Molecular Characterization of Extended-Spectrum ß-Lactamases-Producing Escherichia coli Isolated from a Greek Food Testing Laboratory
Abstract
:1. Introduction
2. Results
2.1. Resistance/Sensitivity Testing
2.2. Identification of β-Lactamase Producers
2.3. Molecular Typing
2.4. Plasmid Characterization
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolation and Antimicrobial Susceptibility Testing
4.2. Genotypic Characterization of Resistance Determinants
4.3. Mating-Out Assays and Plasmid Analysis
4.4. Clonality Evaluation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giamarellou, H. Multidrug resistance in Gram-negative bacteria that produce extended-spectrum beta-lactamases (ESBLs). Clin. Microbiol. Infect. 2005, 11 (Suppl. 4), 1–16. [Google Scholar] [CrossRef] [PubMed]
- Calistri, P.; Iannetti, S.; Danzetta, M.L.; Narcisi, V.; Cito, F.; Sabatino, D.D.; Bruno, R.; Sauro, F.; Atzeni, M.; Carvelli, A.; et al. The components of ‘One World–One Health’ approach. Transbound. Emerg. Dis. 2013, 60 (Suppl. 2), 4–13. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Animal reservoirs for extended spectrum beta-lactamase producers. Clin. Microbiol. Infect. 2008, 14 (Suppl. 1), 117–123. [Google Scholar] [CrossRef]
- Ramos, S.; Silva, V.; Dapkevicius, M.L.E.; Caniça, M.; Tejedor-Junco, M.T.; Igrejas, G.; Poeta, P. Escherichia coli as Commensal and Pathogenic Bacteria Among Food-Producing Animals: Health Implications of Extended Spectrum β-lactamase (ESBL) Production. Animals 2020, 10, 2239. [Google Scholar] [CrossRef] [PubMed]
- Saliu, E.M.; Vahjen, W.; Zentek, J. Types and prevalence of extended-spectrum beta-lactamase producing Enterobacteriaceae in poultry. Anim. Health Res. Rev. 2017, 18, 46–57. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global trends in antimicrobial use in food animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef]
- Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6, ARBA-0026-2017. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); European Centre for Disease Prevention and Control (ECDC). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2020/2021. EFSA J. 2023, 21, 7867. [Google Scholar] [CrossRef]
- Carattoli, A. Plasmids in Gram negatives: Molecular typing of resistance plasmids. Int. J. Med. Microbiol. 2011, 301, 654–658. [Google Scholar] [CrossRef]
- Zamudio, R.; Boerlin, P.; Mulvey, M.R.; Haenni, M.; Beyrouthy, R.; Madec, J.Y.; Schwarz, S.; Cormier, A.; Chalmers, G.; Bonnet, R.; et al. Global transmission of extended-spectrum cephalosporin resistance in Escherichia coli driven by epidemic plasmids. eBioMedicine 2024, 103, 105097. [Google Scholar] [CrossRef]
- Tenover, F.C.; Arbeit, R.D.; Goering, R.V.; Mickelsen, P.A.; Murray, B.E.; Persing, D.H.; Swaminathan, B. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: Criteria for bacterial strain typing. J. Clin. Microbiol. 1995, 33, 2233–2239. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.; Le Devendec, L.; Touzain, F.; Jouy, E.; Lucas, P.; de Boisséson, C.; Larvor, E.; Kempf, I. Longitudinal study of Escherichia coli plasmid resistance to extended-spectrum cephalosporins in free-range broilers. Vet. Microbiol. 2018, 216, 20–24. [Google Scholar] [CrossRef] [PubMed]
- Marti, R.; Muniesa, M.; Schmid, M.; Ahrens, C.H.; Naskova, J.; Hummerjohann, J. Short communication: Heat-resistant Escherichia coli as potential persistent reservoir of extended-spectrum β-lactamases and Shiga toxin-encoding phages in dairy. J. Dairy Sci. 2016, 99, 8622–8632. [Google Scholar] [CrossRef]
