A Prospective Analysis of the Burden of Multi-Drug-Resistant Pathogens in Acute Appendicitis and Their Implication for Clinical Management
Abstract
:1. Introduction
2. Results
2.1. Incidence of MDROs in Rectal and Appendiceal Swab Specimens
2.2. Microbiological Spectrum and Antibiotic Resistance in Appendiceal Swabs
2.3. Diagnostics and Clinical Findings
2.4. Postoperative Complications and Antibiotic Treatment
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Patients
4.3. Diagnosis, Surgical Procedure, and Histopathology
4.4. Microbiological Analysis
4.5. Follow-Up
4.6. Definitions
4.7. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | Acute appendicitis |
ASA | American Society of Anesthesiologists |
BMI | Body mass index |
CDC | Centers for Disease Control and Prevention |
ESBLs | Extended-spectrum β-lactamases |
EUCAST | European Committee on Antimicrobial Susceptibility Testing |
MDGRN | Multi-drug-resistant Gram-negative bacteria |
MDR | Multi-drug resistance |
MRDOs | Multi-drug-resistant organisms |
MRSA | Methicillin-resistant Staphylococcus aureus |
SSIs | Surgical site infections |
VRE | Vancomycin-resistant Enterococcus |
References
- Humes, D.J.; Simpson, J. Acute Appendicitis. BMJ 2006, 333, 530–534. [Google Scholar] [CrossRef] [PubMed]
- Butler, C. Surgical Pathology of Acute Appendicitis. Hum. Pathol. 1981, 12, 870–878. [Google Scholar] [CrossRef]
- Walker, A.R.P.; Segal, I. What Causes Appendicitis? J. Clin. Gastroenterol. 1990, 12, P127–P129. [Google Scholar] [CrossRef]
- Larner, A.J. The Aetiology of Appendicitis. Br. J. Hosp. Med. 1988, 39, 540–542. [Google Scholar]
- Mehdorn, M.; Kolbe-Busch, S.; Lippmann, N.; Moulla, Y.; Scheuermann, U.; Jansen-Winkeln, B.; Chaberny, I.F.; Gockel, I.; Kassahun, W.T. Rectal Colonization Is Predictive for Surgical Site Infections with Multidrug-Resistant Bacteria in Abdominal Surgery. Langenbecks Arch. Surg. 2023, 408, 230. [Google Scholar] [CrossRef]
- Poprom, N.; Wilasrusmee, C.; Attia, J.; McEvoy, M.; Thakkinstian, A.; Rattanasiri, S. Comparison of Postoperative Complications between Open and Laparoscopic Appendectomy: An Umbrella Review of Systematic Reviews and Meta-Analyses. J. Trauma Acute Care Surg. 2020, 89, 813–820. [Google Scholar] [CrossRef]
- Wu, T.; Yang, Y.; Wu, Y.; Lu, L.; Dong, S. Complications after Appendectomy in Patients with Treated Appendicitis: Results from a Retrospective Study. Ann. Palliat. Med. 2021, 10, 12546–12553. [Google Scholar] [CrossRef]
- Sartelli, M.; Baiocchi, G.L.; Di Saverio, S.; Ferrara, F.; Labricciosa, F.M.; Ansaloni, L.; Coccolini, F.; Vijayan, D.; Abbas, A.; Abongwa, H.K.; et al. Prospective Observational Study on Acute Appendicitis Worldwide (POSAW). World J. Emerg. Surg. 2018, 13, 19. [Google Scholar] [CrossRef]
- Sturdivant, M.; Downs, P.; Lara-Gutierrez, J.; Maalouf, M.; Esper, C.; Gilleland, W.; Henwood, J.; Myers, C.; Giuseppucci, P. Defining a Relationship Between Postoperative Antibiotic Use and Wound Complications in the Setting of an Uncomplicated Laparoscopic Appendectomy. Cureus 2023, 15, E40603. [Google Scholar] [CrossRef]
- De Wijkerslooth, E.M.L.; van Den Boom, A.L.; Wijnhoven, B.P.L. Variation in Classification and Postoperative Management of Complex Appendicitis: A European Survey. World J. Surg. 2019, 43, 439–446. [Google Scholar] [CrossRef]
- Reinisch, A.; Malkomes, P.; Habbe, N.; Bechstein, W.O.; Liese, J. Bad Bacteria in Acute Appendicitis: Rare but Relevant. Int. J. Color. Dis. 2017, 32, 1303–1311. [Google Scholar] [CrossRef] [PubMed]
- Son, J.T.; Lee, G.C.; Kim, H.O.; Kim, T.; Lee, D.; Lee, S.R.; Jung, K.U.; Kim, H.; Chun, H.-K. Routine Intraoperative Bacterial Culture May Be Needed in Complicated Appendicitis. Ann. Coloproctology 2020, 36, 155–162. [Google Scholar] [CrossRef]
- Gatermann, S.; Kresken, M.; Kern, V. Antibiotika-Empfindlichkeit: Grenzwerte Sind Hilfreich. Dtsch. Arztebl. 2017, 114, A-1314/B-1094/C-1072. [Google Scholar]
- The European Committee on Antimicrobial Susceptibility Testing—EUCAST. Available online: https://www.eucast.org (accessed on 5 February 2025).
