Analysis of ESAC-Net/EARS-Net Data from 29 EEA Countries for Spatiotemporal Associations Between Antimicrobial Use and Resistance—Implications for Antimicrobial Stewardship?
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Resistance in Each EEA Country
3.2. Associations Between Overall Antibiotic Use and Resistance
3.3. Associations Between Tetracycline Use and Resistance
3.4. Associations Between Penicillin Use and Resistance
3.5. Associations Between Cephalosporin Use and Resistance
3.6. Associations Between Carbapenem Use and Resistance
3.7. Associations Between Sulphonamide/Trimethoprim Use and Resistance
3.8. Associations Between Macrolide Use and Resistance
3.9. Associations Between Lincosamide Use and Resistance
3.10. Associations Between Aminoglycoside Use and Resistance
3.11. Associations Between Quinolone Use and Resistance
3.12. Associations Between Glycopeptide Use and Resistance
3.13. Associations Between Nitroimidazole Use and Resistance
3.14. Associations Between Nitrofuran Use and Resistance
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharland, M.; Cappello, B.; Ombajo, L.A.; Bazira, J.; Chitatanga, R.; Chuki, P.; Gandra, S.; Harbarth, S.; Loeb, M.; Mendelson, M.; et al. The WHO AWaRe Antibiotic Book: Providing guidance on optimal use and informing policy. Lancet Infect. Dis. 2022, 22, 1528–1530. [Google Scholar] [CrossRef] [PubMed]
- Sharland, M.; Gandra, S.; Huttner, B.; Moja, L.; Pulcini, C.; Zeng, M.; Mendelson, M.; Cappello, B.; Cooke, G.; Magrini, N.; et al. Encouraging AWaRe-ness and discouraging inappropriate antibiotic use-the new 2019 Essential Medicines List becomes a global antibiotic stewardship tool. Lancet Infect. Dis. 2019, 19, 1278–1280. [Google Scholar] [CrossRef] [PubMed]
- Moja, L.; Zanichelli, V.; Mertz, D.; Gandra, S.; Cappello, B.; Cooke, G.S.; Chuki, P.; Harbarth, S.; Pulcini, C.; Mendelson, M.; et al. WHO’s essential medicines and AWaRe: Recommendations on first- and second-choice antibiotics for empiric treatment of clinical infections. Clin. Microbiol. Infect. 2024, 30 (Suppl. S2), S1–S51. [Google Scholar] [CrossRef] [PubMed]
- Zanichelli, V.; Sharland, M.; Cappello, B.; Moja, L.; Getahun, H.; Pessoa-Silva, C.; Sati, H.; van Weezenbeek, C.; Balkhy, H.; Simão, M.; et al. The WHO AWaRe (Access, Watch, Reserve) antibiotic book and prevention of antimicrobial resistance. Bull. World Health Organ. 2023, 101, 290–296. [Google Scholar] [CrossRef] [PubMed Central]
- Yonga, P.; Pulcini, C.; Skov, R.; Paño-Pardo, J.R.; Schouten, J. The case for the access, watch, and reserve (AWaRe) universal guidelines for antibiotic use. Clin. Microbiol. Infect. 2024, 30, 848–849. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A. Antibiotic resistance. Control strategies. Crit. Care Clin. 1998, 14, 309–327. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A. Strategies to control antibiotic resistance. Semin. Respir. Infect. 2002, 17, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.R. Squeezing the antibiotic balloon: The impact of antimicrobial classes on emerging resistance. Clin. Microbiol. Infect. 2005, 11 (Suppl. S5), 4–16. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Heritage, J.; Wilcox, M.; Sandoe, J. Antimicrobial resistance potential. Lancet 2001, 358, 1099–1100. [Google Scholar] [CrossRef] [PubMed]
- Levy, S.B. Antimicrobial resistance potential. Lancet 2001, 358, 1100–1101. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A. Antimicrobial Resistance Potential. Lancet 2001, 358, 1101. [Google Scholar] [CrossRef]
- Musser, J.M.; Beres, S.B.; Zhu, L.; Olsen, R.J.; Vuopio, J.; Hyyryläinen, H.L.; Gröndahl-Yli-Hannuksela, K.; Kristinsson, K.G.; Darenberg, J.; Henriques-Normark, B.; et al. Reduced In Vitro Susceptibility of Streptococcus pyogenes to β-Lactam Antibiotics Associated with Mutations in the pbp2x Gene Is Geographically Widespread. J. Clin. Microbiol. 2020, 58, e01993-19. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vannice, K.S.; Ricaldi, J.; Nanduri, S.; Fang, F.C.; Lynch, J.B.; Bryson-Cahn, C.; Wright, T.; Duchin, J.; Kay, M.; Chochua, S.; et al. Streptococcus pyogenes pbp2x Mutation Confers Reduced Susceptibility to β-Lactam Antibiotics. Clin. Infect. Dis. 2020, 71, 201–204. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Munch-Petersen, E.; Boundy, C. Yearly incidence of penicillin-resistant staphylococci in man since 1942. Bull. World Health Organ. 1962, 26, 241–252. [Google Scholar] [PubMed] [PubMed Central]
- Wilson, R.; Cockcroft, W.H. The problem of penicillin resistant staphylococcal infection. Can. Med. Assoc. J. 1952, 66, 548–551. [Google Scholar] [PubMed] [PubMed Central]
- Barber, M.; Rozwadowska-Dowzenko, M. Infection by penicillin-resistant staphylococci. Lancet 1948, 2, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Appelbaum, P.C. Antimicrobial resistance in Streptococcus pneumoniae: An overview. Clin. Infect. Dis. 1992, 15, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.M. Incidence of gonococci relatively resistant to penicillin occurring in the Southampton area of England during 1958 to 1965. Br J Vener Dis. 1968, 44, 80–81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Oppenheim, B.A. Antibiotic resistance in Neisseria meningitidis. Clin. Infect. Dis. 1997, 24 (Suppl. S1), S98–S101. [Google Scholar] [CrossRef] [PubMed]
- Bryan, C.S.; John, J.F., Jr.; Pai, M.S.; Austin, T.L. Gentamicin vs cefotaxime for therapy of neonatal sepsis. Relationship to drug resistance. Am. J. Dis. Child. 1985, 139, 1086–1089. [Google Scholar] [CrossRef] [PubMed]
- De Champs, C.; Sauvant, M.P.; Chanal, C.; Sirot, D.; Gazuy, N.; Malhuret, R.; Baguet, J.C.; Sirot, J. Prospective survey of colonization and infection caused by expanded-spectrum-beta-lactamase-producing members of the family Enterobacteriaceae in an intensive care unit. J. Clin. Microbiol. 1989, 27, 2887–2890. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- De Champs, C.; Sirot, D.; Chanal, C.; Poupart, M.C.; Dumas, M.P.; Sirot, J. Concomitant dissemination of three extended-spectrum beta-lactamases among different Enterobacteriaceae isolated in a French hospital. J. Antimicrob. Chemother. 1991, 27, 441–457. [Google Scholar] [CrossRef] [PubMed]
- Pechère, J.C. Resistance to third generation cephalosporins: The current situation. Infection 1989, 17, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Ballow, C.H.; Schentag, J.J. Trends in antibiotic utilization and bacterial resistance. Report of the National Nosocomial Resistance Surveillance Group. Diagn. Microbiol. Infect. Dis. 1992, 15 (Suppl. S2), 37S–42S. [Google Scholar] [CrossRef] [PubMed]
- Finnström, O.; Isaksson, B.; Haeggman, S.; Burman, L.G. Control of an outbreak of a highly beta-lactam-resistant Enterobacter cloacae strain in a neonatal special care unit. Acta Paediatr. 1998, 87, 1070–1074. [Google Scholar] [CrossRef] [PubMed]
- Dancer, S.J. The problem with cephalosporins. J. Antimicrob. Chemother. 2001, 48, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Fukatsu, K.; Saito, H.; Matsuda, T.; Ikeda, S.; Furukawa, S.; Muto, T. Influences of type and duration of antimicrobial prophylaxis on an outbreak of methicillin-resistant Staphylococcus aureus and on the incidence of wound infection. Arch. Surg. 1997, 132, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Tacconelli, E.; De Angelis, G.; Cataldo, M.A.; Pozzi, E.; Cauda, R. Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J. Antimicrob. Chemother. 2008, 61, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Bassetti, M.; Righi, E.; Ansaldi, F.; Molinari, M.P.; Rebesco, B.; McDermott, J.L.; Fasce, R.; Mussap, M.; Icardi, G.; Bobbio Pallavicini, F.; et al. Impact of limited cephalosporin use on prevalence of methicillin-resistant Staphylococcus aureus in the intensive care unit. J. Chemother. 2009, 21, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Washio, M.; Mizoue, T.; Kajioka, T.; Yoshimitsu, T.; Okayama, M.; Hamada, T.; Yoshimura, T.; Fujishima, M. Risk factors for methicillin-resistant Staphylococcus aureus (MRSA) infection in a Japanese geriatric hospital. Public Health 1997, 111, 187–190. [Google Scholar] [CrossRef] [PubMed]
- Quale, J.; Landman, D.; Saurina, G.; Atwood, E.; DiTore, V.; Patel, K. Manipulation of a hospital antimicrobial formulary to control an outbreak of vancomycin-resistant enterococci. Clin. Infect. Dis. 1996, 23, 1020–1025. [Google Scholar] [CrossRef] [PubMed]
- May, A.K.; Melton, S.M.; McGwin, G.; Cross, J.M.; Moser, S.A.; Rue, L.W. Reduction of vancomycin-resistant enterococcal infections by limitation of broad-spectrum cephalosporin use in a trauma and burn intensive care unit. Shock 2000, 14, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Ulrich, N.; Vonberg, R.P.; Gastmeier, P. Outbreaks caused by vancomycin-resistant Enterococcus faecium in hematology and oncology departments: A systematic review. Heliyon 2017, 3, e00473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Holden, M.T.; Hsu, L.Y.; Kurt, K.; Weinert, L.A.; Mather, A.E.; Harris, S.R.; Strommenger, B.; Layer, F.; Witte, W.; de Lencastre, H.; et al. A genomic portrait of the emergence, evolution, and global spread of a methicillin-resistant Staphylococcus aureus pandemic. Genome Res. 2013, 23, 653–664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wilcox, M.H.; Chalmers, J.D.; Nord, C.E.; Freeman, J.; Bouza, E. Role of cephalosporins in the era of Clostridium difficile infection. J. Antimicrob. Chemother. 2017, 72, 1–18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gerding, D.N. Clindamycin, cephalosporins, fluoroquinolones, and Clostridium difficile-associated diarrhea: This is an antimicrobial resistance problem. Clin. Infect. Dis. 2004, 38, 646–648. [Google Scholar] [CrossRef] [PubMed]
- Nelson, D.E.; Auerbach, S.B.; Baltch, A.L.; Desjardin, E.; Beck-Sague, C.; Rheal, C.; Smith, R.P.; Jarvis, W.R. Epidemic Clostridium difficile-associated diarrhea: Role of second- and third-generation cephalosporins. Infect. Control Hosp. Epidemiol. 1994, 15, 88–94, Erratum in Infect. Control Hosp. Epidemiol. 1994, 15, 366. [Google Scholar] [CrossRef] [PubMed]
