Hybrid 2-Quinolone–1,2,3-triazole Compounds: Rational Design, In Silico Optimization, Synthesis, Characterization, and Antibacterial Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reactions
2.2. Experimental Databases
2.3. Spectral Data Measurements
2.4. Synthesis of New Antibacterial Agents Based on the Quinolone Derivatives
2.4.1. Synthesis of 2-Oxo-1,2-dihydroquinoline-4-carboxylic Acid (1)
2.4.2. Esterification and N-Alkylation Reaction (Synthesis of Compounds 2 and 3)
2.4.3. Synthesis of New Hybrid Molecules (4a–4c) Using 1,3-Dipolar Cycloaddition (Click Chemistry)
- Methyl 1-((1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-2-oxo-1,2-dihydroquinoline-4-carboxylate (4a). Yield (%) = 78%; mp: 439–441 K; NMR 1H (300 MHz, CDCl3): δ (ppm) 8.2 (dd, J = 8.3, 1.5 Hz, 1H, CHAr), 7.9 (d, J = 8.6 Hz, 1H, CHAr), 7.6–7.5 (m, 2H, CHAr), 7.4 (d, J = 8.3 Hz, 2H, CHAr), 7.2 (d, J = 2.8 Hz, 1H, CHAr), 7.1 (s, 1H, CHEthylenic), 7.1 (d, J = 8.3 Hz, 2H, CHAr), 5.6 (s, 2H, CH2), 5.3 (s, 2H, CH2), 3.9 (s, 3H, CH3). 13C NMR APT (75 MHz, CDCl3): δ (ppm)165.85 (C=Oester), 161.3 (C=OAmide), 141.1 (Cq), 139.6 (Cq), 139.6 (Cq), 133.3 (CHAr), 132.4 (CHAr), 131.7 (CHAr), 129.9 (CHAr), 127.2 (CHEthylenic), 123.8 (CHAr), 123.1 (CHAr), 117.6 (Cq), 115.6 (CHAr), 53.7 (CH2), 53.0 (CH2), 38.7 (CH3). MS: 452.50677 [M + 1]+; FT-IR (υ in cm−1): 2961 (Aliphatic C–H), 1731 (C=O Ester), 1644 (C=O Ketone in quinolone), 1433 (Aromatic C=C stretching), 3125 (Aromatic C-H stretching), 1238 (C-N triazole bond); UV–vis: λmax = 375 nm.
- Methyl 1-((1-(4-Methylbenzyl)-1H-1,2,3-triazol-4-yl)methyl)-2-oxo-1,2-dihydroquinoline-4-carboxylate (4b). Yield (%) = 82%; mp: 488–490 K; NMR 1H (300 MHz, CDCl3): δ (ppm) 8.1–8.0 (m, 2H, CHAr), 7.7 (d, J = 8.6 Hz, 1H, CHAr), 7.6–7.6 (m, 1H, CHAr), 7.3–7.2 (m, 1H, CHAr), 7.1 (d, J = 10.4 Hz, 4H, CHAr), 7.0 (s, 1H, CHEthylenic), 5.5 (s, 2H, CH2), 5.4 (s, 2H, CH2), 3.9 (s, 3H, CH3), 2.2 (s, 3H, CH3). 13C NMR APT (75 MHz, CDCl3): δ (ppm) 165.4 (C=Oester), 159.9 (C=OAmide), 142.6 (Cq), 139.2 (Cq), 137.5 (Cq), 132.9 (CHAr), 131.4 (CHAr), 129.2 (CHAr), 128.0 (CHAr), 126.6 (CHEthylenic), 123.5 (CHAr), 122.7 (CHAr), 122.6 (CHAr), 116.6 (Cq), 115.7 (CHAr), 53.0 (CH2), 52.6 (CH2), 37.78 (CH3), 20.6 (CH3). MS: 388.03659 [M + 1]+; FT-IR (υ in cm−1): 2964 (Aliphatic C–H), 1720 (C=O Ester), 1660 (C=O Ketone in quinolone), 1447 (Aromatic C=C stretching), 3136 (Aromatic C-H stretching), 1244 (C-N triazole bond); UV–vis: λmax = 362 nm.