- Liakopoulos, A.; van der Goot, J.; Bossers, A.; Betts, J.; Brouwer, M.S.M.; Kant, A.; Smith, H.; Ceccarelli, D.; Mevius, D. Genomic and functional characterisation of IncX3 plasmids encoding bla(SHV-12) in Escherichia coli from human and animal origin. Sci. Rep. 2018, 8, 7674. [Google Scholar] [CrossRef]
- Kaesbohrer, A.; Bakran-Lebl, K.; Irrgang, A.; Fischer, J.; Kämpf, P.; Schiffmann, A.; Werckenthin, C.; Busch, M.; Kreienbrock, L.; Hille, K. Diversity in prevalence and characteristics of ESBL/pAmpC producing E. coli in food in Germany. Vet. Microbiol. 2019, 233, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Economou, V.; Delis, G.; Stavrou, D.; Gousia, P.; Tsitsos, A.; Mantzios, T.; Chouliara, E.; Kolovos, N.; Soultos, N. Characterization of Extended Spectrum Cephalosporin-Resistant Escherichia coli Strains Isolated from Raw Poultry Carcasses in Catering Services in Northern Greece. Vet. Sci. 2023, 10, 487. [Google Scholar] [CrossRef]
- Irrgang, A.; Falgenhauer, L.; Fischer, J.; Ghosh, H.; Guiral, E.; Guerra, B.; Schmoger, S.; Imirzalioglu, C.; Chakraborty, T.; Hammerl, J.A.; et al. CTX-M-15-Producing E. coli Isolates from Food Products in Germany Are Mainly Associated with an IncF-Type Plasmid and Belong to Two Predominant Clonal E. coli Lineages. Front. Microbiol. 2017, 8, 2318. [Google Scholar] [CrossRef]
- Ewers, C.; de Jong, A.; Prenger-Berninghoff, E.; El Garch, F.; Leidner, U.; Tiwari, S.K.; Semmler, T. Genomic Diversity and Virulence Potential of ESBL- and AmpC-β-Lactamase-Producing Escherichia coli Strains from Healthy Food Animals Across Europe. Front. Microbiol. 2021, 12, 626774. [Google Scholar] [CrossRef]
- Ojer-Usoz, E.; González, D.; Vitas, A.I. Clonal Diversity of ESBL-Producing Escherichia coli Isolated from Environmental, Human and Food Samples. Int. J. Environ. Res. Public Health 2017, 14, 676. [Google Scholar] [CrossRef]
- Tsekouras, N.; Athanasakopoulou, Z.; Diezel, C.; Kostoulas, P.; Braun, S.D.; Sofia, M.; Monecke, S.; Ehricht, R.; Chatzopoulos, D.C.; Gary, D.; et al. Cross-Sectional Survey of Antibiotic Resistance in Extended Spectrum β-Lactamase-Producing Enterobacteriaceae Isolated from Pigs in Greece. Animals 2022, 12, 1560. [Google Scholar] [CrossRef]
- Okeke, I.N.; Wallace-Gadsden, F.; Simons, H.R.; Matthews, N.; Labar, A.S.; Hwang, J.; Wain, J. Multi-locus sequence typing of enteroaggregative Escherichia coli isolates from Nigerian children uncovers multiple lineages. PLoS ONE 2010, 5, e14093. [Google Scholar] [CrossRef] [PubMed]
- Nicholson, B.A.; Wannemuehler, Y.M.; Logue, C.M.; Li, G.; Nolan, L.K. Complete Genome Sequence of the Neonatal Meningitis-Causing Escherichia coli Strain NMEC O18. Genome Announc. 2016, 4, e01239-16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nakamura, A.; Komatsu, M.; Noguchi, N.; Ohno, Y.; Hashimoto, E.; Matsutani, H.; Abe, N.; Fukuda, S.; Kohno, H.; Nakamura, F.; et al. Analysis of molecular epidemiologic characteristics of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli colonizing feces in hospital patients and community dwellers in a Japanese city. J. Infect. Chemother. Off. J. Jpn. Soc. Chemother. 2016, 22, 102–107. [Google Scholar] [CrossRef]
- Day, M.J.; Rodríguez, I.; van Essen-Zandbergen, A.; Dierikx, C.; Kadlec, K.; Schink, A.K.; Wu, G.; Chattaway, M.A.; DoNascimento, V.; Wain, J.; et al. Diversity of STs, plasmids and ESBL genes among Escherichia coli from humans, animals and food in Germany, the Netherlands and the UK. J. Antimicrob. Chemother. 2016, 71, 1178–1182. [Google Scholar] [CrossRef]
- Yan, W.; Zhang, Q.; Zhu, Y.; Jing, N.; Yuan, Y.; Zhang, Y.; Ren, S.; Hu, D.; Zhao, W.; Zhang, X.; et al. Molecular Mechanism of Polymyxin Resistance in Multidrug-Resistant Klebsiella pneumoniae and Escherichia coli Isolates from Henan Province, China: A Multicenter Study. Infect. Drug Resist. 2021, 14, 2657–2666. [Google Scholar] [CrossRef]