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of Surgical Complications. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Syn, N.L. Long-Term Follow-up of Antibiotics vs Surgery for Appendicitis. JAMA 2019, 321, 706–707. [Google Scholar] [CrossRef]
- De Wijkerslooth, E.M.L.; Boerma, E.G.; van Rossem, C.C.; van Rosmalen, J.; Baeten, C.I.M.; Beverdam, F.H.; Bosmans, J.W.A.M.; Consten, E.C.J.; Dekker, J.W.T.; Emous, M.; et al. 2 Days versus 5 Days of Postoperative Antibiotics for Complex Appendicitis: A Pragmatic, Open-Label, Multicentre, Non-Inferiority Randomised Trial. Lancet 2023, 401, 366–376. [Google Scholar] [CrossRef]
- Kakar, M.; Reinis, A.; Kroica, J.; Engelis, A.; Broks, R.; Asare, L.; Vermeulen, M.; Senica, S.O.; Saxena, A.; Petersons, A. Microbiota Assessment of Pediatric Simple and Complex Acute Appendicitis. Medicina 2022, 58, 1144. [Google Scholar] [CrossRef]
- Coccolini, F.; D’Amico, G.; Sartelli, M.; Catena, F.; Montori, G.; Ceresoli, M.; Manfredi, R.; Di Saverio, S.; Ansaloni, L. Antibiotic Resistance Evaluation and Clinical Analysis of Acute Appendicitis; Report of 1431 Consecutive Worldwide Patients: A Cohort Study. Int. J. Surg. 2016, 26, 6–11. [Google Scholar] [CrossRef]
- Lob, S.H.; Badal, R.E.; Bouchillon, S.K.; Hawser, S.P.; Hackel, M.A.; Hoban, D.J. Epidemiology and Susceptibility of Gram-Negative Appendicitis Pathogens: SMART 2008-2010. Surg. Infect. 2013, 14, 203–208. [Google Scholar] [CrossRef]
- Reinheimer, C.; Abdollahi, P.; Zacharowski, K.; Meybohm, P.; Mutlak, H.; Klingebiel, T.; Wichelhaus, T.A.; Kempf, V.A.J. Prevalence of Multidrug-Resistant Organisms in Refugee Patients Admitted to a German University Hospital Depending on Duration of Stay in Germany. GMS Hyg. Infect. Control. 2019, 14, Doc07. [Google Scholar] [CrossRef]
- Prävention Postoperativer Wundinfektionen. Empfehlung Der Kommission Für Krankenhaushygiene Und Infektionsprävention (KRINKO) Beim Robert-Koch-Institut. Bgbl 2018, 61, 448–473. [Google Scholar]
- Hu, A.; Li, J.; Vacek, J.; Bouchard, M.; Ingram, M.-C.; McMahon, M.; Mithal, L.B.; Raval, M.V.; Reynolds, M.; Goldstein, S. Antibiotic Resistance Is Common in the Cultures of Intraabdominal Abscess Drainage after Appendectomy Author Links Open Overlay Panel. J. Pediatr. Surg. 2022, 57, 102–106. [Google Scholar] [PubMed]
- Peña, M.E.; Sadava, E.E.; Laxague, F.; Schlottmann, F. Usefulness of Intraoperative Culture Swabs in Laparoscopic Appendectomy for Complicated Appendicitis. Langenbecks Arch. Surg. 2020, 405, 691–695. [Google Scholar] [CrossRef]
- Foo, F.J.; Beckingham, I.J.; Ahmed, I. Intra-Operative Culture Swabs in Acute Appendicitis: A Waste of Resources. Surgeon 2008, 6, 278–281. [Google Scholar] [CrossRef]
- Di Mitri, M.; Collautti, E.; Thomas, E.; Di Carmine, A.; Veronesi, G.; Cravano, S.M.; D’Antonio, S.; Ambretti, S.; Campoli, C.; Bisanti, C.; et al. The Care of Appendicular Peritonitis in the Era of Antibiotic Resistance: The Role of Surgery and the Appropriate Antibiotic Choice. Gastrointest. Disord. 2024, 6, 964–975. [Google Scholar] [CrossRef]
- German Clinical Trials Register. Available online: https://drks.de/search/de/trial/DRKS00028610 (accessed on 5 February 2025).