- Owens, R.C., Jr.; Donskey, C.J.; Gaynes, R.P.; Loo, V.G.; Muto, C.A. Antimicrobial-associated risk factors for Clostridium difficile infection. Clin. Infect. Dis. 2008, 46 (Suppl. S1), S19–S31. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, A.; Pant, C.; Jain, A.; Fraser, T.G.; Rolston, D.D. Do fluoroquinolones predispose patients to Clostridium difficile associated disease? A review of the evidence. Curr. Med. Res. Opin. 2008, 24, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Sulis, G.; Sayood, S.; Katukoori, S.; Bollam, N.; George, I.; Yaeger, L.H.; Chavez, M.A.; Tetteh, E.; Yarrabelli, S.; Pulcini, C.; et al. Exposure to World Health Organization’s AWaRe antibiotics and isolation of multidrug resistant bacteria: A systematic review and meta-analysis. Clin. Microbiol. Infect. 2022, 28, 1193–1202. [Google Scholar] [CrossRef] [PubMed]
- Acar, J. Broad- and narrow-spectrum antibiotics: An unhelpful categorization. Clin. Microbiol. Infect. 1997, 3, 395–396. [Google Scholar] [CrossRef] [PubMed]
- van Saene, R.; Fairclough, S.; Petros, A. Broad- and narrow-spectrum antibiotics: A different approach. Clin. Microbiol. Infect. 1998, 4, 56–57. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Cesar, A.; Snow, T.A.C.; Saleem, N.; Arulkumaran, N.; Singer, M. Efficacy of Doxycycline for Mild-to-Moderate Community-Acquired Pneumonia in Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Infect. Dis. 2023, 76, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Cevik, M.; Russell, C.D.; Evans, M. Comment on: Doxycycline in UK guidelines for hospital-acquired pneumonia: Where is the evidence base? J. Antimicrob. Chemother. 2019, 74, 1765–1766. [Google Scholar] [CrossRef] [PubMed]
- Ailani, R.K.; Agastya, G.; Ailani, R.K.; Mukunda, B.N.; Shekar, R. Doxycycline is a cost-effective therapy for hospitalized patients with community-acquired pneumonia. Arch. Intern. Med. 1999, 159, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Mokabberi, R.; Haftbaradaran, A.; Ravakhah, K. Doxycycline vs. levofloxacin in the treatment of community-acquired pneumonia. J. Clin. Pharm. Ther. 2010, 35, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Ludlam, H.A.; Enoch, D.A. Doxycycline or moxifloxacin for the management of community-acquired pneumonia in the UK? Int. J. Antimicrob. Agents 2008, 32, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.N.; Sader, H.S.; Fritsche, T.R. Doxycycline use for community-acquired pneumonia: Contemporary in vitro spectrum of activity against Streptococcus pneumoniae (1999–2002). Diagn. Microbiol. Infect. Dis. 2004, 49, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Musher, D.M. Doxycycline to Treat Community-Acquired Pneumonia. Clin. Infect. Dis. 2023, 76, 692–693. [Google Scholar] [CrossRef] [PubMed]
- Duggar, B.M. Aureomycin: A product of the continuing search for new antibiotics. Ann. N. Y. Acad. Sci. 1948, 51, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Finlay, A.C.; Hobby, G.L.; P’an, S.Y.; Regna, P.P.; Routien, J.B.; Seeley, D.B.; Shull, G.M.; Sobin, B.A.; Solomons, I.A.; Vinson, J.W.; et al. Terramycin, a new antibiotic. Science 1950, 111, 85. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, J.; Bartz, Q.R.; Smith, R.M.; Joslyn, D.A.; Burkholder, P.R. Chloromycetin, a New Antibiotic From a Soil Actinomycete. Science 1947, 106, 417. [Google Scholar] [CrossRef] [PubMed]
- Petrikkos, G.; Markogiannakis, A.; Papapareskevas, J.; Daikos, G.L.; Stefanakos, G.; Zissis, N.P.; Avlamis, A. Differences in the changes in resistance patterns to third-and fourth-generation cephalosporins and piperacillin/tazobactam among Klebsiella pneumoniae and Escherichia coli clinical isolates following a restriction policy in a Greek tertiary care hospital. Int. J. Antimicrob. Agents 2007, 29, 34–38. [Google Scholar] [CrossRef]
- Bantar, C.; Vesco, E.; Heft, C.; Salamone, F.; Krayeski, M.; Gomez, H.; Coassolo, M.A.; Fiorillo, A.; Franco, D.; Arango, C.; et al. Replacement of broad-spectrum cephalosporins by piperacillin-tazobactam: Impact on sustained high rates of bacterial resistance. Antimicrob. Agents Chemother. 2004, 48, 392–395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, J.; Pai, H.; Kim, Y.K.; Kim, N.H.; Eun, B.W.; Kang, H.J.; Park, K.H.; Choi, E.H.; Shin, H.Y.; Kim, E.C.; et al. Control of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a children’s hospital by changing antimicrobial agent usage policy. J. Antimicrob. Chemother. 2007, 60, 629–637. [Google Scholar] [CrossRef] [PubMed]
- Carrié, C.; Bardonneau, G.; Petit, L.; Ouattara, A.; Gruson, D.; Pereira, B.; Biais, M. Piperacillin-tazobactam should be preferred to third-generation cephalosporins to treat wild-type inducible AmpC-producing Enterobacterales in critically ill patients with hospital or ventilator-acquired pneumonia. J. Crit. Care 2020, 56, 6–11. [Google Scholar] [CrossRef] [PubMed]
- Stearne, L.E.; van Boxtel, D.; Lemmens, N.; Goessens, W.H.; Mouton, J.W.; Gyssens, I.C. Comparative study of the effects of ceftizoxime, piperacillin, and piperacillin-tazobactam concentrations on antibacterial activity and selection of antibiotic-resistant mutants of Enterobacter cloacae and Bacteroides fragilis in vitro and in vivo in mixed-infection abscesses. Antimicrob. Agents Chemother. 2004, 48, 1688–1698. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gamage, H.K.A.H.; Venturini, C.; Tetu, S.G.; Kabir, M.; Nayyar, V.; Ginn, A.N.; Roychoudhry, B.; Thomas, L.; Brown, M.; Holmes, A.; et al. Third generation cephalosporins and piperacillin/tazobactam have distinct impacts on the microbiota of critically ill patients. Sci. Rep. 2021, 11, 7252. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Smith, D.W. Decreased antimicrobial resistance after changes in antibiotic use. Pharmacotherapy 1999, 19 Pt 2, 129S–132S, discussion 133S–137S. [Google Scholar] [CrossRef] [PubMed]
- Barry, A.L.; Pfaller, M.A.; Fuchs, P.C. The antibacterial activity of co-amoxiclav. J. Antimicrob. Chemother. 1993, 31, 612–615. [Google Scholar] [CrossRef] [PubMed]
- Gerding, D.N. Is there a relationship between vancomycin-resistant enterococcal infection and Clostridium difficile infection? Clin. Infect. Dis. 1997, 25 (Suppl. S2), S206–S210. [Google Scholar] [CrossRef] [PubMed]
- Al-Nassir, W.N.; Sethi, A.K.; Li, Y.; Pultz, M.J.; Riggs, M.M.; Donskey, C.J. Both oral metronidazole and oral vancomycin promote persistent overgrowth of vancomycin-resistant enterococci during treatment of Clostridium difficile-associated disease. Antimicrob. Agents Chemother. 2008, 52, 2403–2406. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhalla, A.; Pultz, N.J.; Ray, A.J.; Hoyen, C.K.; Eckstein, E.C.; Donskey, C.J. Antianaerobic antibiotic therapy promotes overgrowth of antibiotic-resistant, gram-negative bacilli and vancomycin-resistant enterococci in the stool of colonized patients. Infect. Control Hosp. Epidemiol. 2003, 24, 644–649. [Google Scholar] [CrossRef] [PubMed]
- MacIntyre, C.R.; Empson, M.; Boardman, C.; Sindhusake, D.; Lokan, J.; Brown, G.V. Risk factors for colonization with vancomycin-resistant enterococci in a Melbourne hospital. Infect. Control Hosp. Epidemiol. 2001, 22, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Donskey, C.J.; Rice, L.B. The influence of antibiotics on spread of vancomycin-resistant enterococci: The potential role of selective use of antibiotics as a control measure. Clin. Microbiol. Newsl. 1999, 21, 57–65. [Google Scholar] [CrossRef]
- Carmeli, Y.; Eliopoulos, G.M.; Samore, M.H. Antecedent treatment with different antibiotic agents as a risk factor for vancomycin-resistant Enterococcus. Emerg. Infect. Dis. 2002, 8, 802–807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Han, J.H.; Nachamkin, I.; Zaoutis, T.E.; Coffin, S.E.; Linkin, D.R.; Fishman, N.O.; Weiner, M.G.; Hu, B.; Tolomeo, P.; Lautenbach, E. Risk factors for gastrointestinal tract colonization with extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella species in hospitalized patients. Infect. Control Hosp. Epidemiol. 2012, 33, 1242–1245. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vibet, M.A.; Roux, J.; Montassier, E.; Corvec, S.; Juvin, M.E.; Ngohou, C.; Lepelletier, D.; Batard, E. Systematic analysis of the relationship between antibiotic use and extended-spectrum beta-lactamase resistance in Enterobacteriaceae in a French hospital: A time series analysis. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 1957–1963. [Google Scholar] [CrossRef] [PubMed]
- Boutrot, M.; Azougagh, K.; Guinard, J.; Boulain, T.; Barbier, F. Antibiotics with activity against intestinal anaerobes and the hazard of acquired colonization with ceftriaxone-resistant Gram-negative pathogens in ICU patients: A propensity score-based analysis. J. Antimicrob. Chemother. 2019, 74, 3095–3103. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.C.; Arakkal, A.T.; Sewell, D.K.; Segre, A.M.; Tholany, J.; Polgreen, P.M.; CDC MInD-Healthcare Group. Comparison of Different Antibiotics and the Risk for Community-Associated Clostridioides difficile Infection: A Case-Control Study. Open Forum Infect. Dis. 2023, 10, ofad413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brown, K.A.; Khanafer, N.; Daneman, N.; Fisman, D.N. Meta-analysis of antibiotics and the risk of community-associated Clostridium difficile infection. Antimicrob. Agents Chemother. 2013, 57, 2326–2332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Deshpande, A.; Pasupuleti, V.; Thota, P.; Pant, C.; Rolston, D.D.; Sferra, T.J.; Hernandez, A.V.; Donskey, C.J. Community-associated Clostridium difficile infection and antibiotics: A meta-analysis. J. Antimicrob. Chemother. 2013, 68, 1951–1961. [Google Scholar] [CrossRef] [PubMed]
- EARS-NET. Antimicrobial Resistance Surveillance in Europe 2023–2021 Data. Stockholm: European Centre for Disease Prevention and Control and World Health Organization. 2023. Available online: https://www.ecdc.europa.eu/en/publications-data/antimicrobial-resistance-surveillance-europe-2023-2021-data (accessed on 29 January 2025).
