Synergistic Antibacterial Effect of Mucus Fraction from Cornu aspersum and Cirpofloxacin Against Pathogenic Bacteria Isolated from Wounds of Diabetic Patients
Abstract
:1. Introduction
2. Results
2.1. Preparation and Characterization of Mucus Fraction with Molecular Weight Above 20 kDa
2.2. Evaluation of Viability of Skin Fibroblasts (BJ) and Human Keratinocytes (HaCaT) Treated by Different Mucus Fractions
2.3. In Vitro Evaluation of the Wound-Healing Capacity of Cornu aspersum Mucus Protein Fraction with MW > 20 kDa
2.4. Morphological and Biochemical Characteristic of Pathogenic Bacterial Isolates from Patients with Diabetes
2.5. Antimicrobial Susceptibility (AMR) of Pathogenic Bacterial Isolates from Patients with Diabetes
2.6. Minimal Inhibitory Concentrations After Single Administration and Combination Effects
3. Discussion
4. Materials and Methods
4.1. Snail Extract Preparation
4.2. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Image Analysis by ImageQuant™ TL v8.2.0 Software
4.3. Cell Lines and Culture Conditions
4.4. MTT Proliferation Assay
4.5. Scratch Wound-Healing Assay
4.6. Chemicals and Reagents for Identification of the Bacterial Isolates and Assessment of the Antimicrobial Activity of Mucus Fraction with MW > 20 kDa
4.7. Isolation, Characterization and Identification of Pathogenic Bacteria from Patients with Diabetes
4.8. Determination of Antimicrobial Resistance with the Kirby–Bauer Disk Diffusion Test
4.9. Determination of Minimal Inhibitory Concentrations
4.10. Checkerboard Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leśków, A.; Tarnowska, M.; Szczuka, I.; Diakowska, D. The effect of biologically active compounds in the mucus of slugs Limax maximus and Arion rufus on human skin cells. Sci. Rep. 2021, 11, 18660. [Google Scholar] [CrossRef] [PubMed]
- Rizzi, V.; Gubitosa, J.; Fini, P.; Nuzzo, S.; Agostiano, A.; Cosma, P. Snail slime-based gold nanoparticles: An interesting potential ingredient in cosmetics as an antioxidant, sunscreen, and tyrosinase inhibitor. J. Photochem. Photobiol. B Biol. 2021, 224, 112309. [Google Scholar] [CrossRef]
- Rashad, M.; Sampò, S.; Cataldi, A.; Zara, S. Biological activities of gastropods secretions: Snail and slug slime. Nat. Prod. Bioprospecting 2023, 13, 42. [Google Scholar] [CrossRef] [PubMed]
- Aouji, M.; Rkhaila, A.; Bouhaddioui, B.; Zirari, M.; Harifi, H.; Taboz, Y.; Lrhorfi, L.A.; Bengueddour, R. Chemical composition, mineral profile, anti-bacterial, and wound healing properties of snail slime of Helix aspersa Müller. BioMedicine 2023, 13, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Brieva, A.; Philips, N.; Tejedor, R.; Guerrero, A.; Pivel, J.P.; Alonso-Lebrero, J.L.; Gonzalez, S. Molecular basis for the regenerative properties of a secretion of the mollusk Cryptomphalus aspersa. Ski. Pharmacol. Physiol. 2008, 21, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Dolashki, A.; Velkova, L.; Daskalova, E.; Zheleva, N.; Topalova, Y.; Atanasov, V.; Voelter, W.; Dolashka, P. Antimicrobial activities of different fractions from mucus of the garden snail Cornu aspersum. Biomedicines 2020, 8, 315. [Google Scholar] [CrossRef]
- McDermott, M.; Cerullo, A.R.; Parziale, J.; Achrak, E.; Sultana, S.; Ferd, J.; Samad, S.; Deng, W.; Braunschweig, A.B.; Holford, M. Advancing discovery of snail mucins function and application. Front. Bioeng. Biotechnol. 2021, 9, 734023. [Google Scholar] [CrossRef]