- ISO 15189:2021; Medical Laboratories—Requirements for Quality and Competence. ISO: Geneva, Switzerland, 2021.
- Reinheimer, C.; Kempf, V.A.J.; Göttig, S.; Hogardt, M.; Wichelhaus, T.A.; O’Rourke, F.; Brandt, C. Multidrug-Resistant Organisms Detected in Refugee Patients Admitted to a University Hospital, Germany June–December 2015. Eurosurveillance 2016, 21, 30110. [Google Scholar] [CrossRef]
- Statement on American Society of Anesthesiologists Physical Status Classification System 2014. Available online: https://www.asahq.org/resources/clinical-information/asa-physical-status-classification-system (accessed on 5 February 2025).
- Horan, T.C.; Gaynes, R.P.; Martone, W.J.; Jarvis, W.R.; Emori, T.G. CDC Definitions of Nosocomial Surgical Site Infections, 1992: A Modification of CDC Definitions of Surgical Wound Infections. Infect. Control Hosp. Epidemiol. 1992, 13, 606–608. [Google Scholar] [CrossRef]
- Gomes, C.A.; Sartelli, M.; Di Saverio, S.; Ansaloni, L.; Catena, F.; Coccolini, F.; Inaba, K.; Demetriades, D.; Gomes, F.C.; Gomes, C.C. Acute Appendicitis: Proposal of a New Comprehensive Grading System Based on Clinical, Imaging and Laparoscopic Findings. World J. Emerg. Surg. 2015, 10, 60. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Pletz, M.; Eckmann, C.; Hagel, S.; Heppner, H.; Huber, K.; Kämmerer, W.; Schmitz, F.-J.; Wilke, M.; Grabein, B. Multiresistente Erreger—Infektionsmanagement 2015. Dtsch. Med. Wochenschr. 2015, 140, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Kommission Für Krankenhaushygiene Und Infektionsprävention Beim Robert Koch-Institut (KRINKO) Definition Der Multiresistenz Gegenüber Antibiotika Bei Gramnegativen Stäbchen Im Hinblick Auf Maßnahmen Zur Vermeidung Der Weiterverbreitung. Available online: https://edoc.rki.de/bitstream/handle/176904/1807/26x93hzijmm8o.pdf?isallowed=y&sequence=1 (accessed on 5 February 2025).
Multi-Drug-Resistant Organisms | Only Rectal | Appendiceal and Rectal | Only Appendiceal | Total |
---|---|---|---|---|
Escherichia coli (ESBL-R) | 3 | 2 | 0 | 5 |
Escherichia coli (3MRGN) | 1 | 0 | 0 | 1 |
Escherichia coli (ESBL-R and 3MRGN) | 3 | 1 | 0 | 4 |
Pseudomonas aeruginosa | 0 | 1 | 1 | 2 |
Vancomycin-resistant Enterococci | 1 | 0 | 0 | 1 |
Bordetella hinzii | 0 | 0 | 1 | 1 |
Total MDROs | 8 | 4 | 2 | 14 |
Appendiceal Swab | Total (n = 105) |
---|---|
Escherichia coli | 49 (46.7) |
-ESBL-R | 2 (1.9) |
-ESBL-R and 3MRGN | 2 (1.9) |
Bacteroides spp. | 32 (30.4) |
Enterococcus spp. | 18 (17.1) |
Streptococcus spp. | 9 (8.5) |
Klebsiella spp. | 5 (4.5) |
Pseudomonas aeruginosa | 8 (7.6) |
-3MRGN | 1 (1) |
Staphylococcus spp. | 5 (4.9) |
-Staphylococcus aureus | 2 (1.9) |
-Staphylococcus lugdunensis | 2 (1.9) |
-Staphylococcus epidermidis | 1 (1) |
Cutibacterium spp. | 3 (2.9) |
Citrobacter spp. | 3 (2.9) |
Clostridium innocuum | 2 (1.9) |
Bordetella hinzii | 1 (1) |
Serratia marcescens | 1 (1) |
Schaalia turicensis | 1 (1) |
Eghertella lenta | 1 (1) |
Corynebacterium propinquum | 1 (1) |
Candida spp. | 5 (4.8) |
Appendiceal Swab | Total (n = 105) |
