Comparative Pharmacological Assessment of Amoxicillin in Five Cultured Fish Species: Implications for Off-Label Use in Aquaculture
Abstract
:1. Introduction
2. Results
2.1. Comparative In Vivo Efficacy of AMOX in Artificially Infected Fish
2.2. Species-Specific Residue Depletion and Withdrawal Periods of AMOX in Fish
3. Discussion
4. Materials and Methods
4.1. Chemicals and Reagents
4.2. Fish Species and Experimental Conditions
4.3. Oral Administration of AMOX
4.4. In Vivo Efficacy of AMOX in Artificially Infected Fish
4.5. Residue Depletion of AMOX in Fish Under Optimal and Suboptimal Conditions
4.6. HPLC–MS/MS Analysis of AMOX Residues in Fish Muscle
4.7. Data Representation, Survival Analysis, and Withdrawal Period Estimation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Long, A.A.W.; Nayler, J.H.C.; Smith, H.; Taylor, T.; Ward, N. Derivatives of 6-Aminopenicillanic Acid. Part XI. α-Amino-p-Hydroxy-Benzylpenicillin. J. Chem. Soc. C Org. Chem. 1971, 1920–1922. [Google Scholar] [CrossRef]
- Sutherland, R.; Croydon, E.A.P.; Rolinson, G.N. Amoxycillin: A New Semi-Synthetic Penicillin. Br. Med. J. 1972, 3, 13–16. [Google Scholar] [PubMed]
- Burch, D.G.S.; Sperling, D. Amoxicillin—Current Use in Swine Medicine. J. Vet. Pharmacol. Ther. 2018, 41, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Treves-Brown, K.M. Applied Fish Pharmacology; Springer Science & Business Media: Berlin, Germany, 2013; Volume 3, ISBN 9401707618. [Google Scholar]
- Jee, B.Y.; Shin, K.W.; Lee, D.W.; Kim, Y.J.; Lee, M.K. Monitoring of the Mortalities and Medications in the Inland Farms of Olive Flounder, Paralichthys Olivaceus, in South Korea. J. Fish. Pathol. 2014, 27, 77–83. [Google Scholar] [CrossRef]
- National Fishery Products Quality Management Service. Available online: https://www.nfqs.go.kr/apms/ebook/mice_ebook/index.html (accessed on 23 August 2022).
- Lee, S.J.; Park, S.C. Amoxicillin-Florfenicol Combination Reduces Mortality in Olive Flounder (Paralichthys olivaceus) Experimentally Infected by Streptococcus Iniae. Aquac. Res. 2015, 46, 2300–2304. [Google Scholar] [CrossRef]
- Seo, J.S.; Lee, J.H.; Park, J.J.; Choi, J.S.; Bae, J.S.; Lee, C.W.; Yang, C.Y.; Kang, Y.J.; Choi, S.H.; Park, K.H. Biochemical and Stress-Attenuating Effects of Butaphosphan-Cyanocobalamin Combination Drug in Olive Flounder Paralichthys Olivaceus. Fish. Sci. 2020, 86, 375–384. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, G.W.; Kang, H.W.; Hong, J.W.; Lee, H.E.; Kwon, M.G.; Seo, J.S. Influence of Intramuscular Injection Sites on Pharmacokinetics of Amoxicillin in Olive Flounder (Paralichthys olivaceus) and Its Implication for Antibacterial Efficacy. Pharmaceutics 2023, 15, 1153. [Google Scholar] [CrossRef]
- Seo, J.S.; Kwon, M.G.; Hwang, J.Y.; Hwang, S.D.; Kim, D.H.; Bae, J.S.; Park, K.H.; Lee, J.H. Estimation of Pharmacological Properties of Ceftiofur, an Injectable Cephalosporin Antibiotic, for Treatment of Streptococcosis in Cultured Olive Flounder Paralichthys Olivaceus. Aquac. Res. 2021, 52, 831–841. [Google Scholar] [CrossRef]
- Blom, L.; Rasmussen, F. Tissue Damage at the Injection Site after Intramuscular Injection of Drugs in Hens. Br. Poult. Sci. 1976, 17, 1–4. [Google Scholar] [CrossRef]