- ESAC-NET. Antimicrobial Consumption Dashboard. Available online: https://www.ecdc.europa.eu/en/antimicrobial-consumption/surveillance-and-disease-data/database (accessed on 29 January 2025).
- Levy, S.B. Evolution and spread of tetracycline resistance determinants. J. Antimicrob. Chemother. 1989, 24, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Leflon-Guibout, V.; Jurand, C.; Bonacorsi, S.; Espinasse, F.; Guelfi, M.C.; Duportail, F.; Heym, B.; Bingen, E.; Nicolas-Chanoine, M.H. Emergence and spread of three clonally related virulent isolates of CTX-M-15-producing Escherichia coli with variable resistance to aminoglycosides and tetracycline in a French geriatric hospital. Antimicrob. Agents Chemother. 2004, 48, 3736–3742. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kanwar, N.; Scott, H.M.; Norby, B.; Loneragan, G.H.; Vinasco, J.; McGowan, M.; Cottell, J.L.; Chengappa, M.M.; Bai, J.; Boerlin, P. Effects of ceftiofur and chlortetracycline treatment strategies on antimicrobial susceptibility and on tet(A), tet(B), and bla CMY-2 resistance genes among E. coli isolated from the feces of feedlot cattle. PLoS ONE 2013, 8, e80575. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carpenter, L.; Miller, S.; Flynn, E.; Choo, J.M.; Collins, J.; Shoubridge, A.P.; Gordon, D.; Lynn, D.J.; Whitehead, C.; Leong, L.E.X.; et al. Exposure to doxycycline increases risk of carrying a broad range of enteric antimicrobial resistance determinants in an elderly cohort. J. Infect. 2024, 89, 106243. [Google Scholar] [CrossRef] [PubMed]
- Truong, R.; Tang, V.; Grennan, T.; Tan, D.H.S. A systematic review of the impacts of oral tetracycline class antibiotics on antimicrobial resistance in normal human flora. JAC Antimicrob. Resist. 2022, 4, dlac009. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kantele, A.; Lääveri, T.; Mero, S.; Vilkman, K.; Pakkanen, S.H.; Ollgren, J.; Antikainen, J.; Kirveskari, J. Antimicrobials increase travelers’ risk of colonization by extended-spectrum betalactamase-producing Enterobacteriaceae. Clin. Infect. Dis. 2015, 60, 837–846. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ruppé, E.; Armand-Lefèvre, L.; Estellat, C.; Consigny, P.H.; El Mniai, A.; Boussadia, Y.; Goujon, C.; Ralaimazava, P.; Campa, P.; Girard, P.M.; et al. High Rate of Acquisition but Short Duration of Carriage of Multidrug-Resistant Enterobacteriaceae After Travel to the Tropics. Clin. Infect. Dis. 2015, 61, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Lauhio, A.; Tervahartiala, T.; Leppilahti, J.; Golub, L.M.; Ryan, M.E.; Sorsa, T. The Use of Doxycycline and Tetracycline in Extended-Spectrum β-Lactamase-Producing Enterobacteriaceae Colonization. Clin. Infect. Dis. 2015, 61, 1031. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.M.; Bercot, B.; Assoumou, L.; Rubenstein, E.; Algarte-Genin, M.; Pialoux, G.; Katlama, C.; Surgers, L.; Bébéar, C.; Dupin, N.; et al. Doxycycline prophylaxis and meningococcal group B vaccine to prevent bacterial sexually transmitted infections in France (ANRS 174 DOXYVAC): A multicentre, open-label, randomised trial with a 2 × 2 factorial design. Lancet Infect. Dis. 2024, 24, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Vanbaelen, T.; Manoharan-Basil, S.S.; Kenyon, C. Studies of post-exposure prophylaxis with doxycycline should consider population-level selection for antimicrobial resistance. Lancet Infect. Dis. 2024, 24, e606–e607. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.G.; Bustetter, L.A.; Gorbach, S.L.; Onderdonk, A.B. Comparative effect of tetracycline and doxycycline on the occurrence of resistant Escherichia coli in the fecal flora. Antimicrob. Agents Chemother. 1975, 7, 55–57. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Russell, C.D.; Koch, O.; Laurenson, I.F.; O’Shea, D.T.; Sutherland, R.; Mackintosh, C.L. Diagnosis and features of hospital-acquired pneumonia: A retrospective cohort study. J. Hosp. Infect. 2016, 92, 273–279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Uddin, M.; Mohammed, T.; Metersky, M.; Anzueto, A.; Alvarez, C.A.; Mortensen, E.M. Effectiveness of Beta-Lactam plus Doxycycline for Patients Hospitalized with Community-Acquired Pneumonia. Clin. Infect. Dis. 2022, 75, 118–124. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lee, H.; Choi, Y.Y.; Sohn, Y.J.; Kim, Y.K.; Han, M.S.; Yun, K.W.; Kim, K.; Park, J.Y.; Choi, J.H.; Cho, E.Y.; et al. Clinical Efficacy of Doxycycline for Treatment of Macrolide-Resistant Mycoplasma pneumoniae Pneumonia in Children. Antibiotics 2021, 10, 192. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Reda, C.; Quaresima, T.; Pastoris, M.C. In-vitro activity of six intracellular antibiotics against Legionella pneumophila strains of human and environmental origin. J. Antimicrob. Chemother. 1994, 33, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Jasper, A.S.; Musuuza, J.S.; Tischendorf, J.S.; Stevens, V.W.; Gamage, S.D.; Osman, F.; Safdar, N. Are Fluoroquinolones or Macrolides Better for Treating Legionella Pneumonia? A Systematic Review and Meta-analysis. Clin. Infect. Dis. 2021, 72, 1979–1989. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Isenman, H.; Anderson, T.; Chambers, S.T.; Podmore, R.G.; Murdoch, D.R. Antimicrobial susceptibilities of clinical Legionella longbeachae isolates. J. Antimicrob. Chemother. 2018, 73, 1102–1104. [Google Scholar] [CrossRef] [PubMed]
- White, C.R.; Jodlowski, T.Z.; Atkins, D.T.; Holland, N.G. Successful Doxycycline Therapy in a Patient With Escherichia coli and Multidrug-Resistant Klebsiella pneumoniae Urinary Tract Infection. J. Pharm. Pract. 2017, 30, 464–467. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A. Oral doxycycline for non-systemic urinary tract infections (UTIs) due to P. aeruginosa and other Gram negative uropathogens. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2865–2868. [Google Scholar] [CrossRef] [PubMed]
- Chastain, D.B.; King, S.T.; Stover, K.R. Rethinking urinary antibiotic breakpoints: Analysis of urinary antibiotic concentrations to treat multidrug resistant organisms. BMC Res. Notes. 2018, 11, 497. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Benavides, T.M.; Aden, J.K.; Giancola, S.E. Evaluating outcomes associated with revised fluoroquinolone breakpoints for Enterobacterales urinary tract infections: A retrospective cohort study. Eur. J. Clin. Microbiol. Infect. Dis. 2022, 41, 741–749. [Google Scholar] [CrossRef] [PubMed]
- Mulder, M.; Verbon, A.; Lous, J.; Goessens, W.; Stricker, B.H. Use of other antimicrobial drugs is associated with trimethoprim resistance in patients with urinary tract infections caused by E. coli. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 2283–2290. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pouwels, K.B.; Freeman, R.; Muller-Pebody, B.; Rooney, G.; Henderson, K.L.; Robotham, J.V.; Smieszek, T. Association between use of different antibiotics and trimethoprim resistance: Going beyond the obvious crude association. J. Antimicrob. Chemother. 2018, 73, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Steinke, D.T.; Seaton, R.A.; Phillips, G.; MacDonald, T.M.; Davey, P.G. Prior trimethoprim use and trimethoprim-resistant urinary tract infection: A nested case-control study with multivariate analysis for other risk factors. J. Antimicrob. Chemother. 2001, 47, 781–787. [Google Scholar] [CrossRef] [PubMed]
- Hillier, S.; Roberts, Z.; Dunstan, F.; Butler, C.; Howard, A.; Palmer, S. Prior antibiotics and risk of antibiotic-resistant community-acquired urinary tract infection: A case-control study. J. Antimicrob. Chemother. 2007, 60, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Skarpeid, P.L.; Høye, S. Phenoxymethylpenicillin Versus Amoxicillin for Infections in Ambulatory Care: A Systematic Review. Antibiotics 2018, 7, 81. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Plejdrup Hansen, M.; Høye, S.; Hedin, K. Antibiotic treatment recommendations for acute respiratory tract infections in Scandinavian general practices-time for harmonization? Scand. J. Prim. Health Care 2025, 43, 205–208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rhedin, S.; Kvist, B.; Caffrey Osvald, E.; Karte, G.; Smew, A.I.; Nauclér, P.; Lundholm, C.; Almqvist, C. Penicillin V versus amoxicillin for pneumonia in children-a Swedish nationwide emulated target trial. Clin. Microbiol. Infect. 2024, 30, 1418–1425. [Google Scholar] [CrossRef] [PubMed]