- Perpelek, M.; Tamburaci, S.; Aydemir, S.; Tihminlioglu, F.; Baykara, B.; Karakasli, A.; Havitcioglu, H. Bioactive snail mucus-slime extract loaded chitosan scaffolds for hard tissue regeneration: The effect of mucoadhesive and antibacterial extracts on physical characteristics and bioactivity of chitosan matrix. Biomed. Mater. 2021, 16, 065008. [Google Scholar] [CrossRef]
- Phrompanya, P.; Suriyaruean, N.; Nantarat, N.; Saenphet, S.; Tragoolpua, Y.; Saenphet, K. Biological properties of mucus from land snails (Lissachatina fulica) and freshwater snails (Pomacea canaliculata) and histochemical study of mucous cells in their foot. PeerJ 2023, 11, e15827. [Google Scholar] [CrossRef]
- Velkova, L.; Dolashki, A.; Petrova, V.; Pisareva, E.; Kaynarov, D.; Kermedchiev, M.; Todorova, M.; Dolashka, P. Antibacterial Properties of Peptide and Protein Fractions from Cornu aspersum Mucus. Molecules 2024, 29, 2886. [Google Scholar] [CrossRef] [PubMed]
- Waluga-KozŁOwska, E.W.A.; Jasik, K.; WcisŁO-Dziadecka, D.; Pol, P.; KuŹNik-Trocha, K.; KomosiŃSka-Vassev, K.; Olczyk, K.; Waluga, M.; Olczyk, P.; Zimmermann, A. Snail mucus-a natural origin substance with potential use in medicine. Acta Pol. Pharm. 2021, 78, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Cilia, G.; Fratini, F. Antimicrobial properties of terrestrial snail and slug mucus. J. Complement. Integr. Med. 2018, 15, 20170168. [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Gao, D.; Song, X.; Zhou, Z.; Zhou, L.; Tao, M.; Jiang, Z.; Yang, L.; Luo, L.; Zhou, A. A natural biological adhesive from snail mucus for wound repair. Nat. Commun. 2023, 14, 396. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Zhang, Z.; Li, G.; Sun, J.; Gu, T.; Ain, N.U.; Zhang, X.; Li, D. Research progress on the extraction, structure, pharmacological activities and applications of polysaccharides and proteins isolated from snail mucus. Int. J. Biol. Macromol. 2023, 258, 128878. [Google Scholar] [CrossRef]
- Cerullo, A.R.; McDermott, M.B.; Pepi, L.E.; Liu, Z.-L.; Barry, D.; Zhang, S.; Yang, X.; Chen, X.; Azadi, P.; Holford, M. Comparative mucomic analysis of three functionally distinct Cornu aspersum Secretions. Nat. Commun. 2023, 14, 5361. [Google Scholar] [CrossRef] [PubMed]
- Pitt, S.J.; Graham, M.A.; Dedi, C.G.; Taylor-Harris, P.M.; Gunn, A. Antimicrobial properties of mucus from the brown garden snail Helix aspersa. Br. J. Biomed. Sci. 2015, 72, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Pitt, S.J.; Hawthorne, J.A.; Garcia-Maya, M.; Alexandrovich, A.; Symonds, R.C.; Gunn, A. Identification and characterisation of anti-Pseudomonas aeruginosa proteins in mucus of the brown garden snail, Cornu aspersum. Br. J. Biomed. Sci. 2019, 76, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Suárez, L.; Pereira, A.; Hidalgo, W.; Uribe, N. Antibacterial, antibiofilm and anti-virulence activity of biactive fractions from mucus secretion of giant African snail Achatina fulica against Staphylococcus aureus strains. Antibiotics 2021, 10, 1548. [Google Scholar] [CrossRef]
- Ulagesan, S.; Kim, H.J. Antibacterial and antifungal activities of proteins extracted from seven different snails. Appl. Sci. 2018, 8, 1362. [Google Scholar] [CrossRef]
- Etim, L.; Aleruchi, C.; Obande, G. Antibacterial properties of snail mucus on bacteria isolated from patients with wound infection. Br. Microbiol. Res. J. 2016, 11, 1–9. [Google Scholar] [CrossRef]