- Methyl 2-Oxo-1-((1-(4-(trifluoromethyl)benzyl)-1H-1,2,3-triazol-4-yl)methyl)-1,2-dihydroquinoline-4-carboxylate (4c). Yield (%) = 85%; mp: 503–505 K; NMR 1H (300 MHz, CDCl3): δ (ppm) 8.1 (s, 1H, CHAr), 8.9 (dd, J = 8.1, 1.5 Hz, 1H, CHAr), 7.8–7.6 (m, 5H, CHAr), 7.4 (d, J = 8.0 Hz, 2H, CHAr), 7.3–7.3 (m, 1H, CHAr), 7.0 (s, 1H, CHEthylenic), 5.6 (s, 2H, CH2), 5.5 (s, 2H, CH2), 3.9 (s, 3H, CH3). 13C NMR APT (75 MHz, CDCl3): δ (ppm) 165.3 (C=Oester), 159.9 (C=OAmide), 142.7 (Cq), 140.5 (Cq), 139.7 (Cq), 139.2 (Cq), 131.4 (CHAr), 128.6 (CHAr), 127.8 (CHEthylenic), 126.5 (CHAr), 125.6 (CHAr), 124.0 (CHAr), 122.6 (CHAr), 122.5 (CHAr), 116.5 (CHAr), 53.0 (CH3), 52.1 (CH3), 37.7 (CH3). MS: 441.01463 [M + 1]+; FT-IR (υ in cm−1): 2959 (Aliphatic C–H), 1730 (C=O Ester), 1642 (C=O Ketone in quinolone), 1436 (Aromatic C=C stretching), 3124 (Aromatic C-H stretching), 1323 (C-F stretching), 1242 (C-N triazole bond); UV–vis: λmax = 327 nm.
2.5. Antibacterial Activity
2.5.1. Disc Diffusion Method
2.5.2. Minimum Inhibitory Concentration
2.6. Drug-likeness and ADMET Prediction
2.7. Molecular Docking Studies
2.8. Molecular Dynamics Simulations
3. Results and Discussion
3.1. QSAR Modelling
3.2. Synthesis of Novel 2-Oxo-1,2-dihydroquinoline Derivatives
3.3. UV-Vis Spectrum
3.4. Drug-likeness and ADMET Results
3.5. Molecular Docking Results
3.6. Antibacterial Activity (Results and Discussion)
3.7. Molecular Dynamics Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
QSAR | Quantitative Structure–Activity Relationship |
ADMET | Absorption, Distribution, Metabolism, Excretion and Toxicity |
MIC | Minimum Inhibitory Concentration |
FT-IR | Fourier Transform Infrared Spectroscopy |
UV-Vis | Ultraviolet–Visible Spectroscopy |
MDS | Molecular Dynamics Simulation |
SAR | Structure–Activity Relationship |
NMR | Nuclear Magnetic Resonance |
APT | Attached Proton Test |
DMF | Dimethylformamide |
RT | Room Temperature |
TLC | Thin Layer Chromatography |
TMS | Tetramethylsilane |
BBB | Blood–brain barrier |
HIA | Human intestinal absorption |
CNS | Central nervous system |
PDB | Protein Data Bank |
TBAB | Tetrabutylammonium bromide |
References
- Chinemerem Nwobodo, D.; Ugwu, M.C.; Oliseloke Anie, C.; Al-Ouqaili, M.T.; Chinedu Ikem, J.; Victor Chigozie, U.; Saki, M. Antibiotic Resistance: The Challenges and Some Emerging Strategies for Tackling a Global Menace. J. Clin. Lab. Anal. 2022, 36, e24655. [Google Scholar] [CrossRef] [PubMed]
- Akram, F.; Imtiaz, M.; Haq, I.U. Emergent Crisis of Antibiotic Resistance: A Silent Pandemic Threat to 21st Century. Microb. Pathog. 2023, 174, 105923. [Google Scholar] [CrossRef]
- Tarín-Pelló, A.; Suay-García, B.; Pérez-Gracia, M.T. Antibiotic Resistant Bacteria: Current Situation and Treatment Options to Accelerate the Development of a New Antimicrobial Arsenal. Expert Rev. Anti-Infect. Ther. 2022, 20, 1095–1108. [Google Scholar] [CrossRef]