---|---|
Non-MDR | 79 (72.4) |
No resistance | 59 (56.2) |
Resistance | 46 (43.8) |
1 antibiotic | 17 (16.2) |
Ampicillin | 6 (5.7) |
Ampicillin/sulbactam | 4 (3.8) |
Clindamycin | 3 (2.9) |
Fosfomycin | 2 (1.9) |
Ciprofloxacin | 1 (1) |
Metronidazole | 1 (1) |
MDR | 29 (27.6) |
Resistance to 2 antibiotics | 12 (11.4) |
Penicillin G and clindamycin | 1 (1) |
Penicillin G and cotrimoxazole | 1 (1) |
Penicillin and piperacillin | 1 (1) |
Ampicillin and fosfomycin | 1 (1) |
Ampicillin and imipenem | 1 (1) |
Ampicillin/sulbactam and cefuroxime | 3 (2.9) |
Ampicillin/sulbactam and cotrimoxazole | 2 (1.9) |
Ampicillin/sulbactam and imipeneme | 1 (1) |
Piperacillin and ciprofloxacin | 1 (1) |
Resistance to ≥3 antibiotics | 11 (10.5) |
Penicillin, oxacillin, and cefuroxime | 1 (1) |
Ampicillin/sulbactam, ciprofloxacin, and cotrimoxazole | 1 (1) |
Ampicillin/sulbactam, gentamicin, and cotrimoxazole | 1 (1) |
Ampicillin/sulbactam, ciprofloxacin, and levofloxacin | 1 (1) |
Ampicillin/sulbactam, clindamycin, and cotrimoxazole | 1 (1) |
Ampicillin/sulbactam, cefotaxime, ciprofloxacin, and cotrimoxazole | 1 (1) |
Ampicillin/sulbactam, cefotaxime, ciprofloxacin, and levofloxacin | 1 (1) |
Ampicillin/sulbactam, piperacillin/tazobactam, and cefuroxime | 1 (1) |
Ampicillin/sulbactam, piperacillin/tazobactam, and clindamycin | 2 (1.9) |
Ampicillin, piperacillin, cefotaxime, and fosfomycin | 1 (1) |
MDROs according to CDC | 6 (5.7) |
Ampicillin/sulbactam, cefotaxime, ciprofloxacin, and gentamicin | 1 (1) |
Ampicillin/sulbactam, cefotaxime, ciprofloxacin, and imipenem | 1 (1) |
Ampicillin/sulbactam, ESBL-R, and cotrimoxazole | 1 (1) |
Ampicillin/sulbactam, piperacillin/tazobactam, cefotaxime, and meropenem | 1 (1) |
Ampicillin/sulbactam, ESBL-R, cefotaxime, and imipenem | 1 (1) |
Piperacillin, cefepime, levofloxacin, and tobramycin | 1 (1) |
Variables | Total (n = 105) | Non-MDR (n = 76) | MDR (n = 29) | p Value |
---|---|---|---|---|
Alvarado score | 0.91 | |||
Median | 8 | 8 | 8 | |
Range | 0–10 | 0–10 | 2–10 | |
C-reactive protein [mg/dL] | 0.82 | |||
Mean | 5.9 | 5.7 | 6.3 | |
Range | 0–39.5 | 0–32.9 | 0.1–39.5 | |
Leukocytes [/µL] | 0.89 | |||
Mean | 13.1 | 13.1 | 13.1 | |
Range | 0.2–26.6 | 0.2–26.6 | 6–19.6 | |
CT/MRI scan, n (%) | 63 (60) | 43 (56.6) | 20 (69) | |
CT | 59 (56.2) | 40 (52.6) | 19 (65.5) | 0.28 |
MRI | 4 (3.8) | 3 (2.9) | 1 (3.4) | |
Duration from symptom onset to surgery [hours], n (%) | 0.02 | |||
<12 | 7 (6.7) | 6 (7.9) | 1 (3.4) | |
12–24 | 21 (20) | 19 (25) | 2 (6.9) | |
>24 | 77 (73.3) | 51 (67.1) | 26 (89.7) | |
Complexity, n (%) | 0.09 | |||
Uncomplicated appendicitis | 70 (66.7) | 54 (71.1) | 16 (55.2) | |
Complicated appendicitis | 35 (33.3) | 22 (28.9) | 13 (44.8) | |
Abdominal abscess | 10 (9.5) | 7 (9.2) | 3 (10.3) |
Grade | Definition |
---|---|
1 | Any deviation from the normal postoperative course without the need for pharmacological treatment or intervention |
2 | Requiring pharmacological treatment |
3 | Requiring surgical, endoscopic, or radiological intervention |