- Santana, W.A.; Melo, C.M.d.; Cardoso, J.C.; Pereira-Filho, R.N.; Rabelo, A.S.; Reis, F.P.; Albuquerque-Júnior, R.L.C.d. Evaluación de la Actividad Antimicrobiana y la Cicatrización Potencial de la Secreción Mucosa de Achatina fulica. Int. J. Morphol. 2012, 30, 365–373. [Google Scholar] [CrossRef]
- Nuryana, C.T.; Haryana, S.M.; Wirohadidjojo, Y.W.; Arfian, N. Achatina fulica mucous improves cell viability and increases collagen deposition in UVB-irradiated human fibroblast culture. J. Stem Cells Regen. Med. 2020, 16, 26–31. [Google Scholar] [CrossRef]
- Trapella, C.; Rizzo, R.; Gallo, S.; Alogna, A.; Bortolotti, D.; Casciano, F.; Zauli, G.; Secchiero, P.; Voltan, R. HelixComplex snail mucus exhibits pro-survival, proliferative and pro-migration effects on mammalian fibroblasts. Sci. Rep. 2018, 8, 17665. [Google Scholar] [CrossRef] [PubMed]
- López Angulo, D.E.; do Amaral Sobral, P.J. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int. J. Biol. Macromol. 2016, 92, 645–653. [Google Scholar] [CrossRef]
- Kostadinova, N.; Voynikov, Y.; Dolashki, A.; Krumova, E.; Abrashev, R.; Kowalewski, D.; Stevanovic, S.; Velkova, L.; Velikova, R.; Dolashka, P. Antioxidative screening of fractions from the mucus of garden snail Cornu aspersum. Bulg. Chem. Commun. 2018, 50, 176–183. [Google Scholar]
- Basavegowda, N.; Baek, K.-H. Combination strategies of different antimicrobials: An efficient and alternative tool for pathogen inactivation. Biomedicines 2022, 10, 2219. [Google Scholar] [CrossRef] [PubMed]
- Kaur, I. Novel strategies to combat antimicrobial resistance. J. Infect. Dis. Ther. 2016, 4, 292. [Google Scholar] [CrossRef]
- Bozic, I.; Reiter, J.G.; Allen, B.; Antal, T.; Chatterjee, K.; Shah, P.; Moon, Y.S.; Yaqubie, A.; Kelly, N.; Le, D.T. Evolutionary dynamics of cancer in response to targeted combination therapy. elife 2013, 2, e00747. [Google Scholar] [CrossRef]
- León-Buitimea, A.; Garza-Cárdenas, C.R.; Garza-Cervantes, J.A.; Lerma-Escalera, J.A.; Morones-Ramírez, J.R. The demand for new antibiotics: Antimicrobial peptides, nanoparticles, and combinatorial therapies as future strategies in antibacterial agent design. Front. Microbiol. 2020, 11, 1669. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.G.; Tan, T.-W.; Boulton, A.J.M.; Bus, S.A. Diabetic foot ulcers: A review. JAMA 2023, 330, 62–75. [Google Scholar] [CrossRef] [PubMed]
- Frykberg, R.G.; Franks, P.J.; Edmonds, M.; Brantley, J.N.; Téot, L.; Wild, T.; Garoufalis, M.G.; Lee, A.M.; Thompson, J.A.; Reach, G.; et al. A Multinational, Multicenter, Randomized, Double-Blinded, Placebo-Controlled Trial to Evaluate the Efficacy of Cyclical Topical Wound Oxygen (TWO2) Therapy in the Treatment of Chronic Diabetic Foot Ulcers: The TWO2 Study. Diabetes Care 2020, 43, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Gong, Q.; Zhang, P.; Wang, J.; Ma, J.; An, Y.; Chen, Y.; Zhang, B.; Feng, X.; Li, H.; Chen, X.; et al. Morbidity and mortality after lifestyle intervention for people with impaired glucose tolerance: 30-year results of the Da Qing Diabetes Prevention Outcome Study. Lancet Diabetes Endocrinol. 2019, 7, 452–461. [Google Scholar] [CrossRef] [PubMed]
- Alavi, A.; Sibbald, R.G.; Mayer, D.; Goodman, L.; Botros, M.; Armstrong, D.G.; Woo, K.; Boeni, T.; Ayello, E.A.; Kirsner, R.S. Diabetic foot ulcers: Part I. Pathophysiology and prevention. J. Am. Acad. Dermatol. 2014, 70, 1.e1–1.e18. [Google Scholar] [CrossRef]