- Scott, G.; Law, M.; Christiansen, E.F.; Lewbart, G.A.; Harms, C.A. Evaluation of Localized Inflammatory Reactions Secondary to Intramuscular Injections of Enrofloxacin in Striped Bass (Morone saxatilis). J. Zoo Wildl. Med. 2020, 51, 46–52. [Google Scholar]
- Rasmussen, F.; Svendsen, O. Tissue Damage and Concentration at the Injection Site after Intramuscular Injection of Chemotherapeutics and Vehicles in Pigs. Res. Vet. Sci. 1976, 20, 55–60. [Google Scholar] [PubMed]
- Brachtel, R.; Meinertz, T. Local Skin Necroses after Intramuscular Injection—Experimental Animal Studies. Arch. Dermatol. Res. 1977, 258, 281–288. [Google Scholar] [PubMed]
- Rasmussen, F. Tissue Damage at the Injection Site after Intramuscular Injection of Drugs. Vet. Sci. Commun. 1978, 2, 173–182. [Google Scholar]
- Julinta, R.B.; Abraham, T.J.; Roy, A.; Singha, J.; Dash, G.; Nagesh, T.S.; Patil, P.K. Histopathology and Wound Healing in Oxytetracycline Treated Oreochromis niloticus (L.) Against Aeromonas Hydrophila Intramuscular Challenge. J. Aquac. Res. Dev. 2017, 8, 1000488. [Google Scholar] [CrossRef]
- Ang, C.Y.W.; Liu, F.F.; Lay, J.O.; Luo, W.; McKim, K.; Gehring, T.; Lochmann, R. Liquid Chromatographic Analysis of Incurred Amoxicillin Residues in Catfish Muscle Following Oral Administration of the Drug. J. Agric. Food Chem. 2000, 48, 1673–1677. [Google Scholar] [CrossRef]
- Park, E.K.; Jung, W.; Lee, H.J. Application of a Solid-Phase Fluorescence Immunoassay to Determine Amoxicillin Residues in Fish Tissue. Acta Vet. Hung. 2010, 58, 83–89. [Google Scholar] [CrossRef]
- Korean Statistical Information Service. Available online: https://kosis.kr/search/search.do (accessed on 2 August 2024).
- Son, K.T.; Jo, M.R.; Oh, E.G.; Mok, J.S.; Kwon, J.Y.; Lee, T.S.; Song, K.C.; Kim, P.H.; Lee, H.J. Residues of Ampicillin and Amoxicillin in Olive Flounder Paralichthys Olivaceus Following Oral Administration. Korean J. Fish. Aquat. Sci. 2011, 44, 464–469. [Google Scholar] [CrossRef]
- Noga, E.J. Fish Disease: Diagnosis and Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 0813806976. [Google Scholar]
- Kaur, S.P.; Rao, R.; Nanda, S. Amoxicillin: A Broad Spectrum Antibiotic. Int. J. Pharm. Pharm. Sci. 2011, 3, 30–37. [Google Scholar]
- Benbrook, C.M. Antibiotic Drug Use in U.S. Aquaculture; Antibiotic Use in Aquaculture 2; Institute for Agriculture and Trade Policy: Minneapolis, MN, USA, 2002. [Google Scholar]
- Jahan, F.; Faruk, M.; Azad, K. Use of Extra-Label Drugs in Commercial Aquaculture. J. Bangladesh Agric. Univ. 2021, 1, 160–167. [Google Scholar] [CrossRef]
- Rotschafer, J.C.; Zabinski, R.A.; Walker, K.J. Pharmacodynamic Factors of Antibiotic Efficacy. Pharmacother. J. Hum. Pharmacol. Drug Ther. 1992, 12, 64S–70S. [Google Scholar]
- Toutain, P.L.; Del Castillo, J.R.E.; Bousquet-Mélou, A. The Pharmacokinetic–Pharmacodynamic Approach to a Rational Dosage Regimen for Antibiotics. Res. Vet. Sci. 2002, 73, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Della Rocca, G.; Zaghini, A.; Zanoni, R.; Sanguinetti, V.; Zanchetta, S.; Di Salvo, A.; Malvisi, J. Seabream (Sparus aurata L.): Disposition of Amoxicillin after Single Intravenous or Oral Administration and Multiple Dose Depletion Studies. Aquaculture 2004, 232, 1–10. [Google Scholar] [CrossRef]