- Ferreira, J.C.; Penha Filho, R.A.; Andrade, L.N.; Berchieri Junior, A.; Darini, A.L. Evaluation and characterization of plasmids carrying CTX-M genes in a non-clonal population of multidrug-resistant Enterobacteriaceae isolated from poultry in Brazil. Diagn. Microbiol. Infect. Dis. 2016, 85, 444–448. [Google Scholar] [CrossRef]
- Aslantaş, Ö. High occurrence of CMY-2-type beta-lactamase-producing Escherichia coli among broiler flocks in Turkey. Trop. Anim. Health Prod. 2020, 52, 1681–1689. [Google Scholar] [CrossRef] [PubMed]
- Bonten, M.J.; Mevius, D. Less evidence for an important role of food-producing animals as source of antibiotic resistance in humans. Clin. Infect. Dis. 2015, 60, 1867. [Google Scholar] [CrossRef]
- Carattoli, A.; Villa, L.; Fortini, D.; García-Fernández, A. Contemporary IncI1 plasmids involved in the transmission and spread of antimicrobial resistance in Enterobacteriaceae. Plasmid 2021, 118, 102392. [Google Scholar] [CrossRef]
- Valcek, A.; Roer, L.; Overballe-Petersen, S.; Hansen, F.; Bortolaia, V.; Leekitcharoenphon, P.; Korsgaard, H.B.; Seyfarth, A.M.; Hendriksen, R.S.; Hasman, H.; et al. IncI1 ST3 and IncI1 ST7 plasmids from CTX-M-1-producing Escherichia coli obtained from patients with bloodstream infections are closely related to plasmids from E. coli of animal origin. J. Antimicrob. Chemother. 2019, 74, 2171–2175. [Google Scholar] [CrossRef]
- Zalewska, M.; Błażejewska, A.; Gawor, J.; Adamska, D.; Goryca, K.; Szeląg, M.; Kalinowski, P.; Popowska, M. A newly identified IncY plasmid from multi-drug-resistant Escherichia coli isolated from dairy cattle feces in Poland. Microbiol. Spectr. 2024, 12, e0087724. [Google Scholar] [CrossRef] [PubMed]
- de Lagarde, M.; Fairbrother, J.M.; Archambault, M.; Dufour, S.; Francoz, D.; Massé, J.; Lardé, H.; Aenishaenslin, C.; Paradis, M.E.; Terrat, Y.; et al. Clonal and plasmidic dissemination of critical antimicrobial resistance genes through clinically relevant ExPEC and APEC-like lineages (ST) in the dairy cattle population of Québec, Canada. Front. Microbiol. 2024, 14, 1304678. [Google Scholar] [CrossRef]
- Haenni, M.; Beyrouthy, R.; Lupo, A.; Châtre, P.; Madec, J.Y.; Bonnet, R. Epidemic spread of Escherichia coli ST744 isolates carrying mcr-3 and blaCTX-M-55 in cattle in France. J. Antimicrob. Chemother. 2018, 73, 533–536. [Google Scholar] [CrossRef]
- Campos-Madueno, E.I.; Bernasconi, O.J.; Moser, A.I.; Keller, P.M.; Luzzaro, F.; Maffioli, C.; Bodmer, T.; Kronenberg, A.; Endimiani, A. Rapid Increase of CTX-M-Producing Shigella sonnei Isolates in Switzerland Due to Spread of Common Plasmids and International Clones. Antimicrob. Agents Chemother. 2020, 64, e01057-20. [Google Scholar] [CrossRef] [PubMed]
- Kiratisin, P.; Apisarnthanarak, A.; Saifon, P.; Laesripa, C.; Kitphati, R.; Mundy, L.M. The emergence of a novel ceftazidime-resistant CTX-M extended spectrum beta-lactamase, CTX-M-55, in both community-onset and hospital acquired infections in Thailand. Diagn. Microbiol. Infect. Dis. 2007, 58, 349–355. [Google Scholar] [CrossRef]
- Yang, J.T.; Zhang, L.J.; Lu, Y.; Zhang, R.M.; Jiang, H.X. Genomic Insights into Global blaCTX-M-55-Positive Escherichia coli Epidemiology and Transmission Characteristics. Microbiol. Spectr. 2023, 11, e0108923. [Google Scholar] [CrossRef]
- Baron, S.; Le Devendec, L.; Lucas, P.; Larvor, E.; Jové, T.; Kempf, I. Characterisation of plasmids harbouring extended-spectrum cephalosporin resistance genes in Escherichia coli from French rivers. Vet. Microbiol. 2020, 243, 108619. [Google Scholar] [CrossRef]