- Naghavi, M.; Vollset, S.E.; Ikuta, K.S.; Swetschinski, L.R.; Gray, A.P.; Wool, E.E.; Aguilar, G.R.; Mestrovic, T.; Smith, G.; Han, C.; et al. Global Burden of Bacterial Antimicrobial Resistance 1990–2021: A Systematic Analysis with Forecasts to 2050. Lancet 2024, 404, 1199–1226. [Google Scholar] [CrossRef] [PubMed]
- Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The Multifaceted Nature of Antimicrobial Peptides: Current Synthetic Chemistry Approaches and Future Directions. Chem. Soc. Rev. 2021, 50, 7820–7880. [Google Scholar] [CrossRef]
- El-Mrabet, A.; Haoudi, A.; Kandri-Rodi, Y.; Mazzah, A. An Overview of Quinolones as Potential Drugs: Synthesis, Reactivity and Biological Activities. Organics 2025, 6, 16. [Google Scholar] [CrossRef]
- Javahershenas, R.; Nikzat, S. Recent Advances in the Multicomponent Synthesis of Heterocycles Using Tetronic Acid. RSC Adv. 2023, 13, 16619–16629. [Google Scholar] [CrossRef]
- Gao, F.; Wang, P.; Yang, H.; Miao, Q.; Ma, L.; Lu, G. Recent Developments of Quinolone-Based Derivatives and Their Activities against Escherichia coli. Eur. J. Med. Chem. 2018, 157, 1223–1248. [Google Scholar] [CrossRef]
- Dhiman, P.; Arora, N.; Thanikachalam, P.V.; Monga, V. Recent Advances in the Synthetic and Medicinal Perspective of Quinolones: A Review. Bioorg. Chem. 2019, 92, 103291. [Google Scholar] [CrossRef]
- Kaur, R.; Kumar, K. Synthetic and Medicinal Perspective of Quinolines as Antiviral Agents. Eur. J. Med. Chem. 2021, 215, 113220. [Google Scholar] [CrossRef] [PubMed]
- Rusu, A.; Munteanu, A.C.; Arbănași, E.M.; Uivarosi, V. Overview of Side-Effects of Antibacterial Fluoroquinolones: New Drugs versus Old Drugs, a Step Forward in the Safety Profile? Pharmaceutics 2023, 15, 804. [Google Scholar] [CrossRef]
- Dube, P.S.; Legoabe, L.J.; Beteck, R.M. Quinolone: A Versatile Therapeutic Compound Class. Mol. Divers. 2023, 27, 1501–1526. [Google Scholar] [CrossRef]
- Saxena, N.; Shankhdhar, S.; Kumar, A.; Srivastava, N. Part 2, Studies on the Synthesis of Quinolone Derivatives with Their Biological Activity. Curr. Org. Chem. 2024, 28, 185–212. [Google Scholar] [CrossRef]
- Millanao, A.R.; Mora, A.Y.; Villagra, N.A.; Bucarey, S.A.; Hidalgo, A.A. Biological Effects of Quinolones: A Family of Broad-Spectrum Antimicrobial Agents. Molecules 2021, 26, 7153. [Google Scholar] [CrossRef]
- Moussaoui, O.; Bhadane, R.; Sghyar, R.; El Hadrami, E.M.; El Amrani, S.; Ben Tama, A.; Rodi, Y.K.; Chakroune, S.; Salo-Ahen, O.M.H. Novel Amino Acid Derivatives of Quinolines as Potential Antibacterial and Fluorophore Agents. Sci. Pharm. 2020, 88, 57. [Google Scholar] [CrossRef]
- Bazine, I.; Bendjedid, S.; Boukhari, A. Potential Antibacterial and Antifungal Activities of Novel Sulfamidophosphonate Derivatives Bearing the Quinoline or Quinolone Moiety. Arch. Pharm. 2021, 354, 2000291. [Google Scholar] [CrossRef]