- Seo, J.S.; Jeon, E.J.; Jung, S.H.; Park, M.A.; Kim, N.Y. Pharmacokinetics of Amoxicillin Trihydrate in Cultured Olive Flounder (Paralichthys olivaceus). J. Vet. Pharmacol. Ther. 2015, 38, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Jeon, E.J.; Seo, J.S.; Kim, J.D.; Jung, S.H.; Kim, M.S.; Hwang, J.Y.; Park, M.A.; Jee, B.Y.; Kim, J.W.; Kim, Y.C. Pharmacokinetics of Amoxicillin Trihydrate in Cultured Eel Anguilla Japonica by Single Oral and Intravenous Administrations. J. Fish. Pathol. 2010, 23, 357–367. [Google Scholar]
- Vogelman, B.; Craig, W.A. Kinetics of Antimicrobial Activity. J. Pediatr. 1986, 108, 835–840. [Google Scholar] [CrossRef]
- Silley, P.; Brewster, G. Kill Kinetics of the Cephalosporin Antibiotics Cephalexin and Cefuroxime against Bacteria of Veterinary Importance. Vet. Rec. 1988, 123, 343–345.f. [Google Scholar] [CrossRef]
- Craig, W.A. Choosing an Antibiotic on the Basis of Pharmacodynamics. Ear Nose Throat J. 1998, 77. [Google Scholar]
- Lim, J.W.; Jung, M.H.; Jung, S.J.; Kim, D.H.; Park, K.H.; Kang, S.Y. The Efficacy of Amoxicillin Sodium against Streptococcosis in Cultured Olive Flounder Paralichthys Olivaceus and Its Pharmacokinetics. J. Vet. Pharmacol. Ther. 2017, 40, 77–87. [Google Scholar] [CrossRef]
- Ellis, A.E.; Roberts, R.J.; Tytler, P. The Anatomy and Physiology of Teleosts; W.B. Saunders: London, UK, 1978. [Google Scholar]
- Yang, F.; Yang, F.; Wang, G.; Kong, T.; Wang, H.; Zhang, C. Effects of Water Temperature on Tissue Depletion of Florfenicol and Its Metabolite Florfenicol Amine in Crucian Carp (Carassius Auratus Gibelio) Following Multiple Oral Doses. Aquaculture 2020, 515, 734542. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, C.W.; Kim, G.W.; Seo, J.S.; Kwon, M.G.; Bae, J.S.; Yang, C.Y.; Jeong, E.H. Oral Pharmacokinetic Profile and Withdrawal Time Estimation for Tylosin Tartrate in the Cultured Olive Flounder Paralichthys Olivaceus. Aquac. Rep. 2022, 26, 101332. [Google Scholar] [CrossRef]
- Rammelkamp, C.H.; Helm Jr, J.D. Studies on the Absorption of Penicillin from the Stomach. Proc. Soc. Exp. Biol. Med. 1943, 54, 324–327. [Google Scholar] [CrossRef]
- Wright, A.J. The Penicillins. Mayo Clin. Proc. 1999, 74, 290–307. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Cheng, B.; Li, M.; Lin, Z.; Ai, X. Withdrawal Interval Estimation of Doxycycline in Yellow Catfish (Pelteobagrus fulvidraco) Using an Lc-Ms/Ms Method Based upon Quechers Sampling Preparation. Foods 2021, 10, 2554. [Google Scholar] [CrossRef] [PubMed]
- Takii, K.; Konishi, K.; Ukawa, M.; Nakamura, M.; Kumai, H. Comparison of Digestive and Absorptive Functions between Tiger Puffer and Red Sea Bream. Fish. Sci. 1997, 63, 349–354. [Google Scholar] [CrossRef]
- Rairat, T.; Lu, Y.P.; Ho, W.C.; Ke, H.J.; Chou, C.C. Pharmacokinetics, Optimal Dosages and Withdrawal Time of Amoxicillin in Nile Tilapia (Oreochromis niloticus) Reared at 25 and 30 °C. Vet. Q. 2024, 44, 1–9. [Google Scholar] [CrossRef]
- Vinh, P.Q.; Phu, T.M.; Oanh, D.T.H.; Duyen, H.T.K.; Thinh, N.Q. Pharmacokinetics and Withdrawal Time of Amoxicillin in Striped Catfish (Pagasianodon hypophthalmus) after Oral Administration. AACL Bioflux 2024, 17. [Google Scholar]
- National Fishery Products Quality Management Service. Available online: https://www.nfqs.go.kr/hpmg/board/actionBoardDetail.do?menuId=M0000215&ORD_NO=4239 (accessed on 24 February 2021).