- Brem, H.; Tomic-Canic, M. Cellular and molecular basis of wound healing in diabetes. J. Clin. Investig. 2007, 117, 1219–1222. [Google Scholar] [CrossRef] [PubMed]
- Erem, C.; Hacıhasanoğlu, A.; Çelik, Ş.; Ovalı, E.; Ersöz, H.Ö.; Ukinç, K.; Deger, O.; Telatar, M. Coagulation and Fibrinolysis Parameters in Type 2 Diabetic Patients with and without Diabetic Vascular Complications. Med. Princ. Pract. 2004, 14, 22–30. [Google Scholar] [CrossRef]
- Galkowska, H.; Wojewodzka, U.; Olszewski, W.L. Chemokines, cytokines, and growth factors in keratinocytes and dermal endothelial cells in the margin of chronic diabetic foot ulcers. Wound Repair Regen. 2006, 14, 558–565. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Srivastava, S.; Singh, M.R.; Singh, D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed. Pharmacother. 2019, 112, 108615. [Google Scholar] [CrossRef]
- Yang, L.; Rong, G.C.; Wu, Q.N. Diabetic foot ulcer: Challenges and future. World J. Diabetes 2022, 13, 1014–1034. [Google Scholar] [CrossRef] [PubMed]
- Mariadoss, A.V.A.; Sivakumar, A.S.; Lee, C.-H.; Kim, S.J. Diabetes mellitus and diabetic foot ulcer: Etiology, biochemical and molecular based treatment strategies via gene and nanotherapy. Biomed. Pharmacother. 2022, 151, 113134. [Google Scholar] [CrossRef] [PubMed]
- Djahmi, N.; Messad, N.; Nedjai, S.; Moussaoui, A.; Mazouz, D.; Richard, J.L.; Sotto, A.; Lavigne, J.P. Molecular epidemiology of Staphylococcus aureus strains isolated from inpatients with infected diabetic foot ulcers in an Algerian University Hospital. Clin. Microbiol. Infect. 2013, 19, E398–E404. [Google Scholar] [CrossRef] [PubMed]
- Lipsky, B.A.; Berendt, A.R.; Cornia, P.B.; Pile, J.C.; Peters, E.J.G.; Armstrong, D.G.; Deery, H.G.; Embil, J.M.; Joseph, W.S.; Karchmer, A.W.; et al. 2012 Infectious Diseases Society of America Clinical Practice Guideline for the Diagnosis and Treatment of Diabetic Foot Infectionsa. Clin. Infect. Dis. 2012, 54, e132–e173. [Google Scholar] [CrossRef] [PubMed]
- Akhi, M.T.; Ghotaslou, R.; Asgharzadeh, M.; Varshochi, M.; Pirzadeh, T.; Memar, M.Y.; Bialvaei, A.Z.; Sofla, H.S.Y.; Alizadeh, N. Bacterial etiology and antibiotic susceptibility pattern of diabetic foot infections in Tabriz, Iran. GMS Hyg. Infect. Control 2015, 10, Doc02. [Google Scholar]
- Kwon, K.T.; Armstrong, D.G. Microbiology and Antimicrobial Therapy for Diabetic Foot Infections. Infect. Chemother. 2018, 50, 11–20. [Google Scholar] [CrossRef]
- Li, X.; Du, Z.; Tang, Z.; Wen, Q.; Cheng, Q.; Cui, Y. Distribution and drug sensitivity of pathogenic bacteria in diabetic foot ulcer patients with necrotizing fasciitis at a diabetic foot center in China. BMC Infect. Dis. 2022, 22, 396. [Google Scholar] [CrossRef]
- Macdonald, K.E.; Boeckh, S.; Stacey, H.J.; Jones, J.D. The microbiology of diabetic foot infections: A meta-analysis. BMC Infect. Dis. 2021, 21, 770. [Google Scholar] [CrossRef] [PubMed]
- Mamdoh, H.; Hassanein, K.M.; Eltoony, L.F.; Khalifa, W.A.; Hamed, E.; Alshammari, T.O.; Abd El-Kareem, D.M.; El-Mokhtar, M.A. Clinical and Bacteriological Analyses of Biofilm-Forming Staphylococci Isolated from Diabetic Foot Ulcers. Infect. Drug Resist. 2023, 16, 1737–1750. [Google Scholar] [CrossRef] [PubMed]
- Mariani, F.; Juarez, G.E.; Barberis, C.; Veiga, F.; Vay, C.; Galvan, E.M. Interspecies interactions in mixed-species biofilms formed by Enterococcus faecalis and gram-negative bacteria isolated from polymicrobial diabetic foot ulcers. Biofouling 2023, 39, 579–590. [Google Scholar] [CrossRef]