- Rhedin, S.; Galanis, I.; Granath, F.; Ternhag, A.; Hedlund, J.; Spindler, C.; Naucler, P. Narrow-spectrum ß-lactam monotherapy in hospital treatment of community-acquired pneumonia: A register-based cohort study. Clin. Microbiol. Infect. 2017, 23, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Llor, C.; Pérez, A.; Carandell, E.; García-Sangenís, A.; Rezola, J.; Llorente, M.; Gestoso, S.; Bobé, F.; Román-Rodríguez, M.; Cots, J.M.; et al. Efficacy of high doses of penicillin versus amoxicillin in the treatment of uncomplicated community acquired pneumonia in adults. A non-inferiority controlled clinical trial. Aten. Primaria 2019, 51, 32–39. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Thegerström, J.; Månsson, V.; Riesbeck, K.; Resman, F. Benzylpenicillin versus wide-spectrum beta-lactam antibiotics as empirical treatment of Haemophilus influenzae-associated lower respiratory tract infections in adults; a retrospective propensity score-matched study. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1761–1775. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maddi, S.; Kolsum, U.; Jackson, S.; Barraclough, R.; Maschera, B.; Simpson, K.D.; Pascal, T.G.; Durviaux, S.; Hessel, E.M.; Singh, D. Ampicillin resistance in Haemophilus influenzae from COPD patients in the UK. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 1507–1518. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murphy, T.F.; Brauer, A.L.; Grant, B.J.; Sethi, S. Moraxella catarrhalis in chronic obstructive pulmonary disease: Burden of disease and immune response. Am. J. Respir. Crit. Care Med. 2005, 172, 195–199. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Geddes, A.M.; Gould, I.M. Ampicillin, amoxicillin and other ampicillin-like penicillins. In Kucers’ the Use of Antibiotics, 6th ed.; Hodder Arnold: London, UK, 2010; p. 65. [Google Scholar]
- Sonne, M.; Jawetz, E. Comparison of the action of ampicillin and benzylpenicillin on enterococci in vitro. Appl. Microbiol. 1968, 16, 645–648. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Murray, B.E. The life and times of the Enterococcus. Clin. Microbiol. Rev. 1990, 3, 46–65. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Briggs, S.; Broom, M.; Duffy, E.; Everts, R.; Everts, G.; Lowe, B.; McBride, S.; Bhally, H. Outpatient continuous-infusion benzylpenicillin combined with either gentamicin or ceftriaxone for enterococcal endocarditis. J. Antimicrob. Chemother. 2021, 76, 2168–2171. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Enoki, Y.; Uno, S.; Uwamino, Y.; Iketani, O.; Hasegawa, N.; Matsumoto, K. Stability of benzylpenicillin potassium and ampicillin in an elastomeric infusion pump. J. Infect. Chemother. 2018, 24, 856–859. [Google Scholar] [CrossRef] [PubMed]
- Livermore, D.M.; Tulkens, P.M. Temocillin revived. J. Antimicrob. Chemother. 2009, 63, 243–245. [Google Scholar] [CrossRef] [PubMed]
- Jules, K.; Neu, H.C. Antibacterial activity and beta-lactamase stability of temocillin. Antimicrob. Agents Chemother. 1982, 22, 453–460. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Landuyt, H.W.; Pyckavet, M.; Lambert, A.; Boelaert, J. In vitro activity of temocillin (BRL 17421), a novel beta-lactam antibiotic. Antimicrob Agents Chemother. 1982, 22, 535–540. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Godtfredsen, W.O. An introduction to mecillinam. J. Antimicrob. Chemother. 1977, 3 (Suppl. SB), 1–4. [Google Scholar] [CrossRef] [PubMed]
- Reeves, D.S. Antibacterial activity of mecillinam. J. Antimicrob. Chemother. 1977, 3 (Suppl. SB), 5–11. [Google Scholar] [CrossRef] [PubMed]
- Giske, C.G. Contemporary resistance trends and mechanisms for the old antibiotics colistin, temocillin, fosfomycin, mecillinam and nitrofurantoin. Clin. Microbiol. Infect. 2015, 21, 899–905. [Google Scholar] [CrossRef] [PubMed]
- Frimodt-Møller, N.; Simonsen, G.S.; Larsen, A.R.; Kahlmeter, G. Pivmecillinam, the paradigm of an antibiotic with low resistance rates in Escherichia coli urine isolates despite high consumption. J. Antimicrob. Chemother. 2022, 78, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Jansåker, F.; Frimodt-Møller, N.; Benfield, T.L.; Knudsen, J.D. Mecillinam for the treatment of acute pyelonephritis and bacteremia caused by Enterobacteriaceae: A literature review. Infect. Drug Resist. 2018, 11, 761–771. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boel, J.B.; Antsupova, V.; Knudsen, J.D.; Jarløv, J.O.; Arpi, M.; Holzknecht, B.J. Intravenous mecillinam compared with other β-lactams as targeted treatment for Escherichia coli or Klebsiella spp. bacteraemia with urinary tract focus. J. Antimicrob. Chemother. 2021, 76, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Neu, H.C. Penicillin-binding proteins and role of amdinocillin in causing bacterial cell death. Am. J. Med. 1983, 75, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Sanders, C.C.; Sanders, W.E., Jr.; Goering, R.V.; McCloskey, R.V. Leakage of beta-lactamase: A second mechanism for antibiotic potentiation by amdinocillin. Antimicrob. Agents Chemother. 1987, 31, 1164–1168. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Craig, W.A.; Ebert, S.C. Continuous infusion of beta-lactam antibiotics. Antimicrob. Agents Chemother. 1992, 36, 2577–2583. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Everts, R.J.; Begg, R.; Gardiner, S.J.; Zhang, M.; Turnidge, J.; Chambers, S.T.; Begg, E.J. Probenecid and food effects on flucloxacillin pharmacokinetics and pharmacodynamics in healthy volunteers. J. Infect. 2020, 80, 42–53. [Google Scholar] [CrossRef] [PubMed]
- Wilson, R.C.; Arkell, P.; Riezk, A.; Gilchrist, M.; Wheeler, G.; Hope, W.; Holmes, A.H.; Rawson, T.M. Addition of probenecid to oral β-lactam antibiotics: A systematic review and meta-analysis. J. Antimicrob. Chemother. 2022, 77, 2364–2372. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pérez-Moreno, M.O.; Pérez-Moreno, M.; Carulla, M.; Rubio, C.; Jardí, A.M.; Zaragoza, J. Mechanisms of reduced susceptibility to amoxycillin-clavulanic acid in Escherichia coli strains from the health region of Tortosa (Catalonia, Spain). Clin. Microbiol. Infect. 2004, 10, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Waltner-Toews, R.I.; Paterson, D.L.; Qureshi, Z.A.; Sidjabat, H.E.; Adams-Haduch, J.M.; Shutt, K.A.; Jones, M.; Tian, G.B.; Pasculle, A.W.; Doi, Y. Clinical characteristics of bloodstream infections due to ampicillin-sulbactam-resistant, non-extended- spectrum-beta-lactamase-producing Escherichia coli and the role of TEM-1 hyperproduction. Antimicrob. Agents Chemother. 2011, 55, 495–501. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cuevas, O.; Oteo, J.; Lázaro, E.; Aracil, B.; de Abajo, F.; García-Cobos, S.; Ortega, A.; Campos, J.; Spanish EARS-Net Study Group. Significant ecological impact on the progression of fluoroquinolone resistance in Escherichia coli with increased community use of moxifloxacin, levofloxacin and amoxicillin/clavulanic acid. J. Antimicrob. Chemother. 2011, 66, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Casanova, J.; Gómez-Zorrilla, S.; Prim, N.; Dal Molin, A.; Echeverría-Esnal, D.; Gracia-Arnillas, M.P.; Sendra, E.; Güerri-Fernández, R.; Durán-Jordà, X.; Padilla, E.; et al. Risk Factors for Amoxicillin-Clavulanate Resistance in Community-Onset Urinary Tract Infections Caused by Escherichia coli or Klebsiella pneumoniae: The Role of Prior Exposure to Fluoroquinolones. Antibiotics 2021, 10, 582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Livermore, D.M. Of stewardship, motherhood and apple pie. Int. J. Antimicrob. Agents 2014, 43, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Dancer, S.J.; Kirkpatrick, P.; Corcoran, D.S.; Christison, F.; Farmer, D.; Robertson, C. Approaching zero: Temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum β-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2013, 41, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Liebowitz, L.D.; Blunt, M.C. Modification in prescribing practices for third-generation cephalosporins and ciprofloxacin is associated with a reduction in meticillin-resistant Staphylococcus aureus bacteraemia rate. J. Hosp. Infect. 