- Eldar, A.; Horovitcz, A.; Bercovier, H. Veterinary Immunology and Immunopathology Development Streptococcus and Efficacy of a Vaccine against Iniae Infection in Farmed Rainbow Trout. Vet. Immunol. Lmmunopathology 1997, 56, 175–183. [Google Scholar] [CrossRef]
- Kang, S.H.; Shin, G.W.; Shin, Y.S.; Palaksha, K.J.; Kim, Y.R.; Yang, H.H.; Lee, E.Y.; Lee, E.G.; Huh, N.E.; Oh, M.J.; et al. Experimental Evaluation of Pathogenicity of Lactococcus Garvieae in Black Rockfish (Sebastes schlegeli). J. Vet. Sci. 2004, 5, 387–390. [Google Scholar] [CrossRef]
- Kim, M.S.; Jin, J.W.; Han, H.J.; Choi, H.S.; Hong, S.; Cho, J.Y. Genotype and Virulence of Streptococcus Iniae Isolated from Diseased Olive Flounder Paralichthys Olivaceus in Korea. Fish. Sci. 2014, 80, 1277–1284. [Google Scholar] [CrossRef]
- Pirollo, T.; Perolo, A.; Mantegari, S.; Barbieri, I.; Scali, F.; Alborali, G.L.; Salogni, C. Mortality in Farmed European Eel (Anguilla anguilla) in Italy Due to Streptococcus Iniae. Acta Vet. Scand. 2023, 65, 5. [Google Scholar] [CrossRef]
- Park, S.C.; Heo, G.J. Efficacy of Ciprofloxacin for the Control of Streptococcal Infection in Cultured Fish, Flounder (Paralichtyhs olivaceus) and Eel (Anguilla japonica). Korean J. Vet. Res. 2004, 44, 643–648. [Google Scholar]
- Kusuda, R.; Kawai, K.; Matsui, T. Etiological Studies on Bacterial Pseudotuberculosis in Cultured Yellowtail with Pasteurella Piscicida as the Causative Agent—II On the Serological Properties. Fish. Pathol. 1978, 13, 79–83. [Google Scholar]
- Sae-oui, D.; Muroga, K.; Nakai, T. A Case of Edwardsiella Tarda Infection in Cultured Colored Carp Cyprinus Carpio. Fish. Pathol. 1984, 19, 197–199. [Google Scholar]
- Ministry of Food and Drug Safety. Korea Food Standards Codex. Available online: http://www.foodsafetykorea.go.kr/foodcode/01_01.jsp (accessed on 21 February 2021).
- European Agency for the Evaluation of Medicinal Products Note for Guidance on Approach Towards Harmonization of Withdrawal Periods for Meat-Updated Application Software. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/note-guidance-approach-towards-harmonisation-withdrawal-periods-updated-application-software_en.pdf (accessed on 15 May 2002).