- Ghanim, A.M.; Girgis, A.S.; Kariuki, B.M.; Samir, N.; Said, M.F.; Abdelnaser, A.; Nasr, S.; Bekheit, M.S.; Abdelhameed, M.F.; Almalki, A.J.; et al. Design and Synthesis of Ibuprofen–Quinoline Conjugates as Potential Anti-Inflammatory and Analgesic Drug Candidates. Bioorg. Chem. 2022, 119, 105557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.S.; Tan, Q.W.; Guan, L.P. Antioxidant, Anti-Inflammatory, Antibacterial, and Analgesic Activities and Mechanisms of Quinolines, Indoles and Related Derivatives. Mini Rev. Med. Chem. 2021, 21, 2261–2275. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.; Das, R.; Mehta, D.K.; Sharma, D.; Sahu, R.K. Exploring Quinolone Scaffold: Unravelling the Chemistry of Anticancer Drug Design. Mini Rev. Med. Chem. 2022, 22, 69–88. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.S.; Pati, S.; Hussain, T. Quinoline Heterocyclic Containing Plant and Marine Candidates against Drug-Resistant Mycobacterium tuberculosis: A Systematic Drug-Ability Investigation. Eur. J. Med. Chem. 2022, 232, 114173. [Google Scholar] [CrossRef]
- Ghareeb, E.A.; Mahmoud, N.F.; El-Bordany, E.A.; El-Helw, E.A. Synthesis, DFT, and Eco-Friendly Insecticidal Activity of Some N-Heterocycles Derived from 4-((2-Oxo-1,2-Dihydroquinolin-3-yl)Methylene)-2-Phenyloxazol-5(4H)-One. Bioorg. Chem. 2021, 112, 104945. [Google Scholar] [CrossRef]
- Patel, O.P.; Beteck, R.M.; Legoabe, L.J. Antimalarial Application of Quinones: A Recent Update. Eur. J. Med. Chem. 2021, 210, 113084. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; Chen, J.; Cao, J.X.; Zhang, S.S.; Gu, S.X.; Chen, F.E. Quinolines and Isoquinolines as HIV-1 Inhibitors: Chemical Structures, Action Targets, and Biological Activities. Bioorg. Chem. 2023, 136, 106549. [Google Scholar] [CrossRef]
- Sharma, V.; Das, R.; Mehta, D.K.; Gupta, S.; Venugopala, K.N.; Mailavaram, R.; Nair, A.B.; Shakya, A.K.; Deb, P.K. Recent Insight into the Biological Activities and SAR of Quinolone Derivatives as Multifunctional Scaffold. Bioorg. Med. Chem. 2022, 59, 116674. [Google Scholar] [CrossRef] [PubMed]
- Manzoor, S.; Gabr, M.T.; Nafie, M.S.; Raza, K.; Khan, A.; Nayeem, S.M.; Arafa, R.K.; Hoda, N. Discovery of Quinolinone Hybrids as Dual Inhibitors of Acetylcholinesterase and Aβ Aggregation for Alzheimer’s Disease Therapy. ACS Chem. Neurosci. 2024, 15, 539–559. [Google Scholar] [CrossRef]
- Mahmood, A.; Liu, X.; Grice, J.; Medley, G.; Roberts, M. The Efficacy of Quinolones and Fluoroquinolones in the Medicine: A Review Study. Iraqi J. Med. Health Sci. 2024, 1, 27–35. [Google Scholar] [CrossRef]
- Brandao, P.; Marques, C.; Burke, A.J.; Pineiro, M. The Application of Isatin-Based Multicomponent Reactions in the Quest for New Bioactive and Druglike Molecules. Eur. J. Med. Chem. 2021, 211, 113102. [Google Scholar] [CrossRef] [PubMed]