2008, 69, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.D.; McGregor, J.C.; Johnson, J.A.; Strauss, S.M.; Moore, A.C.; Standiford, H.C.; Hebden, J.N.; Morris, J.G., Jr. Risk factors for colonization with extended-spectrum beta-lactamase-producing bacteria and intensive care unit admission. Emerg. Infect. Dis. 2007, 13, 1144–1149. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tanaka, A.; Takada, T.; Kawarada, Y.; Nimura, Y.; Yoshida, M.; Miura, F.; Hirota, M.; Wada, K.; Mayumi, T.; Gomi, H.; et al. Antimicrobial therapy for acute cholangitis: Tokyo Guidelines. J. Hepatobiliary Pancreat. Surg. 2007, 14, 59–67. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, P.K.; Chow, K.M.; Cho, Y.; Fan, S.; Figueiredo, A.E.; Harris, T.; Kanjanabuch, T.; Kim, Y.L.; Madero, M.; Malyszko, J.; et al. ISPD peritonitis guideline recommendations: 2022 update on prevention and treatment. Perit. Dial. Int. 2022, 42, 110–153, Erratum in Perit. Dial. Int. 2024, 44, 223. https://doi.org/10.1177/08968608241251453. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, N.D.; Irvine, S.C.; Helps, A.; Robb, F.; Jones, B.L.; Seaton, R.A. Restrictive antibiotic stewardship associated with reduced hospital mortality in gram-negative infection. QJM Int. J. Med. 2017, 110, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Enoch, D.A.; Phillimore, N.; Mlangeni, D.A.; Salihu, H.M.; Sismey, A.; Aliyu, S.H.; Karas, J.A. Outcome for Gram-negative bacteraemia when following restrictive empirical antibiotic guidelines. QJM Int. J. Med. 2011, 104, 411–419. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, A.L.; Shea, K.M.; Daley, M.J.; Huth, R.G.; Jaso, T.C.; Bissett, J.; Hemmige, V. Are first-generation cephalosporins obsolete? A retrospective, non-inferiority, cohort study comparing empirical therapy with cefazolin versus ceftriaxone for acute pyelonephritis in hospitalized patients. J. Antimicrob. Chemother. 2016, 71, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Elbaz, M.; Zadka, H.; Weiss-Meilik, A.; Ben-Ami, R. Effectiveness and safety of an institutional aminoglycoside-based regimen as empirical treatment of patients with pyelonephritis. J. Antimicrob. Chemother. 2020, 75, 2307–2313. [Google Scholar] [CrossRef] [PubMed]
- Leman, P.; Mukherjee, D. Flucloxacillin alone or combined with benzylpenicillin to treat lower limb cellulitis: A randomised controlled trial. Emerg. Med. J. 2005, 22, 342–346. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brindle, R.; Williams, O.M.; Davies, P.; Harris, T.; Jarman, H.; Hay, A.D.; Featherstone, P. Adjunctive clindamycin for cellulitis: A clinical trial comparing flucloxacillin with or without clindamycin for the treatment of limb cellulitis. BMJ Open 2017, 7, e013260. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Quirke, M.; O’Sullivan, R.; McCabe, A.; Ahmed, J.; Wakai, A. Are two penicillins better than one? A systematic review of oral flucloxacillin and penicillin V versus oral flucloxacillin alone for the emergency department treatment of cellulitis. Eur. J. Emerg. Med. 2014, 21, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, S.B.; Veve, M.P.; Wagner, J.L. Cephalosporins: A Focus on Side Chains and β-Lactam Cross-Reactivity. Pharmacy 2019, 7, 103. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, B.K.; Vivier, E.; Bouziad, K.A.; Zahar, J.R.; Pommier, C.; Parmeland, L.; Pariset, C.; Misslin, P.; Haond, C.; Poirié, P.; et al. A hospital-wide intervention replacing ceftriaxone with cefotaxime to reduce rate of healthcare-associated infections caused by extended-spectrum β-lactamase-producing Enterobacteriaceae in the intensive care unit. Intensive Care Med. 2018, 44, 672–673. [Google Scholar] [CrossRef] [PubMed]
- Wendt, S.; Ranft, D.; Rodloff, A.C.; Lippmann, N.; Lübbert, C. Switching From Ceftriaxone to Cefotaxime Significantly Contributes to Reducing the Burden of Clostridioides difficile infections. Open Forum Infect. Dis. 2020, 7, ofaa312. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pilmis, B.; Jiang, O.; Mizrahi, A.; Nguyen Van, J.C.; Lourtet-Hascoët, J.; Voisin, O.; Le Lorc’h, E.; Hubert, S.; Ménage, E.; Azria, P.; et al. No significant difference between ceftriaxone and cefotaxime in the emergence of antibiotic resistance in the gut microbiota of hospitalized patients: A pilot study. Int. J. Infect. Dis. 2021, 104, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Burdet, C.; Grall, N.; Linard, M.; Bridier-Nahmias, A.; Benhayoun, M.; Bourabha, K.; Magnan, M.; Clermont, O.; d’Humières, C.; Tenaillon, O.; et al. Ceftriaxone and Cefotaxime Have Similar Effects on the Intestinal Microbiota in Human Volunteers Treated by Standard-Dose Regimens. Antimicrob. Agents Chemother. 2019, 63, e02244-18. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Muller, A.; Bertrand, X.; Rogues, A.M.; Péfau, M.; Alfandari, S.; Gauzit, R.; Dumartin, C.; Gbaguidi-Haore, H.; ATB-RAISIN Network Steering Committee. Higher third-generation cephalosporin prescription proportion is associated with lower probability of reducing carbapenem use: A nationwide retrospective study. Antimicrob. Resist. Infect. Control 2018, 7, 11. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Guidance on the Use of Co-Trimoxazole in Secondary Care in NHS Scotland. Available online: https://www.sapg.scot/media/7364/20230116-sapg-statement-in-support-of-co-trimoxazole.pdf (accessed on 29 January 2025).
- Monnet, D.L.; MacKenzie, F.M.; López-Lozano, J.M.; Beyaert, A.; Camacho, M.; Wilson, R.; Stuart, D.; Gould, I.M. Antimicrobial drug use and methicillin-resistant Staphylococcus aureus, Aberdeen, 1996–2000. Emerg. Infect. Dis. 2004, 10, 1432–1441. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dancer, S.J. The effect of antibiotics on methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 2008, 61, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Blumenthal, K.G.; Lu, N.; Zhang, Y.; Li, Y.; Walensky, R.P.; Choi, H.K. Risk of meticillin resistant Staphylococcus aureus and Clostridium difficile in patients with a documented penicillin allergy: Population based matched cohort study. BMJ 2018, 361, k2400. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Graffunder, E.M.; Venezia, R.A. Risk factors associated with nosocomial methicillin-resistant Staphylococcus aureus (MRSA) infection including previous use of antimicrobials. J. Antimicrob. Chemother. 2002, 49, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Leclercq, R. Mechanisms of resistance to macrolides and lincosamides: Nature of the resistance elements and their clinical implications. Clin. Infect. Dis. 2002, 34, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Phuc Nguyen, M.C.; Woerther, P.L.; Bouvet, M.; Andremont, A.; Leclercq, R.; Canu, A. Escherichia coli as reservoir for macrolide resistance genes. Emerg. Infect. Dis. 2009, 15, 1648–1650. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Matsumoto, H.; Komiya, K.; Ichihara, S.; Nagaoka, Y.; Yamanaka, M.; Nishiyama, Y.; Hiramatsu, K.; Kadota, J.I. Factors Associated with Extended-spectrum β-lactamase-producing Enterobacteria Isolated from Respiratory Samples. Intern. Med. 2023, 62, 2043–2050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dualleh, N.; Chanchiri, I.; Skjøt-Arkil, H.; Pedersen, A.K.; Rosenvinge, F.S.; Johansen, I.S. Colonization with multiresistant bacteria in acute hospital care: The association of prior antibiotic consumption as a risk factor. J. Antimicrob. Chemother. 2020, 75, 3675–3681. [Google Scholar] [CrossRef] [PubMed]
- Charles, P.G.; Whitby, M.; Fuller, A.J.; Stirling, R.; Wright, A.A.; Korman, T.M.; Holmes, P.W.; Christiansen, K.J.; Waterer, G.W.; Pierce, R.J. The etiology of community-acquired pneumonia in Australia: Why penicillin plus doxycycline or a macrolide is the most appropriate therapy. Clin. Infect. Dis. 2008, 46, 1513–1521. [Google Scholar] [CrossRef] [PubMed]
- Teh, B.; Grayson, M.L.; Johnson, P.D.; Charles, P.G. Doxycycline vs. macrolides in combination therapy for treatment of community-acquired pneumonia. Clin. Microbiol. Infect. 2012, 18, E71–E73. [Google Scholar] [CrossRef] [PubMed]