- Zurfluh, K.; Hächler, H.; Nüesch-Inderbinen, M.; Stephan, R. Characteristics of extended-spectrum β-lactamase- and carbapenemase-producing Enterobacteriaceae Isolates from rivers and lakes in Switzerland. Appl. Environ. Microbiol. 2013, 79, 3021–3026. [Google Scholar] [CrossRef]
- Ovejero, C.M.; Delgado-Blas, J.F.; Calero-Caceres, W.; Muniesa, M.; Gonzalez-Zorn, B. Spread of mcr-1-carrying Enterobacteriaceae in sewage water from Spain. J. Antimicrob. Chemother. 2017, 72, 1050–1053. [Google Scholar] [CrossRef]
- Loras, C.; González-Prieto, A.; Pérez-Vázquez, M.; Bautista, V.; Ávila, A.; Campoy, P.S.; Oteo-Iglesias, J.; Alós, J.I. Prevalence, detection and characterization of fosfomycin-resistant Escherichia coli strains carrying fosA genes in Community of Madrid, Spain. J. Glob. Antimicrob. Resist. 2021, 25, 137–141. [Google Scholar] [CrossRef]
- Aires-de-Sousa, M.; Lopes, E.; Gonçalves, M.L.; Pereira, A.L.; Machado e Costa, A.; de Lencastre, H.; Poirel, L. Intestinal carriage of extended-spectrum beta-lactamase-producing Enterobacteriaceae at admission in a Portuguese hospital. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Dioli, C.; Pappa, O.; Siatravani, E.; Bratakou, S.; Tatsiopoulos, A.; Giakkoupi, P.; Miriagou, V.; Beloukas, A. Molecular Characterization and Prevalence of Antimicrobial-Resistant Escherichia coli Isolates Derived from Clinical Specimens and Environmental Habitats. Microorganisms 2023, 11, 1399. [Google Scholar] [CrossRef]
- Protonotariou, E.; Meletis, G.; Papadopoulos, T.; Kagkalou, G.; Tychala, A.; Chattaway, A.M.; Mandilara, G.; Nair, S.; Skoura, L. Phenotypic and molecular characterization of blaCTX-M-3 and blaCTX-M-55-producing monophasic Salmonella enterica serovar Typhimurium in Greece. J. Glob. Antimicrob. Resist. 2022, 30, 75–80. [Google Scholar] [CrossRef]
- Shropshire, W.C.; Konovalova, A.; McDaneld, P.; Gohel, M.; Strope, B.; Sahasrabhojane, P.; Tran, C.N.; Greenberg, D.; Kim, J.; Zhan, X.; et al. Systematic Analysis of Mobile Genetic Elements Mediating β-Lactamase Gene Amplification in Noncarbapenemase-Producing Carbapenem-Resistant Enterobacterales Bloodstream Infections. mSystems 2022, 7, e0047622. [Google Scholar] [CrossRef] [PubMed]
- Nüesch-Inderbinen, M.; Heyvaert, L.; Cernela, N.; Zurfluh, K.; Biggel, M.; Stephan, R. Emergence of blaSHV-12 and qnrS1 encoded on IncX3 plasmids: Changing epidemiology of extended-spectrum ß-lactamases among Enterobacterales isolated from broilers. J. Glob. Antimicrob. Resist. 2023, 33, 194–200. [Google Scholar] [CrossRef]
- Avgere, E.; Zafeiridis, C.; Procter, K.A.; Beloukas, A.; Giakkoupi, P. Molecular Characterization of Escherichia coli Producing Extended-Spectrum ß-Lactamase and MCR-1 from Sick Pigs in a Greek Slaughterhouse. Antibiotics 2023, 12, 1625. [Google Scholar] [CrossRef] [PubMed]
- Giakoupi, P.; Maltezou, H.; Polemis, M.; Pappa, O.; Saroglou, G.; Vatopoulos, A. Greek System for the Surveillance of Antimicrobial Resistance. KPC-2-producing Klebsiella pneumoniae infections in Greek hospitals are mainly due to a hyperepidemic clone. Euro Surveill. 2009, 14, 19218. [Google Scholar] [CrossRef]
- Pournaras, S.; Protonotariou, E.; Voulgari, E.; Kristo, I.; Dimitroulia, E.; Vitti, D.; Tsalidou, M.; Maniatis, A.N.; Tsakris, A.; Sofianou, D. Clonal spread of KPC-2 carbapenemase-producing Klebsiella pneumoniae strains in Greece. J. Antimicrob. Chemother. 2009, 64, 348–352. [Google Scholar] [CrossRef] [PubMed]
- Guttman, D.S.; Dykhuizen, D.E. Clonal divergence in Escherichia coli as a result of recombination, not mutation. Science 1994, 266, 1380–1383. [Google Scholar] [CrossRef]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO: Geneva, Switzerland, 2017.