- Kumaraswamy, B.; Hemalatha, K.; Pal, R.; Matada, G.S.P.; Hosamani, K.R.; Aayishamma, I.; Aishwarya, N.V.S.S. An Insight into Sustainable and Green Chemistry Approaches for the Synthesis of Quinoline Derivatives as Anticancer Agents. Eur. J. Med. Chem. 2024, 275, 116561. [Google Scholar] [CrossRef]
- El Ashry, E.H.; Ramadan, E.S.; Abdel Hamid, H.; Hagar, M. Microwave-Assisted Synthesis of Quinoline Derivatives from Isatin. Synth. Commun. 2005, 35, 2243–2250. [Google Scholar] [CrossRef]
- Chen, T.-C.; Yu, D.-S.; Chen, S.-J.; Chen, C.-L.; Lee, C.-C.; Hsieh, Y.-Y.; Chang, L.-C.; Guh, J.-H.; Lin, J.-J.; Huang, H.-S. Design, Synthesis and Biological Evaluation of Tetracyclic Azafluorenone Derivatives with Topoisomerase I Inhibitory Properties as Potential Anticancer Agents. Arab. J. Chem. 2019, 12, 4348–4364. [Google Scholar] [CrossRef]
- Khan, N.A.; Khan, I.; Abid, S.M.; Zaib, S.; Ibrar, A.; Andleeb, H.; Hameed, S.; Iqbal, J. Quinolinic Carboxylic Acid Derivatives as Potential Multi-target Compounds for Neurodegeneration: Monoamine Oxidase and Cholinesterase Inhibition. Med. Chem. 2018, 14, 1. [Google Scholar] [CrossRef]
- Moussaoui, O.; Byadi, S.; Hachim, M.E.; Sghyar, R.; Bahsis, L.; Moslova, K.; Aboulmouhajir, A.; Kandri Rodi, Y.; Podlipnik, Č.; EL Hadrami, E.M.; et al. Selective Synthesis of Novel Quinolones-Amino Esters as Potential Antibacterial and Antifungal Agents: Experimental, Mechanistic Study, Docking and Molecular Dynamics Simulations. J. Mol. Struct. 2021, 1241, 130652. [Google Scholar] [CrossRef]
- Rodi, Y.K.; Baba, Y.F.; Mague, J.T.; Chraibi, M.; Benbrahim, K.F.; Chahdi, F.O.; Ouzidan, Y.; Essassi, E.M. New Quinolone-Based Compounds: Synthesis, Crystal Structures and Biological Activities. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2019, 20, 487–500. [Google Scholar]
- Baba, Y.F.; Sebbar, N.K.; Elmsellem, H.; Rodi, Y.K.; Chraibi, M.; Benbrahim, K.F.; Essassi, E.M. Effects of 6-Substituted-2-Oxo-1,2-Dihydroquinoline-4-Carboxylic Acid Derivatives on Mild Steel Corrosion in Hydrochloric Acid Solution: Experimental and Theoretical Studies, and Their Antibacterial Activity. Eur. J. Chem. 2017, 1, 1–11. [Google Scholar]
- Yassir, F.B. Nouveaux Hétérocycles Possédant un Motif Quinoléine: Synthèse, Caractérisation, Application et Étude Pharmacologique. Ph.D. Thesis, Université Mohammed V, Rabat, Morocco, 2018. [Google Scholar]
- Kovács, D.P.; McCorkindale, W.; Lee, A.A. Quantitative Interpretation Explains Machine Learning Models for Chemical Reaction Prediction and Uncovers Bias. Nat. Commun. 2021, 12, 1695. [Google Scholar] [CrossRef]
- Lou, S.; Liu, C.; Chen, Y.; Mo, F. Empowering Machines to Think Like Chemists: Unveiling Molecular Structure-Polarity Relationships with Hierarchical Symbolic Regression. arXiv 2024, arXiv:2401.13904. [Google Scholar] [CrossRef]