Fish Species | Test Groups | Mortality (%) (Dead Fish/Total Fish) | RPS a (%) | p-Value b |
---|---|---|---|---|
Olive flounder | Control (7 days) | 100.0 (15/15) | NA | NA |
40 mg/kg (7 days) | 0.0 (00/15) | 100.0 | <0.0001 | |
80 mg/kg (7 days) | 0.0 (00/15) | 100.0 | <0.0001 | |
Rainbow trout | Control (7 days) | 53.3 (8/15) | NA | NA |
40 mg/kg (7 days) | 13.3 (2/15) | 75.5 | <0.05 | |
80 mg/kg (7 days) | 6.7 (1/15) | 86.8 | <0.01 | |
Japanese eel | Control (7 days) | 73.3 (11/15) | NA | NA |
40 mg/kg (7 days) | 13.3 (2/15) | 82.2 | <0.005 | |
80 mg/kg (7 days) | 20.0 (3/15) | 72.6 | <0.005 | |
Black rockfish | Control (7 days) | 55.0 (11/20) | NA | NA |
40 mg/kg (7 days) | 15.0 (3/20) | 72.7 | <0.05 | |
80 mg/kg (7 days) | 40.0 (8/20) | 27.3 | 0.4512 | |
Israeli carp | Control (7 days) | 60.0 (9/15) | NA | NA |
40 mg/kg (7 days) | 40.0 (6/15) | 33.3 | 0.5369 | |
80 mg/kg (7 days) | 40.0 (6/15) | 33.3 | 0.4720 |
Dosage (mg/kg) and Temperature a | Days | Muscle Concentration (µg/kg) | ||||
---|---|---|---|---|---|---|
Olive Flounder | Rainbow Trout | Japanese Eel | Black Rockfish | Israeli Carp | ||
40 mg/kg at optimal temperature | 1 | 514 ± 571 (15/15) | 347 ± 362 (15/15) | - | 298 ± 909 (13/15) | - |
3 | 41 ± 24 (15/15) | 9 ± 17 (7/15) | 49 ± 92 (11/15) | <LOQ | 289 ± 283 (15/15) | |
7 | 0 ± 1 (1/15) | <LOQ | <LOQ | <LOQ | 52 ± 34 (15/15) | |
14 | <LOQ | 1 ± 3 (1/15) | 3 ± 8 (2/15) | <LOQ | 15 ± 11 (12/15) | |
28 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
42 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
40 mg/kg at sub-optimal temperature | 1 | 222 ± 279 (15/15) | 239 ± 273 (15/15) | - | 116 ± 148 (14/15) | - |
3 | 5 ± 7 (6/15) | 76 ± 238 (9/15) | 56 ± 108 (9/15) | <LOQ | 248 ± 172 (15/15) | |
7 | <LOQ | 3 ± 6 (4/15) | 14 ± 33 (4/15) | <LOQ | 162 ± 114 (15/15) | |
14 | <LOQ | <LOQ | 3 ± 8 (2/15) | <LOQ | 39 ± 19 (15/15) | |
28 | <LOQ | <LOQ | <LOQ | <LOQ | 5 ± 8 (6/15) | |
42 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ | |
80 mg/kg at optimal temperature | 1 | 1129 ± 953 (15/15) | 746 ± 782 (15/15) | - | 786 ± 2013 (10/15) | - |
3 | 80 ± 44 (14/15) | 43 ± 90 (8/15) | 69 ± 152 (9/15) | <LOQ | 442 ± 366 (15/15) | |
7 | 2 ± 5 (3/15) | 2 ± 5 (3/15) | 3 ± 4 (5/15) | <LOQ | 273 ± 368 (15/15) | |
14 | <LOQ | <LOQ | 1 ± 3 (1/15) | <LOQ | 102 ± 75 (15/15) | |
28 | <LOQ | <LOQ | <LOQ | <LOQ | 12 ± 17 (8/15) | |
42 | <LOQ | <LOQ | <LOQ | <LOQ | <LOQ |
Fish Species | Withdrawal Time (Days) | ||
---|---|---|---|
Optimal Temperature | Sub-Optimal Temperature | ||
AMOX 40 mg/kg | AMOX 80 mg/kg | AMOX 40 mg/kg | |
