiol. 2022, 12, 1047351. [Google Scholar] [CrossRef]
- Becerril-Cortés, D.; Hamdan-Partida, A.; Mata-Sotres, J.A.; Coelho Emerenciano, M.G.; Monroy-Dosta, M.D.C. Yeast Rhodoturula Glutinis as a Modulator of Innate Immune and Oxidative Stress-Related Genes in Oreochromis Niloticus Cultured in a Biofloc System. Lat. Am. J. Aquat. Res. 2022, 50, 739–752. [Google Scholar] [CrossRef]
- Kesselring, J.C.; Gruber, C.; Standen, B.; Wein, S. Continuous and pulse-feeding application of multispecies probiotic bacteria in whiteleg shrimp, Litopenaeus vannamei. J. World Aquac. Soc. 2019, 50, 1123–1132. [Google Scholar] [CrossRef]
- Giri, S.S.; Sukumaran, V.; Sen, S.S.; Jena, P.K. Effects of Dietary Supplementation of Potential Probiotic Bacillus subtilis VSG1 Singularly or in Combination with Lactobacillus plantarum VSG3 or/and Pseudomonas aeruginosa VSG2 on the Growth, Immunity and Disease Resistance of Labeo rohita. Aquac. Nutr. 2014, 20, 163–171. [Google Scholar] [CrossRef]
- Puvanasundram, P.; Chong, C.M.; Sabri, S.; Yusoff, M.S.; Karim, M. Multi-Strain Probiotics: Functions, Effectiveness and Formulations for Aquaculture Applications. Aquac. Rep. 2021, 21, 100905. [Google Scholar] [CrossRef]
- Aini, N.; Putri, D.S.Y.R.; Achhlam, D.H.; Fatimah, F.; Andriyono, S.; Hariani, D.; Do, H.D.K.; Wahyuningsih, S.P.A. Supplementation of Bacillus subtilis and Lactobacillus casei to Increase Growth Performance and Immune System of Catfish (Clarias gariepinus) Due to Aeromonas hydrophila Infection. Vet. World 2024, 17, 602–611. [Google Scholar] [CrossRef]
- Zabidi, A.; Yusoff, F.M.; Amin, N.; Yaminudin, N.J.M.; Puvanasundram, P.; Karim, M.M.A. Effects of Probiotics on Growth, Survival, Water Quality and Disease Resistance of Red Hybrid Tilapia (Oreochromis spp.) Fingerlings in a Biofloc System. Animals 2021, 11, 3514. [Google Scholar] [CrossRef]
- Roberfroid, M.B. Prebiotics and Synbiotics: Concepts and Nutritional Properties. Br. J. Nutr. 1998, 80, 197–202. [Google Scholar] [CrossRef]
- Collins, M.D.; Gibson, G.R. Probiotics, Prebiotics, and Synbiotics: Approaches for Modulating the Microbial Ecology of the Gut. Am. J. Clin. Nutr. 1999, 69, 1052–1057. [Google Scholar] [CrossRef]
- Nayak, S. Probiotics and Immunity: A Fish Perspective. Fish Shellfish Immunol. 2010, 2, 14. [Google Scholar] [CrossRef] [PubMed]
- Saba, A.O.; Yasin, I.S.M.; Azmai, M.N.A. Meta-Analyses Indicate That Dietary Probiotics Significantly Improve Growth, Immune Response, and Disease Resistance in Tilapia. Aquac. Int. 2024, 32, 4841–4867. [Google Scholar] [CrossRef]
- Butt, U.D.; Lin, N.; Akhter, N.; Siddiqui, T.; Li, S.; Wu, B. Overview of the Latest Developments in the Role of Probiotics, Prebiotics and Synbiotics in Shrimp Aquaculture. Fish Shellfish Immunol. 2021, 114, 263–281. [Google Scholar] [CrossRef]
- Yousefi, M.; Naderi Farsani, M.; Ghafarifarsani, H.; Raeeszadeh, M. Dietary Lactobacillus helveticus and Gum Arabic Improves Growth Indices, Digestive Enzyme Activities, Intestinal Microbiota, Innate Immunological Parameters, Antioxidant Capacity, and Disease Resistance in Common Carp. Fish Shellfish Immunol. 2023, 135, 108652. [Google Scholar] [CrossRef] [PubMed]
- Hijová, E. Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. Metabolites 2022, 12, 313. [Google Scholar] [CrossRef] [PubMed]