- Shi, M.-L.; Quan, X.-R.; Tan, L.-M.; Zhang, H.-L.; Yang, A.-Q. Identification and antibiotic susceptibility of microorganisms isolated from diabetic foot ulcers: A pathological aspect. Exp. Ther. Med. 2023, 25, 53. [Google Scholar] [CrossRef] [PubMed]
- Thanganadar Appapalam, S.; Muniyan, A.; Vasanthi Mohan, K.; Panchamoorthy, R. A Study on Isolation, Characterization, and Exploration of Multiantibiotic-Resistant Bacteria in the Wound Site of Diabetic Foot Ulcer Patients. Int. J. Low. Extrem. Wounds 2019, 20, 6–14. [Google Scholar] [CrossRef]
- Younes, N.A.; Bakri, F.G. Diabetic foot infection. Saudi Med. J. 2006, 27, 596. [Google Scholar]
- Salah, M.; Badr, G.; Hetta, H.; Khalifa, W.A.; Shoreit, A.A. Isolation and identification of pathogenic biofilm-forming bacteria invading diabetic wounds. Assiut Univ. J. Multidiscip. Sci. Res. 2022, 51, 163–178. [Google Scholar] [CrossRef]
- Dolashka, P.; Atanasov, D. Device for Collecting Extracts from Garden Snail. BG Utility Model Application Number 2656, 8 November 2013. [Google Scholar]
- Perez-Favila, A.; Martinez-Fierro, M.L.; Rodriguez-Lazalde, J.G.; Cid-Baez, M.A.; Zamudio-Osuna, M.D.; Martinez-Blanco, M.D.; Mollinedo-Montaño, F.E.; Rodriguez-Sanchez, I.P.; Castañeda-Miranda, R.; Garza-Veloz, I. Current Therapeutic Strategies in Diabetic Foot Ulcers. Medicina 2019, 55, 714. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Gupta, B. Choices and Challenges of Antibiotics Therapy in Diabetic Foot Infection. Indian J. Endocrinol. Metab. 2017, 21, 647–648. [Google Scholar] [CrossRef]
- Filius, P.M.G.; Gyssens, I.C. Impact of Increasing Antimicrobial Resistance on Wound Management. Am. J. Clin. Dermatol. 2002, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- LeBel, M. Ciprofloxacin: Chemistry, Mechanism of Action, Resistance, Antimicrobial Spectrum, Pharmacokinetics, Clinical Trials, and Adverse Reactions. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1988, 8, 3–30. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.B. Chapter 10—Antimicrobial agents and torsades de pointes. In Torsades de Pointes; Tisdale, J.E., Ed.; Academic Press: London, UK, 2022; pp. 231–266. [Google Scholar]
- Iguchi, S.M.M.; Aikawa, T.; Matsumoto, J.J. Antibacterial activity of snail mucus mucin. Comp. Biochem. Physiol. Part A Physiol. 1982, 72, 571–574. [Google Scholar] [CrossRef]
- Abimbola Okeniyi, F.; Oghenebrorhie Mavis, O.; Oyewale Olawoye, S.; Adekunle Animashahun, R.; Gbemisola Adeyonu, A. Antimicrobial potentials of mucus mucin from different species of giant African land snails on some typed culture pathogenic bacteria. Asian J. Agric. Biol. 2022, 1–12. [Google Scholar] [CrossRef]
- El-Zawawy, N.A.; Mona, M.M. Antimicrobial efficacy of Egyptian Eremina desertorum and Helix aspersa snail mucus with a novel approach to their anti-inflammatory and wound healing potencies. Sci. Rep. 2021, 11, 24317. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Lincz, L.F.; Scorgie, F.E.; Garg, M.B.; Gilbert, J.; Sakoff, J.A. A simplified method to calculate telomere length from Southern blot images of terminal restriction fragment lengths. Biotechniques 2020, 68, 28–34. [Google Scholar] [CrossRef] [PubMed]
- ISO 10995-5; Biological Evaluation of Medical Devices. Part 5: Tests for In Vitro Cytotoxicity. ISO: Geneva, Switzerland, 2019.