- El-Mrabet, A.; Diane, A.; Haoudi, A.; Kandri-Rodi, Y.; Mazzah, A. Exploration of Quinolone Amides as Promising Candidates for the Treatment of Human African Trypanosomiasis: In Silico Virtual Screening and Molecular Docking. Russ. J. Gen. Chem. 2025, 95, 1817–1832. [Google Scholar] [CrossRef]
- El-Mrabet, A.; Haoudi, A.; Capet, F.; Hökelek, T.; Ahmed, M. Crystal Structure and Hirshfeld Surface Analyses, Interaction Energy Calculations, and Energy Frameworks of Methyl 2-[(4-Cyanophenyl) Methoxy] Quinoline-4-Carboxylate. Struct. Rep. 2025, 81, 650–656. [Google Scholar] [CrossRef]
- Yang, L.; Li, T.; Yang, L.; Dong, L.; Chen, J. Two-Dimensional Correlation Spectroscopy Indicates the Infrared Spectral Markers of the Optimum Scorching Degree of Rhubarb (Rhei Radix et Rhizoma) to Enhance the Anti-Inflammatory Activity. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 270, 120853. [Google Scholar] [CrossRef]
- El-Mrabet, A.; Haoudi, A.; Dalbouha, S.; Skalli, M.K.; Hökelek, T.; Capet, F.; Rodi, Y.K.; Mazzah, A.; Sebbar, N.K. Crystal Structure, Hirshfeld Surface Analysis, Interaction Energy and Energy Framework Calculations, as well as Density Functional Theory (DFT) Computation, of Methyl 2-Oxo-1-(Prop-2-ynyl)-1,2-Dihydroquinoline-4-carboxylate. Acta Crystallogr. Sect. E Crystallogr. Commun. 2023, 79, 883–889. [Google Scholar] [CrossRef]
- Ngamsurach, P.; Praipipat, P. Antibacterial Activities against Staphylococcus aureus and Escherichia coli of Extracted Piper betle Leaf Materials by Disc Diffusion Assay and Batch Experiments. RSC Adv. 2022, 12, 26435–26454. [Google Scholar] [CrossRef] [PubMed]
- Bouhdid, S.; Skali-Senhaji, N.; Idaomar, M.; Zhiri, A.; Baudoux, D.; Abrini, J. Antibacterial and Antioxidant Activities of Origanum compactum Essential Oil. Afr. J. Biotechnol. 2008, 7, 1563–1570. [Google Scholar]
- Swanson, K.; Walther, P.; Leitz, J.; Mukherjee, S.; Wu, J.C.; Shivnaraine, R.V.; Zou, J.; Valencia, A. ADMET-AI: A Machine Learning ADMET Platform for Evaluation of Large-Scale Chemical Libraries. Bioinformatics 2024, 40, btae416. [Google Scholar] [CrossRef]
- Karim, E.M.; Abchir, O.; Nour, H.; Yamari, I.; Bennani, L.; El Kouali, M.H.; Talbi, M.; Errougui, A.; Chtita, S. Discovery of a Potential Inhibitor Against Lung Cancer: Computational Approaches and Molecular Dynamics Study. Phys. Chem. Res. 2024, 12, 579–589. [Google Scholar]
- Wang, L.; Behara, P.K.; Thompson, M.W.; Gokey, T.; Wang, Y.; Wagner, J.R.; Cole, D.J.; Gilson, M.K.; Shirts, M.R.; Mobley, D.L. The Open Force Field Initiative: Open Software and Open Science for Molecular Modeling. J. Phys. Chem. B 2024, 128, 7043–7067. [Google Scholar] [CrossRef]
- Goodsell, D.S.; Sanner, M.F.; Olson, A.J.; Forli, S. The AutoDock Suite at 30. Protein Sci. 2021, 30, 31–43. [Google Scholar] [CrossRef] [PubMed]
- Dassault Systèmes BIOVIA. Materials Studio, R2; Dassault Systèmes BIOVIA: San Diego, CA, USA, 2017. [Google Scholar]