- Shahriar, F.; Ibnasina, A.H.E.A.; Uddin, N.; Munny, F.J.; Hussain, M.A.; Jang, W.J.; Lee, J.M.; Lee, E.-W.; Hasan, M.T.; Kawsar, M.A. Effects of Commercial Probiotics on the Growth, Hematology, Immunity, and Resistance to Aeromonas hydrophila Challenge in Climbing Perch, Anabas testudineus. Aquac. Res. 2024, 2024, 3901035. [Google Scholar] [CrossRef]
- Paritova, A.; Nurgaliyev, A.; Nurgaliyeva, G.; Abekeshev, N.; Abuova, A.; Zakirova, F.; Zwierzchowski, G.; Kuanchaleyev, Z.; Issabekova, S.; Kizatova, M.; et al. The Dietary Effects of Two Strain Probiotics (Leuconostoc mesenteroides, Lactococcus lactis) on Growth Performance, Immune Response and Gut Microbiota in Nile Tilapia (Oreochromis niloticus). PLoS ONE 2024, 19, e0312580. [Google Scholar] [CrossRef] [PubMed]
- Siddik, M.A.B.; Francis, D.S.; Islam, S.M.M.; Salini, M.J.; Fotedar, R. Fermentation and Fortification of Sargassum Linearifolium with Multi-Strain Probiotics Improves Mucosal Barrier Status, Inflammatory Response and Resistance to Vibrio Harveyi Infection in Barramundi Lates Calcarifer. Aquaculture 2025, 595, 741502. [Google Scholar] [CrossRef]
- Xie, G.; Chen, X.; Feng, Y.; Yu, Z.; Lu, Q.; Li, M.; Ye, Z.; Lin, H.; Yu, W.; Shu, H. Effects of Dietary Multi-Strain Probiotics on Growth Performance, Antioxidant Status, Immune Response, and Intestinal Microbiota of Hybrid Groupers (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂). Microorganisms 2024, 12, 1358. [Google Scholar] [CrossRef]
- Shehata, A.I.; Soliman, A.A.; Ahmed, H.A.; Gewaily, M.S.; Amer, A.A.; Shukry, M.; Abdel-Latif, H.M.R. Evaluation of Different Probiotics on Growth, Body Composition, Antioxidant Capacity, and Histoarchitecture of Mugil capito. Sci. Rep. 2024, 14, 7379. [Google Scholar] [CrossRef]
- Cadangin, J.; Lee, J.-H.; Jeon, C.-Y.; Lee, E.-S.; Moon, J.-S.; Park, S.-J.; Hur, S.-W.; Jang, W.-J.; Choi, Y.-H. Effects of Dietary Supplementation of Bacillus, β-Glucooligosaccharide and Their Synbiotic on the Growth, Digestion, Immunity, and Gut Microbiota Profile of Abalone, Haliotis discus hannai. Aquac. Rep. 2024, 35, 102027. [Google Scholar] [CrossRef]
- Muhammad, Z.; Anjum, M.Z.; Akhter, S.; Irfan, M.; Amin, S.; Jamal, Y.; Khalid, S.; Ghazanfar, S. Effect of Lactobacillus plantarum and Pediococcus pentosaceus on the Growth Performance and Morphometry of the Genetically Improved Farmed Tilapia (Oreochromis niloticus). Pak. J. Zool. 2023, 56, 1–8. [Google Scholar] [CrossRef]
- Ullah, S.; Shao, Q.-J.; Ullah, I.; Zuberi, A.; Khattak, M.N.K.; Dawar, F.U.; Imran, M.; Ullah, A.; Shah, A.B. Commercially Available Probiotic Enhanced Growth, Digestion and Immune Response of Rohu (Labeo rohita) Reared in Earthen Pond. Isr. J. Aquac. Bamidgeh 2020, 72, 1–10. [Google Scholar] [CrossRef]
- Hai, N.V. The Use of Probiotics in Aquaculture. J. Appl. Microbiol. 2015, 119, 917–935. [Google Scholar] [CrossRef]
- Vulla, K.E.; Mmanda, F.P.; Nyangoko, B.P.; Makule, E.E. Unlocking Potential Benefits on Applications of Probiotics in Inland Aquaculture Industry: A Review. Aquac. Fish Fish. 2024, 4, e70027. [Google Scholar] [CrossRef]
- Shefat, S.H.T. Probiotic strains used in aquaculture. Int. Res. J. Microbiol. 2018, 7, 43–55. [Google Scholar] [CrossRef]