- Kovaleva, A.; Remmelts, H.H.; Rijkers, G.T.; Hoepelman, A.I.; Biesma, D.H.; Oosterheert, J.J. Immunomodulatory effects of macrolides during community-acquired pneumonia: A literature review. J. Antimicrob. Chemother. 2012, 67, 530–540. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.; Feldman, C. The Global Burden of Community-Acquired Pneumonia in Adults, Encompassing Invasive Pneumococcal Disease and the Prevalence of Its Associated Cardiovascular Events, with a Focus on Pneumolysin and Macrolide Antibiotics in Pathogenesis and Therapy. Int. J. Mol. Sci. 2023, 24, 11038. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Burki, T.K. β-lactam monotherapy is non-inferior to combination treatment for community-acquired pneumonia. Lancet Respir. Med. 2015, 3, 347. [Google Scholar] [CrossRef] [PubMed]
- Singanayagam, A.; Aliberti, S.; Cillóniz, C.; Torres, A.; Blasi, F.; Chalmers, J.D. Evaluation of severity score-guided approaches to macrolide use in community-acquired pneumonia. Eur. Respir. J. 2017, 50, 1602306. [Google Scholar] [CrossRef] [PubMed]
- Klugman, K.P.; Lonks, J.R. Hidden epidemic of macrolide-resistant pneumococci. Emerg. Infect. Dis. 2005, 11, 802–807. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Principi, N.; Esposito, S. Macrolide-resistant Mycoplasma pneumoniae: Its role in respiratory infection. J. Antimicrob. Chemother. 2013, 68, 506–511. [Google Scholar] [CrossRef] [PubMed]
- Montagnani, F.; Zanchi, A.; Stolzuoli, L.; Croci, L.; Cellesi, C. Clindamycin-resistant Streptococcus pneumoniae. Emerg. Infect. Dis. 2007, 13, 801–802. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tsukamoto, N.; Ohkoshi, Y.; Okubo, T.; Sato, T.; Kuwahara, O.; Fujii, N.; Tamura, Y.; Yokota, S. High prevalence of cross-resistance to aminoglycosides in fluoroquinolone-resistant Escherichia coli clinical isolates. Chemotherapy 2013, 59, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Castanheira, M.; Deshpande, L.M.; Woosley, L.N.; Serio, A.W.; Krause, K.M.; Flamm, R.K. Activity of plazomicin compared with other aminoglycosides against isolates from European and adjacent countries, including Enterobacteriaceae molecularly characterized for aminoglycoside-modifying enzymes and other resistance mechanisms. J. Antimicrob. Chemother. 2018, 73, 3346–3354. [Google Scholar] [CrossRef] [PubMed]
- Paltansing, S.; Kraakman, M.E.; Ras, J.M.; Wessels, E.; Bernards, A.T. Characterization of fluoroquinolone and cephalosporin resistance mechanisms in Enterobacteriaceae isolated in a Dutch teaching hospital reveals the presence of an Escherichia coli ST131 clone with a specific mutation in parE. J. Antimicrob. Chemother. 2013, 68, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Krause, K.M.; Serio, A.W.; Kane, T.R.; Connolly, L.E. Aminoglycosides: An Overview. Cold Spring Harb. Perspect. Med. 2016, 6, a027029. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Drusano, G.L.; Ambrose, P.G.; Bhavnani, S.M.; Bertino, J.S.; Nafziger, A.N.; Louie, A. Back to the future: Using aminoglycosides again and how to dose them optimally. Clin. Infect. Dis. 2007, 45, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Neu, H.C. Antibiotics in the second half of the 1980s. Areas of future development and the effect of new agents on aminoglycoside use. Am. J. Med. 1986, 80, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Naparstek, L.; Carmeli, Y.; Navon-Venezia, S.; Banin, E. Biofilm formation and susceptibility to gentamicin and colistin of extremely drug-resistant KPC-producing Klebsiella pneumoniae. J. Antimicrob. Chemother. 2014, 69, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.C. The fluoroquinolones. Mayo Clin. Proc. 1999, 74, 1030–1037. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.; Seaton, R.A. Antimicrobial Stewardship in the Frail Elderly. Br. J. Hosp. Med. 2024, 85, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Scheld, W.M. Maintaining fluoroquinolone class efficacy: Review of influencing factors. Emerg. Infect. Dis. 2003, 9, 1–9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sahm, D.F.; Thornsberry, C.; Jones, M.E.; Karlowsky, J.A. Factors influencing fluoroquinolone resistance. Emerg. Infect. Dis. 2003, 9, 1651–1654. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ofek-Shlomai, N.; Benenson, S.; Ergaz, Z.; Peleg, O.; Braunstein, R.; Bar-Oz, B. Gastrointestinal colonization with ESBL-producing Klebsiella in preterm babies—Is vancomycin to blame? Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Lautenbach, E.; Bilker, W.B.; Brennan, P.J. Enterococcal bacteremia: Risk factors for vancomycin resistance and predictors of mortality. Infect. Control Hosp. Epidemiol. 1999, 20, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Peel, T.; Cheng, A.C.; Spelman, T.; Huysmans, M.; Spelman, D. Differing risk factors for vancomycin-resistant and vancomycin-sensitive enterococcal bacteraemia. Clin. Microbiol. Infect. 2012, 18, 388–394. [Google Scholar] [CrossRef] [PubMed]
- de Bruin, M.A.; Riley, L.W. Does vancomycin prescribing intervention affect vancomycin-resistant enterococcus infection and colonization in hospitals? A systematic review. BMC Infect. Dis. 2007, 7, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Carmeli, Y.; Samore, M.H.; Huskins, C. The association between antecedent vancomycin treatment and hospital-acquired vancomycin-resistant enterococci: A meta-analysis. Arch. Intern. Med. 1999, 159, 2461–2468. [Google Scholar] [CrossRef] [PubMed]
- Pettit, N.N.; DePestel, D.D.; Fohl, A.L.; Eyler, R.; Carver, P.L. Risk factors for systemic vancomycin exposure following administration of oral vancomycin for the treatment of Clostridium difficile infection. Pharmacotherapy 2015, 35, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, J.G. The case for vancomycin as the preferred drug for treatment of Clostridium difficile infection. Clin. Infect. Dis. 2008, 46, 1489–1492. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Kotler, D.P.; Schlievert, P.M.; Sordillo, E.M. Staphylococcal enterocolitis: Forgotten but not gone? Dig. Dis. Sci. 2010, 55, 1200–1207. [Google Scholar] [CrossRef] [PubMed]
- Laux, C.; Peschel, A.; Krismer, B. Staphylococcus aureus Colonization of the Human Nose and Interaction with Other Microbiome Members. Microbiol. Spectr. 2019, 7, 10. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Krismer, B.; Weidenmaier, C.; Zipperer, A.; Peschel, A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Microbiol. 2017, 15, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Guet-Revillet, H.; Le Monnier, A.; Breton, N.; Descamps, P.; Lecuyer, H.; Alaabouche, I.; Bureau, C.; Nassif, X.; Zahar, J.R. Environmental contamination with extended-spectrum β-lactamases: Is there any difference between Escherichia coli and Klebsiella spp.? Am. J. Infect. Control 2012, 40, 845–848. [Google Scholar] [CrossRef] [PubMed]
- Puig-Asensio, M.; Diekema, D.J.; Boyken, L.; Clore, G.S.; Salinas, J.L.; Perencevich, E.N. Contamination of health-care workers’ hands with Escherichia coli and Klebsiella species after routine patient care: A prospective observational study. Clin. Microbiol. Infect. 2020, 26, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Neffe, L.; Diaz, L.A.P.; Thoma, N.; Aghdassi, S.J.S.; Denkel, L.A.; Maechler, F.; Behnke, M.; Häussler, S.; Gastmeier, P. Analysis of transmission-related third-generation cephalosporin-resistant Enterobacterales by electronic data mining and core genome multi-locus sequence typing. J. Hosp. Infect. 2023, 140, 96–101. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.T.; Nimmo, J.; Gregory, E.; Tiong, A.; De Almeida, M.; McAuliffe, G.N.; Roberts, S.A. Predictors of hospital surface contamination with Extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae: Patient and organism factors. Antimicrob. Resist. Infect. Control 2014, 3, 5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Freeman, J.T.; Rubin, J.; McAuliffe, G.N.; Peirano, G.; Roberts, S.A.; Drinković, D.; Pitout, J.D. Differences in risk-factor profiles between patients with ESBL-producing Escherichia coli and Klebsiella pneumoniae: A multicentre case-case comparison study. Antimicrob. Resist. Infect. Control 2014, 3, 27. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mäklin, T.; Thorpe, H.A.; Pöntinen, A.K.; Gladstone, R.A.; Shao, Y.; Pesonen, M.; McNally, A.; Johnsen, P.J.; Samuelsen, Ø.; Lawley, T.D.; et al. Strong pathogen competition in neonatal gut colonisation. Nat. Commun. 2022, 13, 7417. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caballero, S.; Kim, S.; Carter, R.A.; Leiner, I.M.; Sušac, B.; Miller, L.; Kim, G.J.; Ling, L.; Pamer, E.G. Cooperating Commensals Restore Colonization Resistance to Vancomycin-Resistant Enterococcus faecium. Cell Host Microbe 2017, 21, 592–602.e4. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caballero, S.; Carter, R.; Ke, X.; Sušac, B.; Leiner, I.M.; Kim, G.J.; Miller, L.; Ling, L.; Manova, K.; Pamer, E.G. Distinct but Spatially Overlapping Intestinal Niches for Vancomycin-Resistant Enterococcus faecium and Carbapenem-Resistant Klebsiella pneumoniae. PLoS Pathog. 2015, 11, e1005132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hoffman, T.; Lellouche, J.; Nutman, A.; Temkin, E.; Frenk, S.; Harbarth, S.; Carevic, B.; Cohen-Percia, S.; Kariv, Y.; Fallach, N. The effect of prophylaxis with ertapenem versus cefuroxime/metronidazole on intestinal carriage of carbapenem-resistant or third-generation-cephalosporin-resistant Enterobacterales after colorectal surgery. Clin. Microbiol. Infect. 2021, 27, 1481–1487. [Google Scholar] [CrossRef] [PubMed]