- EUCAST. Clinical Breakpoints—Breakpoints and Guidance. Available online: https://www.eucast.org/clinical_breakpoints (accessed on 28 November 2024).
- Orhan, G.; Bayram, A.; Zer, Y.; Balci, I. Synergy tests by E test and checkerboard methods of antimicrobial combinations against Brucella melitensis. J. Clin. Microbiol. 2005, 43, 140–143. [Google Scholar] [CrossRef] [PubMed]
- ISO 20776/1; Susceptibility Testing of INFECTIOUS Agents and Evaluation of Performance of Antimicrobial Susceptibility Test Devices. ISO: Geneva, Switzerland, 2019.
- Jenkins, S.G.; Schuetz, A.N. Current Concepts in Laboratory Testing to Guide Antimicrobial Therapy. Mayo Clin. Proc. 2012, 87, 290–308. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Staphylococcus aureus | Enterococcus faecalis | Pseudomonas aeruginosa |
---|---|---|---|
Gram Staining | Positive | Positive | Negative |
Shape (cocci/diplococci/rods) | cocci | cocci | rods |
Motility (motile/non-motile) | non-motile | non-motile | motile (unipolar) |
Capsule (capsulated/non-capsulated) | non-capsulated | non-capsulated | non-capsulated |
Spore (sporing/non-sporing) | non-sporing | non-sporing | non-sporing |
Flagella (flagellated/non-flagellated) | non-flagellated | non-flagellated | single flagella |
Catalase | positive (+) | negative (−) | positive (+) |
Oxidase | negative (−) | negative (−) | positive (+) |
MR (methyl red) | positive (+) | - | negative (−) |
VP (Voges Proskauer) | positive (+) | positive (+) | negative (−) |
OF (oxidative/fermentative) | fermentative | Fermentative | oxidative/ |
Indole | negative (−) | negative (−) | negative (−) |
H2S | negative (−) | negative (−) | negative (−) |
Citrate | positive (+) | negative (−) | positive (+) |
Urease | positive (+) | negative (−) | negative (−) |
Nitrate reduction | positive (+) | positive (+) | positive (+) |
Gelatin hydrolysis | positive (+) | variable | positive (+) |
Hemolysis | positive (+)-beta | variable (alfa or beta) | - |
Coagulase | positive (+) | - | negative (−) |
Fermentation of | |||
Lactose | positive (+) | positive (+) | negative (−) |
Maltose | positive (+) | positive (+) | negative (−) |
Mannitol | positive (+) | positive (+) | positive (+) |
No. | Antibiotic/Chemotherapeutic | Inhibition Zone [mm] | |
---|---|---|---|
Staphylococcus aureus (Sample 1) | Enterococcus faecalis (Sample 2) | ||
1. | AMC-amoxicillin/clavulanic acid (20/10 µg), 15 mm | 38 (S) | 54 (S) |
2. | AMP-ampicillin (10 µg), 28 mm | 36 (S) | 48 (S) |
3. | CFX-Ceftriaxone (30 µg), 13–21mm | 40 (S) | 44 (S) |
4. | CIP-Ciprofloxacin (5 µg), 15–21 mm | 28 (S) | 30 (S) |
5. | CHL-Chloramphenicol (30 µg), 12–18 mm | 36 (S) | 38 (S) |
6. | Cla-Clarithromycin (15 µg), 26–32 mm | 0 (R) | 34 (S) |
7. | T-Tetracycline (30 µg), 14–19 mm | 40 (S) | 40 (S) |
8. | ERM-erythromicin (15 µg), 13–23 mm | 0 (R) | 24 (S) |
9. | G-gentamicin (10 µg), 12–15 mm | 14 (I) | 14 (I) |
10. | PEN G-penicillin (10 Units), 28–29 mm | 34 (S) | 40 (S) |