- Halder, D.; Das, S.; Aiswarya, R.; Jeyaprakash, R.S. Molecular Docking and Dynamics Based Approach for the Identification of Kinase Inhibitors Targeting PI3Kα Against Non-Small Cell Lung Cancer: A Computational Study. RSC Adv. 2022, 12, 21452–21467. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, J. Transport Properties of Bulk Water at 243–550 K: A Comparative Molecular Dynamics Simulation Study Using SPC/E, TIP4P, and TIP4P/2005 Water Models. Mol. Phys. 2019, 117, 1926–1933. [Google Scholar] [CrossRef]
- Martyna, G.J.; Tobias, D.J.; Klein, M.L. Constant Pressure Molecular Dynamics Algorithms. J. Chem. Phys. 1994, 101, 4177–4189. [Google Scholar] [CrossRef]
- Cheng, A.; Merz, K.M. Application of the Nosé–Hoover Chain Algorithm to the Study of Protein Dynamics. J. Phys. Chem. 1996, 100, 1927–1937. [Google Scholar] [CrossRef]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of Clinical Drug Development Fails and How to Improve It? Acta Pharm. Sin. B 2022, 12, 3049–3062. [Google Scholar] [CrossRef] [PubMed]
- Daina, A.; Zoete, V. A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef]
- Zhu, X.; Ding, G.; Ren, S.; Xi, J.; Liu, K. The Bioavailability, Absorption, Metabolism, and Regulation of Glucolipid Metabolism Disorders by Quercetin and Its Important Glycosides: A Review. Food Chem. 2024, 458, 140262. [Google Scholar] [CrossRef]
- Nie, Y.; Kong, Y.; Peng, J.; Sun, J.; Fan, B. Enhanced Oral Bioavailability of Cannabidiol by Flexible Zein Nanoparticles: In Vitro and Pharmacokinetic Studies. Front. Nutr. 2024, 11, 1431620. [Google Scholar] [CrossRef]
- Nignpense, B.E.; Francis, N.; Blanchard, C.; Santhakumar, A. The Bioavailability of Polyphenols Following Acute Consumption of Pigmented Barley and Wheat. Food Funct. 2024, 15, 9330–9342. [Google Scholar] [CrossRef]
- Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. J. Med. Chem. 2015, 58, 4066–4072. [Google Scholar] [CrossRef]
- Loos, N.H.; Beijnen, J.H.; Schinkel, A.H. The Mechanism-Based Inactivation of CYP3A4 by Ritonavir: What Mechanism? Int. J. Mol. Sci. 2022, 23, 9866. [Google Scholar] [CrossRef] [PubMed]
- Bassan, A.; Alves, V.M.; Amberg, A.; Anger, L.T.; Auerbach, S.; Beilke, L.; Bender, A.; Cronin, M.T.; Cross, K.P.; Hsieh, J.-H.; et al. In Silico Approaches in Organ Toxicity Hazard Assessment: Current Status and Future Needs in Predicting Liver Toxicity. Comput. Toxicol. 2021, 20, 100187. [Google Scholar] [CrossRef] [PubMed]
Molecules | 4a | 4b | 4c |
---|---|---|---|
Fraction CSP3 | 0.143 | 0.182 | 0.182 |
Method | Model | Training | Testing | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
SR | IC50 = 8.41 × exp (2 × FractionCSP3) − 8.94 (1) | 0.61 | 1.81 | 0.68 | 1.75 |
Comp. | Formula | n. Heavy Atoms | n. Arom. Heavy Atoms | Fraction Csp3 | n. Rotatable Bonds | Log P | n. H-Bond Acceptors | n. H-Bond Donors | TPSA | Molar Refractivity |