- Hecker, M.T.; Aron, D.C.; Patel, N.P.; Lehmann, M.K.; Donskey, C.J. Unnecessary use of antimicrobials in hospitalized patients: Current patterns of misuse with an emphasis on the antianaerobic spectrum of activity. Arch. Intern. Med. 2003, 163, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Moen, C.M.; Paramjothy, K.; Williamson, A.; Coleman, H.; Lou, X.; Smith, A.; Douglas, C.M. A systematic review of the role of penicillin versus penicillin plus metronidazole in the management of peritonsillar abscess. J. Laryngol. Otol. 2023, 137, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Wikstén, J.E.; Pitkäranta, A.; Blomgren, K. Metronidazole in conjunction with penicillin neither prevents recurrence nor enhances recovery from peritonsillar abscess when compared with penicillin alone: A prospective, double-blind, randomized, placebo-controlled trial. J. Antimicrob. Chemother. 2016, 71, 1681–1687. [Google Scholar] [CrossRef] [PubMed]
- Cooper, L.; Stankiewicz, N.; Sneddon, J.; Seaton, R.A.; Smith, A. Indications for the use of metronidazole in the treatment of non-periodontal dental infections: A systematic review. JAC Antimicrob. Resist. 2022, 4, dlac072. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vedamurthy, A.; Rajendran, I.; Manian, F. Things We Do for No Reason™: Routine Coverage of Anaerobes in Aspiration Pneumonia. J. Hosp. Med. 2020, 15, 754–756. [Google Scholar] [CrossRef] [PubMed]
- Bai, A.D.; Srivastava, S.; Digby, G.C.; Girard, V.; Razak, F.; Verma, A.A. Anaerobic Antibiotic Coverage in Aspiration Pneumonia and the Associated Benefits and Harms: A Retrospective Cohort Study. Chest 2024, 166, 39–48. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Strohäker, J.; Wiegand, L.; Beltzer, C.; Königsrainer, A.; Ladurner, R.; Meier, A. Clinical Presentation and Incidence of Anaerobic Bacteria in Surgically Treated Biliary Tract Infections and Cholecystitis. Antibiotics 2021, 10, 71. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Trienski, T.L.; Bhanot, N. Double anaerobic coverage—A call for antimicrobial stewardship. Infect. Dis. Clin. Pract. 2022, 30, e1244. [Google Scholar] [CrossRef]
- Rattanaumpawan, P.; Morales, K.H.; Binkley, S.; Synnestvedt, M.; Weiner, M.G.; Gasink, L.B.; Fishman, N.O.; Lautenbach, E. Impact of antimicrobial stewardship programme changes on unnecessary double anaerobic coverage therapy. J. Antimicrob. Chemother. 2011, 66, 2655–2658. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Maraki, S.; Mavromanolaki, V.E.; Stafylaki, D.; Kasimati, A. Antimicrobial susceptibility patterns of clinically significant Gram-positive anaerobic bacteria in a Greek tertiary-care hospital, 2017–2019. Anaerobe 2020, 64, 102245. [Google Scholar] [CrossRef] [PubMed]
- Brook, I. Treatment of anaerobic infection. Expert Rev. Anti-Infect. Ther. 2007, 5, 991–1006. [Google Scholar] [CrossRef] [PubMed]
- Brook, I. Spectrum and treatment of anaerobic infections. J. Infect. Chemother. 2016, 22, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Raymond, L.; Cani, E.; Zeana, C.; Lois, W.; Park, T. 719. Clinical Outcomes of Single versus Double Anaerobic Coverage for Intra-abdominal Infections. Open Forum Infect. Dis. 2020, 7 (Suppl. S1), S410. [Google Scholar] [CrossRef] [PubMed Central]
- Heath, D.M.; Boyer, B.J.; Ghali, A.N.; Momtaz, D.A.; Nagel, S.C.; Brady, C.I. Use of Clindamycin for Necrotizing Soft Tissue Infection Decreases Amputation Rate. J. Orthop. Trauma 2022, 36, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L.; Bryant, A.E.; Hackett, S.P. Antibiotic effects on bacterial viability, toxin production, and host response. Clin. Infect. Dis. 1995, 20 (Suppl. S2), S154–S157. [Google Scholar] [CrossRef] [PubMed]
- Andreoni, F.; Zürcher, C.; Tarnutzer, A.; Schilcher, K.; Neff, A.; Keller, N.; Marques Maggio, E.; Poyart, C.; Schuepbach, R.A.; Zinkernagel, A.S. Clindamycin Affects Group A Streptococcus Virulence Factors and Improves Clinical Outcome. J. Infect. Dis. 2017, 215, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L. The flesh-eating bacterium: What’s next? J. Infect. Dis. 1999, 179 (Suppl. S2), S366–S374. [Google Scholar] [CrossRef] [PubMed]
- Stevens, D.L.; Bryant, A.E. Necrotizing Soft-Tissue Infections. N. Engl. J. Med. 2017, 377, 2253–2265. [Google Scholar] [CrossRef] [PubMed]
- Raja, N.S. Oral treatment options for patients with urinary tract infections caused by extended spectrum βeta-lactamase (ESBL) producing Enterobacteriaceae. J. Infect. Public Health 2019, 12, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Cunha, B.A.; Schoch, P.E.; Hage, J.R. Nitrofurantoin: Preferred empiric therapy for community-acquired lower urinary tract infections. Mayo Clin. Proc. 2011, 86, 1243–1244. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meena, S.; Mohapatra, S.; Sood, S.; Dhawan, B.; Das, B.K.; Kapil, A. Revisiting Nitrofurantoin for Vancomycin Resistant Enterococci. J. Clin. Diagn. Res. 2017, 11, DC19–DC22. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vervoort, J.; Xavier, B.B.; Stewardson, A.; Coenen, S.; Godycki-Cwirko, M.; Adriaenssens, N.; Kowalczyk, A.; Lammens, C.; Harbarth, S.; Goossens, H.; et al. Metagenomic analysis of the impact of nitrofurantoin treatment on the human faecal microbiota. J. Antimicrob. Chemother. 2015, 70, 1989–1992. [Google Scholar] [CrossRef] [PubMed]
- Stewardson, A.J.; Gaïa, N.; François, P.; Malhotra-Kumar, S.; Delémont, C.; Martinez de Tejada, B.; Schrenzel, J.; Harbarth, S.; Lazarevic, V.; SATURN WP1 and WP3 Study Groups. Collateral damage from oral ciprofloxacin versus nitrofurantoin in outpatients with urinary tract infections: A culture-free analysis of gut microbiota. Clin. Microbiol. Infect. 2015, 21, 344.e1–344.e11. [Google Scholar] [CrossRef] [PubMed]
- Butler, M.S.; Henderson, I.R.; Capon, R.J.; Blaskovich, M.A.T. Antibiotics in the clinical pipeline as of December 2022. J. Antibiot. 2023, 76, 431–473. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ullmann, U. Bacteriological studies with cefsulodin (CGP 7174/E), the first antipseudomonal cephalosporin. J. Antimicrob. Chemother. 1979, 5, 563–567. [Google Scholar] [CrossRef] [PubMed]
- Kelly, N.; Falkiner, F.R.; Keane, C.T.; Murphy, M.; Fitzgerald, M.X. The in-vitro activity of three anti-pseudomonal cephalosporins against isolates from patients with cystic fibrosis. J. Antimicrob. Chemother. 1981, 8 (Suppl. SB), 175–178. [Google Scholar] [CrossRef] [PubMed]
- Theodosiou, A.A.; Jones, C.E.; Read, R.C.; Bogaert, D. Microbiotoxicity: Antibiotic usage and its unintended harm to the microbiome. Curr. Opin. Infect. Dis. 2023, 36, 371–378. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhargava, K.; Nath, G.; Bhargava, A.; Aseri, G.K.; Jain, N. Phage therapeutics: From promises to practices and prospectives. Appl. Microbiol. Biotechnol. 2021, 105, 9047–9067. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Behrens, H.M.; Six, A.; Walker, D.; Kleanthous, C. The therapeutic potential of bacteriocins as protein antibiotics. Emerg. Top. Life Sci. 2017, 1, 65–74. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Dickey, S.W.; Cheung, G.Y.C.; Otto, M. Different drugs for bad bugs: Antivirulence strategies in the age of antibiotic resistance. Nat. Rev. Drug Discov. 2017, 16, 457–471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Theuretzbacher, U.; Outterson, K.; Engel, A.; Karlén, A. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 2020, 18, 275–285. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Donskey, C.J. Fluoroquinolone restriction to control fluoroquinolone-resistant Clostridium difficile. Lancet Infect. Dis. 2017, 17, 353–354. [Google Scholar] [CrossRef] [PubMed]