Olive flounder | 6.1 days (22 °C) | 6.3 days (22 °C) | 6.6 days (13 °C) |
Rainbow trout | 7.0 days (15 °C) | 7.8 days (15 °C) | 7.5 days (22 °C) |
Japanese eel | 9.4 days (28 °C) | 10.5 days (28 °C) | 16.3 days (20 °C) |
Black rockfish | 7.4 days (15 °C) | 11.5 days (15 °C) | 6.4 days (22 °C) |
Israeli carp | 29.2 days (25 °C) | 33.5 days (25 °C) | 29.1 days (13 °C) |
Fish Species | Bacterial Strain | Strain Code | Challenge Dose (CFU/Fish) | Reference |
---|---|---|---|---|
Olive flounder | Streptococcus iniae | KCTC3657 | 1.0 × 106 | [46] |
Rainbow trout | S. iniae | KCTC3657 | 8.2 × 106 | [44] |
Japanese eel | S. iniae | KCTC3657 | 1.0 × 107 | [47,48,49] |
Black rockfish | Lactococcus garvieae | NIFS-20FBLac0001 | 4.4 × 107 | [45] |
Israeli carp | Edwardsiella piscicida | KCTC 12267 | 2.0 × 108 | [50] |
Fish Species | Spiked Level (μg/kg) | Inter-Day (n = 3) | LOQ (μg/kg) | |
---|---|---|---|---|
Accuracy (% Recovery) | Precision (% CV) | |||
Olive flounder | 5 | 83.8 ± 4.1 | 4.8 | 5 |
50 | 84.7 ± 1.1 | 13.1 | ||
Rainbow trout | 5 | 75.8 ± 9.4 | 12.4 | 5 |
50 | 85.7 ± 4.7 | 5.5 | ||
Japanese eel | 5 | 83.8 ± 5.8 | 6.9 | 5 |
50 | 104.4 ± 17.2 | 16.5 | ||
Black rockfish | 10 | 75.2 ± 3.6 | 4.8 | 10 |
100 | 85.1 ± 6.4 | 7.6 | ||
Israeli carp | 5 | 78.9 ± 4.0 | 5.0 | 5 |
50 | 87.4 ± 5.8 | 6.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, J.S.; Lee, C.W.; Yang, C.Y.; Jeong, E.H.; Kim, B.; Park, K.H.; Seo, J.S.; Kwon, M.-G.; Lee, J.-H. Comparative Pharmacological Assessment of Amoxicillin in Five Cultured Fish Species: Implications for Off-Label Use in Aquaculture. Antibiotics 2025, 14, 346. https://doi.org/10.3390/antibiotics14040346
Bae JS, Lee CW, Yang CY, Jeong EH, Kim B, Park KH, Seo JS, Kwon M-G, Lee J-H. Comparative Pharmacological Assessment of Amoxicillin in Five Cultured Fish Species: Implications for Off-Label Use in Aquaculture. Antibiotics. 2025; 14(4):346. https://doi.org/10.3390/antibiotics14040346
Chicago/Turabian StyleBae, Jun Sung, Chae Won Lee, Chan Yeong Yang, Eun Ha Jeong, Bosung Kim, Kwan Ha Park, Jung Soo Seo, Mun-Gyeong Kwon, and Ji-Hoon Lee. 2025. "Comparative Pharmacological Assessment of Amoxicillin in Five Cultured Fish Species: Implications for Off-Label Use in Aquaculture" Antibiotics 14, no. 4: 346. https://doi.org/10.3390/antibiotics14040346
APA StyleBae, J. S., Lee, C. W., Yang, C. Y., Jeong, E. H., Kim, B., Park, K. H., Seo, J. S., Kwon, M.-G., & Lee, J.-H. (2025). Comparative Pharmacological Assessment of Amoxicillin in Five Cultured Fish Species: Implications for Off-Label Use in Aquaculture. Antibiotics, 14(4), 346. https://doi.org/10.3390/antibiotics14040346