- ISO 16649-2:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of beta-glucuronidase-positive Escherichia coli—Part 2: Colony-Count Technique at 44 degrees C Using 5-bromo-4-chloro-3-indolyl beta-D-glucuronide. ISO: Geneva, Switzerland, 2001.
- Available online: https://www.eucast.org/ast_of_bacteria (accessed on 18 March 2025).
- Papagiannitsis, C.C.; Tryfinopoulou, K.; Giakkoupi, P.; Pappa, O.; Polemis, M.; Tzelepi, E.; Tzouvelekis, L.S.; Carbapenemase Study Group; Vatopoulos, A.C. Diversity of acquired β-lactamases amongst Klebsiella pneumoniae in Greek hospitals. Int. J. Antimicrob. Agents 2012, 39, 178–180. [Google Scholar] [CrossRef]
- Samrock, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Plainview, NY, USA, 1989; Volume 1, pp. 74–84. [Google Scholar]
- Barton, B.M.; Harding, G.P.; Zuccarelli, A.J. A general method for detecting and sizing large plasmids. Anal. Biochem. 1995, 226, 235–240. [Google Scholar] [CrossRef]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-depth characterization and visualization of bacterial genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef] [PubMed]
- Brown, C.L.; Mullet, J.; Hindi, F.; Stoll, J.E.; Gupta, S.; Choi, M.; Keenum, I.; Vikesland, P.; Pruden, A.; Zhang, L. mobileOG-db: A Manually Curated Database of Protein Families Mediating the Life Cycle of Bacterial Mobile Genetic Elements. Appl. Environ. Microbiol. 2022, 88, e0099122. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
I/N | Sample No | Source | Isolation Date | β-Lactamase | ST | PF-Type | Conjugation Rate | Transformation | S1-Size (kb) | PBRT (ESBL) | Other Resistant Traits (Bold Are Transferred) | Genes on Plasmid |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 384 | Bovine meat | 11 October 2021 | CTXM-1 | ST1400 | Ι | 10−6 | ND | 80 108 | Incl1 | SXT, CIP | |
2 | 386 | Chicken meat | 15 February 2022 | CTXM-1 | ST302 | ΙΙ | 10−6 | ND | 80 107,495 | Incl1-IA | TET | tet(A), sul2 |
3 | 389 | Bovine meat | 30 November 2021 | CTXM-15 TEM-1B | ST716 | III | NO | YES | 99,305 | IncY | SXT, TET, CIP, STR | sul2, aph(6)-Id, aph(3″)-Ib qnrS1, tet(A), dfrA14 |
4 | 390 | Chicken meat | 30 November 2021 | CTXM-15 | ST716 | III | NO | YES | 99,305 | IncY | SXT, TET, CIP, STR | |
5 | 404 | Chicken meat | 11 July 2022 | CTXM-15 | ST3 | IV | NO | NO | 95 | GN | ||
6 | 421 | Bovine meat | 10 August 2021 | CTXM-15 TEM-1B | ST3 | V | 10−5 | ND | 95,904 | Incl1-IA | SXT, GN, CIP | aac(3)-IId |
7 | 385 | Chicken meat | 15 February 2022 | CTXM-55 | ST132 | VI | NO | NO | 110 80 | SXT, TET, AK, C, CIP | ||
8 | 387 | Chicken meat | 22 February 2022 | CTXM-55 | ST901 | VII | NO | NO | 110 | SXT, TET, GN, C, CIP | ||
9 | 388 | Chicken meat | 29 November 2021 | CTXM-55 | ST31 | VIII | NO | NO | ND | TET, CIP | ||
10 | 422 | Chicken meat | 30 August 2022 | CTXM-55 | ST539 | IX | NO | NO | 110 | SXT, TET, C, CIP | ||