- Jessen, O.; Rosendal, K.; Bülow, P.; Faber, V.; Eriksen, K.R. Changing staphylococci and staphylococcal infections. A ten-year study of bacteria and cases of bacteremia. N. Engl. J. Med. 1969, 281, 627–635. [Google Scholar] [CrossRef] [PubMed]
3GCR EC | R | FQR EC | R | AGR EC | R | 3XR EC | R | AMPR EC | R | VRE | R | PNS SP | R |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
J01CF * | −0.487 | J01CF * | −0.502 | J01CF * | −0.403 | J01C * | −0.483 | J01CE * | −0.442 | J01CE * | −0.273 | J01CE * | −0.23 |
J01CE * | −0.429 | J01CE * | −0.484 | J01CE * | −0.382 | J01C * | −0.402 | J01DB * | −0.4 | J01CF * | −0.252 | J01CF | −0.155 |
J01DB * | −0.202 | J01DB * | −0.276 | J01DB * | −0.22 | J01DB * | −0.203 | J01CF | −0.183 | J01DB | −0.12 | J01FF | −0.106 |
J01CA | −0.178 | J01CA * | −0.222 | J01CA | −0.133 | J01CA * | −0.192 | J01E | −0.095 | J01CA | −0.111 | J01XE | −0.046 |
J01XE | −0.165 | J01E | −0.183 | J01XE | −0.127 | J01A | −0.115 | J01A | −0.028 | J01FF | −0.014 | J01DB | 0.04 |
J01A | −0.114 | J01A | −0.144 | J01A | −0.086 | J01XE | −0.073 | J01CA | 0.068 | J01E | 0.057 | J01A | 0.047 |
J01E | 0.017 | J01XE | −0.025 | J01E | 0.009 | J01E | −0.014 | J01XE | 0.094 | J01A | 0.115 | J01XD | 0.057 |
J01XA * | 0.209 | J01FF * | 0.304 | J01XA * | 0.23 | J01XA * | 0.224 | J01FF | 0.133 | J01XE | 0.147 | J01E | 0.058 |
J01DH * | 0.342 | J01XA * | 0.444 | J01DH * | 0.335 | J01DH * | 0.284 | J01DH * | 0.319 | J01DD * | 0.238 | J01DH * | 0.241 |
J01FF * | 0.347 | J01G * | 0.467 | J01CR * | 0.361 | J01CR * | 0.339 | J01XD * | 0.386 | J01G * | 0.262 | J01G * | 0.266 |
J01CR * | 0.39 | J01DH * | 0.495 | J01 * | 0.459 | J01 * | 0.417 | J01XA * | 0.434 | J01CR * | 0.293 | J01DC * | 0.296 |
J01 * | 0.449 | J01 * | 0.568 | J01FF * | 0.463 | J01FF * | 0.46 | J01DC * | 0.461 | J01DH * | 0.353 | J01FA * | 0.304 |
J01DC * | 0.582 | J01XD * | 0.59 | J01XD * | 0.527 | J01FA * | 0.601 | J01G * | 0.473 | J01 * | 0.392 | J01DD * | 0.313 |
J01FA * | 0.601 | J01CR * | 0.62 | J01DC * | 0.59 | J01G * | 0.605 | J01DD * | 0.532 | J01M * | 0.442 | J01XA * | 0.337 |
J01XD * | 0.59 | J01DC * | 0.652 | J01FA * | 0.6 | J01DC * | 0.606 | J01 * | 0.615 | J01XA * | 0.485 | J01CA * | 0.38 |
J01G * | 0.626 | J01DD * | 0.666 | J01DD * | 0.654 | J01XD * | 0.611 | J01CR * | 0.63 | J01FA * | 0.494 | J01M * | 0.39 |
J01M * | 0.73 | J01FA * | 0.678 | J01M * | 0.657 | J01M * | 0.62 | J01M * | 0.632 | J01DC * | 0.523 | J01CR * | 0.522 |
J01DD * | 0.759 | J01M * | 0.81 | J01G * | 0.689 | J01DD * | 0.655 | J01FA * | 0.697 | J01XD * | 0.596 | J01 * | 0.572 |
3GCR KP | R | FQR KP | R | AGR KP | R | 3XR KP | R | CARBR KP | R | MRSA | R | PNS/ER SP | R |
J01CF * | −0.57 | J01CF * | −0.581 | J01CF * | −0.541 | J01CF * | −0.548 | J01CF * | −0.299 | J01CE * | −0.423 | J01CE * | −0.206 |
J01CE * | −0.51 | J01CE * | −0.492 | J01CE * | −0.448 | J01CE * | −0.443 | J01CE * | −0.283 | J01CF * | −0.386 | J01CF | −0.185 |
J01DB * | −0.255 | J01DB * | −0.268 | J01DB * | −0.224 | J01DB * | −0.23 | J01DB * | −0.193 | J01DB * | −0.226 | J01FF | −0.046 |
J01A * | −0.217 | J01A * | −0.263 | J01A | −0.181 | J01A * | −0.189 | J01XE | −0.128 | J01A * | −0.197 | J01XE | −0.012 |
J01E | −0.071 | J01E | −0.099 | J01E | −0.067 | J01E | −0.083 | J01A | −0.04 | J01XE | −0.164 | J01E | 0.022 |
J01CA | −0.04 | J01CA | −0.057 | J01CA | −0.019 | J01CA | −0.018 | J01E | −0.028 | J01E | −0.138 | J01DB | 0.073 |
J01XE | 0.068 | J01XE | 0.106 | J01XE | 0.061 | J01XE | 0.077 | J01CA | 0.039 | J01CA | −0.075 | J01A | 0.081 |
J01XA * | 0.321 | J01XA * | 0.341 | J01XA * | 0.275 | J01XA * | 0.284 | J01FF | 0.153 | J01FF | −0.016 | J01XD | 0.091 |
J01FF * | 0.359 | J01FF * | 0.358 | J01DH * | 0.394 | J01DH * | 0.41 | J01XD * | 0.378 | J01G * | 0.434 | J01DH * | 0.223 |
J01DH * | 0.431 | J01DH * | 0.434 | J01CR * | 0.408 | J01FF * | 0.429 | J01CR * | 0.485 | J01XD * | 0.442 | J01XA * | 0.236 |
J01CR * | 0.502 | J01CR * | 0.504 | J01FF * | 0.444 | J01CR * | 0.411 | J01DD * | 0.504 | J01XA * | 0.534 | J01G * | 0.242 |
J01XD * | 0.532 | J01XD * | 0.526 | J01 * | 0.523 | J01XD * | 0.522 | J01XA * | 0.525 | J01DD * | 0.593 | J01FA * | 0.28 |
J01 * | 0.551 | J01 * | 0.531 | J01XD * | 0.525 | J01 * | 0.524 | J01M * | 0.59 | J01FA * | 0.644 | J01DC * | 0.297 |
J01G * | 0.625 | J01G * | 0.572 | J01M * | 0.548 | J01M * | 0.544 | J01G * | 0.606 | J01DH * | 0.657 | J01DD * | 0.317 |
J01M * | 0.625 | J01DD * | 0.582 | J01DD * | 0.567 | J01DD * | 0.553 | J01 * | 0.624 | J01 * | 0.666 | J01CA * | 0.335 |
J01DD * | 0.63 | J01M * | 0.583 | J01G * | 0.644 | J01G * | 0.611 | J01DH * | 0.661034 | J01DC * | 0.673 | J01M * | 0.366 |
J01FA * | 0.706 | J01FA * | 0.711 | J01FA * | 0.692 | J01FA * | 0.688 | J01FA * | 0.662 | J01M * | 0.772 | J01CR * | 0.467 |
J01DC * | 0.716 | J01DC * | 0.716 | J01DC * | 0.73 | J01DC * | 0.737 | J01DC * | 0.704 | J01CR * | 0.807 | J01 * | 0.541 |
3GCR EC | R | FQR EC | R | AGR EC | R | 3XR EC | R | AMPR EC | R | VRE | R | PNS SP | R |
J01E | 0.017 | J01CA | −0.222 | J01FF | 0.463 | J01E | −0.014 | J01DB | −0.399 | J01CE | −0.273 | J01A | 0.047 |
J01FF | 0.347 | J01XE | −0.025 | J01FA | 0.6 | J01 | 0.417 | J01A | −0.028 | J01DB | −0.12 | J01DC | 0.296 |
J01 | 0.449 | J01FF | 0.304 | J01DD | 0.654 | J01FF | 0.46 | J01CA | 0.068 | J01CA | −0.111 | J01FA | 0.304 |
J01XD | 0.589 | J01XD | 0.59 | J01M | 0.657 | J01FA | 0.6 | J01XE | 0.094 | J01FF | −0.014 | J01XA | 0.337 |
J01FA | 0.601 | J01CR | 0.62 | J01G | 0.689 | J01XD | 0.611 | J01FF | 0.133 | J01E | 0.057 | J01CA | 0.38 |
J01M | 0.73 | J01DC | 0.652 | - | - | J01M | 0.62 | J01XD | 0.386 | J01XE | 0.147 | J01CR | 0.522 |
J01DD | 0.76 | J01DD | 0.666 | - | - | J01DD | 0.655 | J01CR | 0.63 | J01DC | 0.523 | J01 | 0.572 |
- | - | J01FA | 0.678 | - | - | - | - | J01M | 0.632 | J01XD | 0.596 | - | - |
- | - | J01M | 0.81 | - | - | - | - | J01FA | 0.697 | - | - | - | - |
3GCR KP | R | FQR KP | R | AGR KP | R | 3XR KP | R | CARBR KP | R | MRSA | R | PNS/ER SP | R |
J01CF | −0.57 | J01CF | −0.581 | J01CF | −0.540 | J01CF | −0.548 | J01DB | −0.193 | J01CF | −0.386 | J01A | 0.081 |
J01DB | −0.255 | J01DB | −0.268 | J01XE | 0.061 | J01XE | 0.077 | J01XE | −0.128 | J01E | −0.138 | J01FA | 0.28 |
J01E | −0.071 | J01A | −0.263 | J01 | 0.523 | J01 | 0.524 | J01E | −0.028 | J01CA | −0.075 | J01DC | 0.297 |
J01XE | 0.068 | J01E | −0.1 | J01M | 0.548 | J01M | 0.544 | J01FF | 0.153 | J01FF | −0.016 | J01CR | 0.522 |
J01DH | 0.431 | J01XE | 0.106 | J01DD | 0.567 | J01DD | 0.553 | J01XD | 0.378 | J01DD | 0.593 | J01 | 0.541 |
J01 | 0.551 | J01DH | 0.434 | J01G | 0.644 | J01G | 0.611 | J01CR | 0.485 | J01FA | 0.644 | - | - |
J01DD | 0.63 | J01DD | 0.582 | J01DC | 0.73 | J01DC | 0.737 | J01DD | 0.504 | J01DC | 0.673 | - | - |
J01DC | 0.716 | J01M | 0.584 | - | - | - | - | J01M | 0.59 | J01CR | 0.807 | - | - |
- | - | J01DC | 0.716 | - | - | - | - | J01DH | 0.661 | - | - | - | - |
- | - | - | - | - | - | - | - | J01DC | 0.705 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McSorley, J.C. Analysis of ESAC-Net/EARS-Net Data from 29 EEA Countries for Spatiotemporal Associations Between Antimicrobial Use and Resistance—Implications for Antimicrobial Stewardship? Antibiotics 2025, 14, 399. https://doi.org/10.3390/antibiotics14040399
McSorley JC. Analysis of ESAC-Net/EARS-Net Data from 29 EEA Countries for Spatiotemporal Associations Between Antimicrobial Use and Resistance—Implications for Antimicrobial Stewardship? Antibiotics. 2025; 14(4):399. https://doi.org/10.3390/antibiotics14040399
Chicago/Turabian StyleMcSorley, James C. 2025. "Analysis of ESAC-Net/EARS-Net Data from 29 EEA Countries for Spatiotemporal Associations Between Antimicrobial Use and Resistance—Implications for Antimicrobial Stewardship?" Antibiotics 14, no. 4: 399. https://doi.org/10.3390/antibiotics14040399
APA StyleMcSorley, J. C. (2025). Analysis of ESAC-Net/EARS-Net Data from 29 EEA Countries for Spatiotemporal Associations Between Antimicrobial Use and Resistance—Implications for Antimicrobial Stewardship? Antibiotics, 14(4), 399. https://doi.org/10.3390/antibiotics14040399