- Jaafar, R.S.; Al-Knany, F.N.; Mahdi, B.A.; Al-Taee, A.M.R. Study the Probiotic Properties of Pediococcus pentosaceus Isolated from Fish Ponds in Basra City, South of Iraq. J. Pure Appl. Microbiol. 2019, 13, 2343–2351. [Google Scholar] [CrossRef]
- Mang, Q.; Gao, J.; Li, Q.; Sun, Y.; Xu, G.; Xu, P. Metagenomic Insight into the Effect of Probiotics on Nitrogen Cycle in the Coilia nasus Aquaculture Pond Water. Microorganisms 2024, 12, 627. [Google Scholar] [CrossRef]
Rank | Country | No. of Documents | % of 175 | Citations | Link Strength |
---|---|---|---|---|---|
1 | China | 56 | 32.347 | 596 | 09 |
2 | Iran | 15 | 8.671 | 664 | 25 |
3 | India | 14 | 8.092 | 703 | 22 |
4 | Malaysia | 13 | 7.514 | 812 | 17 |
5 | Spain | 13 | 7.514 | 806 | 22 |
6 | Thailand | 13 | 7.514 | 513 | 24 |
7 | Egypt | 13 | 7.514 | 449 | 22 |
8 | Bangladesh | 12 | 6.936 | 190 | 14 |
9 | USA | 11 | 6.358 | 243 | 15 |
10 | Norway | 09 | 5.172 | 506 | 19 |
11 | South Korea | 09 | 5.172 | 311 | 12 |
12 | Australia | 08 | 4.598 | 474 | 15 |
14 | Italy | 06 | 3.448 | 253 | 12 |
15 | Japan | 06 | 3.448 | 78 | 08 |
16 | Pakistan | 06 | 3.448 | 24 | 06 |
17 | Saudi Arabia | 05 | 2.874 | 273 | 14 |
18 | Mexico | 04 | 2.299 | 44 | 02 |
19 | Poland | 04 | 2.299 | 18 | 06 |
20 | Portugal | 04 | 2.299 | 130 | 03 |
Keywords | Occurrence | Total Link Strength |
---|---|---|
Disease resistance | 130 | 1793 |
Probiotics | 99 | 1348 |
Aquaculture | 88 | 1169 |
Growth performance | 67 | 913 |
Bacillus subtilis | 35 | 491 |
Fish | 36 | 482 |
Performance | 34 | 456 |
Immunity | 31 | 434 |
Trout (Oncorhynchus mykiss) | 28 | 402 |
Dietary supplementation | 28 | 396 |
Rainbow trout | 27 | 385 |
Keywords | Occurrence | Total Link Strength |
---|---|---|
Probiotics | 62 | 291 |
Aquaculture | 30 | 145 |
Immunity | 24 | 122 |
Probiotic | 22 | 109 |
Growth performance | 21 | 108 |
Disease resistance | 20 | 91 |
Growth | 12 | 58 |
Bacillus subtilis | 11 | 54 |
Litopenaeus vannamei | 11 | 49 |
Gut microbiota | 10 | 51 |
Immune response | 08 | 39 |
Intestinal microbiota | 08 | 38 |
Intestinal health | 08 | 34 |
Gene expression | 07 | 34 |
Feed additives | 07 | 31 |
Aeromonas hydrophila | 06 | 33 |
Microbiota | 06 | 26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mohammed, E.A.H.; Ahmed, A.E.M.; Kovács, B.; Pál, K. The Significance of Probiotics in Aquaculture: A Review of Research Trend and Latest Scientific Findings. Antibiotics 2025, 14, 242. https://doi.org/10.3390/antibiotics14030242
Mohammed EAH, Ahmed AEM, Kovács B, Pál K. The Significance of Probiotics in Aquaculture: A Review of Research Trend and Latest Scientific Findings. Antibiotics. 2025; 14(3):242. https://doi.org/10.3390/antibiotics14030242
Chicago/Turabian StyleMohammed, Elshafia Ali Hamid, Abdelhakam Esmaeil Mohamed Ahmed, Béla Kovács, and Károly Pál. 2025. "The Significance of Probiotics in Aquaculture: A Review of Research Trend and Latest Scientific Findings" Antibiotics 14, no. 3: 242. https://doi.org/10.3390/antibiotics14030242
APA StyleMohammed, E. A. H., Ahmed, A. E. M., Kovács, B., & Pál, K. (2025). The Significance of Probiotics in Aquaculture: A Review of Research Trend and Latest Scientific Findings. Antibiotics, 14(3), 242. https://doi.org/10.3390/antibiotics14030242