11 | 423 | Chicken meat | 29 August 2022 | CTXM-55 | ST31 | X | NO | NO | 50 60 80 110 | SXT, TET, AK, C, CIP | ||
12 | 402 | Chicken meat | 15 June 2022 | SHV-12 | ST539 | XI | 10−4 | ND | 48,724 | IncΧ3 | STR, CIP | aadA22, inuF, qnrS1 |
13 | 405 | Chicken meat | 24 June 2022 | SHV-12 | ST88 | XII | 10−4 | ND | 100 110 | IncI1 | SXT, TET | |
14 | 406 | Chicken meat | 26 July 2022 | SHV-12 | ST416 | XIII | 10−4 | ND | 110 | IncI1 | - | |
15 | 211842IV | Bovine meat | 10 August 2021 | NO | ND | ND | ND | ND | ND | ND | - | ND |
16 | 212074III | Bovine meat | 14 September 2021 | NO | ND | ND | ND | ND | ND | ND | - | ND |
17 | 212112I | Bovine meat | 16 September 2021 | NO | ND | ND | ND | ND | ND | ND | - | ND |
18 | 212113III | Bovine meat | 16 September 2021 | NO | ND | ND | ND | ND | ND | ND | - | ND |
19 | 212144 | Bovine meat | 21 September 2021 | TEM-1 | ND | ND | ND | ND | ND | ND | TIC, SXT | ND |
20 | 2122271I | Chicken meat | 4 October 2021 | TEM-1 | ND | ND | ND | ND | ND | ND | TIC, SXT, CIP | ND |
21 | 2122272I | Bovine meat | 4 October 2021 | NO | ND | ND | ND | ND | ND | ND | - | ND |
22 | 211476 | Bovine meat | 23 August 2021 | NO | ND | ND | ND | ND | ND | ND | - | ND |
23 | 212072 | Chicken meat | 14 September 2021 | NO | ND | ND | ND | ND | ND | ND | - | ND |
24 | 212763 | Porcine meat | 30 November 2021 | NO | ND | ND | ND | ND | ND | ND | - | ND |
25 | 220239 | Chicken meat | 15 February 2022 | NO | ND | ND | ND | ND | ND | ND | - | ND |
26 | 220240 | Bovine meat | 15 February 2022 | NO | ND | ND | ND | ND | ND | ND | - | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikaiou, A.; Tzimotoudis, N.; Sergelidis, D.; Papadogiannakis, E.; Giakkoupi, P. Molecular Characterization of Extended-Spectrum ß-Lactamases-Producing Escherichia coli Isolated from a Greek Food Testing Laboratory. Antibiotics 2025, 14, 329. https://doi.org/10.3390/antibiotics14040329
Dikaiou A, Tzimotoudis N, Sergelidis D, Papadogiannakis E, Giakkoupi P. Molecular Characterization of Extended-Spectrum ß-Lactamases-Producing Escherichia coli Isolated from a Greek Food Testing Laboratory. Antibiotics. 2025; 14(4):329. https://doi.org/10.3390/antibiotics14040329
Chicago/Turabian StyleDikaiou, Aikaterini, Nikolaos Tzimotoudis, Daniel Sergelidis, Emmanouil Papadogiannakis, and Panagiota Giakkoupi. 2025. "Molecular Characterization of Extended-Spectrum ß-Lactamases-Producing Escherichia coli Isolated from a Greek Food Testing Laboratory" Antibiotics 14, no. 4: 329. https://doi.org/10.3390/antibiotics14040329
APA StyleDikaiou, A., Tzimotoudis, N., Sergelidis, D., Papadogiannakis, E., & Giakkoupi, P. (2025). Molecular Characterization of Extended-Spectrum ß-Lactamases-Producing Escherichia coli Isolated from a Greek Food Testing Laboratory. Antibiotics, 14(4), 329. https://doi.org/10.3390/antibiotics14040329