3a | Intervention not under general anesthesia |
3b | Intervention under general anesthesia |
4 | Life-threatening complication requiring admission to intermediate or intensive care unit |
5 | Death of a patient |
Variables | Total (n = 105) | Non-MDR (n = 76) | MDR (n = 29) | p Value |
---|---|---|---|---|
Postoperative complications (Clavien–Dindo), n (%) | 17 (16.2) | 8 (10.5) | 9 (31) | 0.02 |
Grade 1 | 8 (7.6) | 5 (6.6) | 3 (10.3) | 0.52 |
Grade 2 | 2 (1.9) | 1 (1.3) | 1 (3.4) | 0.48 |
Grade 3a and 3b | 7 (6.7) | 2 (2.6) | 5 (17.2) | 0.01 |
Surgical site infections (SSIs), n (%) | 15 (14.3) | 8 (10.5) | 7 (24.1) | 0.12 |
Superficial | 10 (9.5) | 7 (9.2) | 3 (10.3) | 0.86 |
Deep incisional | 1 (1) | 0 | 1 (3.4) | 0.28 |
Organ/space | 4 (3.8) | 1 (1.3) | 3 (10.3) | 0.03 |
Length of hospital stay [days], median (IQR) | 3 (3) | 3 (3) | 4 (5) | 0.03 |
Postoperative antibiotics, n (%) | 50 (47.6) | 31 (40.8) | 19 (65.5) | 0.03 |
Antibiotic duration [days], median (IQR) | 7 (5) | 6 (3) | 8 (7) | 0.46 |
Antibiotic switch, n (%) | 23 (21.9) | 12 (15.8) | 11 (37.9) | 0.02 |
Switch to oral antibiotics | 13 (12.4) | 9 (11.8) | 5 (26.3) | 0.31 |
Antibiotic escalation | 13 (12.4) | 5 (6.6) | 8 (27.6) | 0.01 |
Type of antibiotics used, n (%) | ||||
Cefuroxime/metronidazole | 23 (21.9) | 16 (21.1) | 7 (24.1) | 0.79 |
Piperacillin/tazobactam or 3rd generation ceph. | 7 (6.7) | 3 (3.9) | 4 (13.8) | 0.09 |
Reserve antibiotics *, n (%) | 6 (5.7) | 2 (2.6) | 4 (13.8) | 0.048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koca, F.; Faqar-Uz-Zaman, S.F.; Reinheimer, C.; Hogardt, M.; Kempf, V.A.J.; Ziegler, P.; Schnitzbauer, A.A.; Wiegering, A.; Bechstein, W.O.; Malkomes, P. A Prospective Analysis of the Burden of Multi-Drug-Resistant Pathogens in Acute Appendicitis and Their Implication for Clinical Management. Antibiotics 2025, 14, 378. https://doi.org/10.3390/antibiotics14040378
Koca F, Faqar-Uz-Zaman SF, Reinheimer C, Hogardt M, Kempf VAJ, Ziegler P, Schnitzbauer AA, Wiegering A, Bechstein WO, Malkomes P. A Prospective Analysis of the Burden of Multi-Drug-Resistant Pathogens in Acute Appendicitis and Their Implication for Clinical Management. Antibiotics. 2025; 14(4):378. https://doi.org/10.3390/antibiotics14040378
Chicago/Turabian StyleKoca, Faruk, Sara Fatima Faqar-Uz-Zaman, Claudia Reinheimer, Michael Hogardt, Volkhard A. J. Kempf, Paul Ziegler, Andreas A. Schnitzbauer, Armin Wiegering, Wolf Otto Bechstein, and Patrizia Malkomes. 2025. "A Prospective Analysis of the Burden of Multi-Drug-Resistant Pathogens in Acute Appendicitis and Their Implication for Clinical Management" Antibiotics 14, no. 4: 378. https://doi.org/10.3390/antibiotics14040378
APA StyleKoca, F., Faqar-Uz-Zaman, S. F., Reinheimer, C., Hogardt, M., Kempf, V. A. J., Ziegler, P., Schnitzbauer, A. A., Wiegering, A., Bechstein, W. O., & Malkomes, P. (2025). A Prospective Analysis of the Burden of Multi-Drug-Resistant Pathogens in Acute Appendicitis and Their Implication for Clinical Management. Antibiotics, 14(4), 378. https://doi.org/10.3390/antibiotics14040378