11. | V-Vancomycin (5 µg), 9–12 mm | 22 (S) | 27 (S) |
12. | R-Rifampin (5 µg), 16–20 mm | 44 (S) | 32 (S) |
No. | Antibiotic/Chemotherapeutic | Inhibition Zone [mm] | |
---|---|---|---|
Pseudomonas aeruginosa (Sample 1) | Pseudomonas aeruginosa (Sample 2) | ||
1. | AMK-Amikacin (30 µg), 14–17 mm | 18 (S) | 23 (S) |
2. | AMC-Amoxicillinclavulanic acid (20/10 µg), 15 mm | 0 (R) | 0 (R) |
3. | AMP-ampicillin (10 µg), 28 mm | 0 (R) | 0 (R) |
4. | CFX-Ceftriaxone (30 µg), 13–21mm | 28 (S) | 26 (S) |
5. | CIP-Ciprofloxacin (5 µg), 15–21 mm | 20 (I) | 24 (S) |
6. | G-Gentamicin (10 µg), 12–15 mm | 12 (I) | 10 (R) |
7. | MER-Meropenem (10 µg), 27–33 mm | 12(R) | 18(R) |
8. | NOR-Norfloxacin (10 µg), 12–17 mm | 0 (R) | 0 (R) |
9. | O-Oxacillin (1 µg), 10–13 mm | 0 (R) | 0 (R) |
10. | TS-Trimethoprimsulfametoxazol (1.25/23.75 µg), 9–12 mm | 0 (R) | 0 (R) |
Clinical Isolates | MIC of A [mg/L] | MIC of B [mg/L] | MICC of A [mg/L] | MICC of B [mg/L] | FIC of A | FIC of B | ∑FIC | Effect |
---|---|---|---|---|---|---|---|---|
Staphylococcus aureus | 255 | 0.25 | 4 | 0.125 | 0.0157 | 0.5 | 0.5157 | Additive |
Enterococcus faecalis | >255 | 0.025 | 4 | 0.0125 | 0.0039 | 0.5 | 0.5039 | Synergism |
Pseudomonas aeruginosa (1) | >255 | 2 | 4 | 1 | 0.0039 | 0.5 | 0.5039 | Synergism |
Pseudomonas aeruginosa (2) | >255 | 2 | 4 | 1 | 0.0039 | 0.5 | 0.5039 | Synergism |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaleva, M.D.; Kermedchiev, M.; Velkova, L.; Zaharieva, M.M.; Dolashki, A.; Todorova, M.; Guncheva, M.; Dolashka, P.; Najdenski, H.M. Synergistic Antibacterial Effect of Mucus Fraction from Cornu aspersum and Cirpofloxacin Against Pathogenic Bacteria Isolated from Wounds of Diabetic Patients. Antibiotics 2025, 14, 260. https://doi.org/10.3390/antibiotics14030260
Kaleva MD, Kermedchiev M, Velkova L, Zaharieva MM, Dolashki A, Todorova M, Guncheva M, Dolashka P, Najdenski HM. Synergistic Antibacterial Effect of Mucus Fraction from Cornu aspersum and Cirpofloxacin Against Pathogenic Bacteria Isolated from Wounds of Diabetic Patients. Antibiotics. 2025; 14(3):260. https://doi.org/10.3390/antibiotics14030260
Chicago/Turabian StyleKaleva, Mila Dobromirova, Momchil Kermedchiev, Lyudmila Velkova, Maya Margaritova Zaharieva, Aleksandar Dolashki, Maria Todorova, Maya Guncheva, Pavlina Dolashka, and Hristo Miladinov Najdenski. 2025. "Synergistic Antibacterial Effect of Mucus Fraction from Cornu aspersum and Cirpofloxacin Against Pathogenic Bacteria Isolated from Wounds of Diabetic Patients" Antibiotics 14, no. 3: 260. https://doi.org/10.3390/antibiotics14030260
APA StyleKaleva, M. D., Kermedchiev, M., Velkova, L., Zaharieva, M. M., Dolashki, A., Todorova, M., Guncheva, M., Dolashka, P., & Najdenski, H. M. (2025). Synergistic Antibacterial Effect of Mucus Fraction from Cornu aspersum and Cirpofloxacin Against Pathogenic Bacteria Isolated from Wounds of Diabetic Patients. Antibiotics, 14(3), 260. https://doi.org/10.3390/antibiotics14030260