---|---|---|---|---|---|---|---|---|---|---|
Q3 | C10H6BrNO3 | 15 | 10 | 0.00 | 1 | 1.9888 | 3 | 2 | 70.16 Å2 | 59.23 |
4a | C21H17BrN4O3 | 29 | 21 | 0.14 | 6 | 3.2387 | 5 | 0 | 79.01 Å2 | 112.27 |
4b | C22H20N4O3 | 29 | 21 | 0.18 | 6 | 2.7846 | 5 | 0 | 79.01 Å2 | 109.53 |
4c | C22H17F3N4O3 | 32 | 21 | 0.18 | 7 | 3.4950 | 8 | 0 | 79.01 Å2 | 109.57 |
Compounds/ADMET | Absorption | Distribution | Metabolism | Excretion | Toxicity | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cytochromes (CYP) | ||||||||||||||
Substrate CYP | Inhibitor CYP | |||||||||||||
Water Solubility | Intestinal Absorption (Human) | BBB Permeability | CNS Permeability | 2D6 | 3A4 | 1A2 | 3A4 | 2C9 | 2D6 | Total Clearance | AMES Test of Toxicity | Hepatotoxicity | Skin Sensitization | |
Unity | (Log mol/L) | Numeric (% Abs) | Numeric (log BB) | Numeric (Log PS) | Categorical (Yes or No) | Log (mL/min/kg) | Categorical (Yes or No) | |||||||
Q3 | −2.73 | 95.085 | −0.385 | −2.206 | No | No | No | No | No | No | 0.089 | No | No | No |
4a | −4.036 | 97.518 | −1.077 | −2.686 | No | Yes | Yes | No | Yes | No | 0.416 | No | Yes | No |
4b | −4.721 | 98.353 | −1.315 | −2.297 | No | Yes | Yes | No | Yes | No | 0.241 | No | Yes | No |
4c | −3.832 | 99.044 | −0.893 | −2.457 | No | Yes | Yes | Yes | Yes | No | 0.749 | No | Yes | No |
Ligands | Molecular Formula | Binding Affinity (Kcal/mol) | Interaction Hydrogen-Binding | Hydrophobic Interaction |
---|---|---|---|---|
Q3 | C10H6BrNO3 | −7.9 | Conventional H-bond: Ser B129, Arg B61 | Pi-Sigma: Val B76 Alkyl and Pi-Alkyl: Leu B125, Tyr B47, Ala B127, Ala B70, Leu B36 Pi-Pi stacked: Tyr B64 Van der waals: Ile B52, Thr B75, Thr B115, Asp B73, Gly B126 |
4a | C21H17BrN4O3 | −9.4 | Conventional H-bond: Tyr B56 Carbon H-bond: Val B76, Tyr B76, Asp B63, Leu B125 | Alkyl and Pi-Alkyl: Leu B110, Tyr B93, Ala B105 Pi-Pi stacked: Trp B88, Phe B101 Pi-Sigma: Leu B36, Ala B127 Pi-Sulfur: Cys B79 Van der waals: Leu B39, Leu B40, Gly B126, Ala B50, Gly B38, Ile B52, Arg B61, Trp B60, Ser B129, Thr B75, Thr B155 B120, Gly A120, Glu B124, Tyr B47, Ser B44, Lys B42 |
4b | C22H20N4O3 | −9.2 | Conventional H-bond: Tyr B64, Arg B61 Carbon H-bond: Val B76, Asp B73, Ala B127 | Alkyl and Pi-Alkyl: Val B76, Ala B127, Ala B70 Pi-Pi stacked: Trp B70 Pi-Sigma: Leu B36, Trp B88 Pi-Sulfur: Cys B79 Pi-Anion: Asp B73 Van der waals: Leu B110, Leu B40, Gly B126, Ala B50, Gly B38, Ile B52, Trp B60, Ser B129, Thr B75, Thr B155 B120, Phe B101, Tyr B75 |
4c | C22H17F3N4O3 | −8.2 | Conventional H-bond: Arg B61 Carbon H-bond: Asp B73 | Alkyl and Pi-Alkyl: Val B70, Ala B127, Ile B52, Leu B40, Ala B50, Cys B79 Pi-Pi stacked: Trp B47, Trp B64 Pi-Sigma: Leu B36, Trp B88 Halogen: Gly B126, Val B76 Van der waals: Leu B110, Ala B50, Gly B38, Trp B60, Ser B129, Thr B75, Thr B155, Phe B101, Tyr B75 |
Compounds | E. coli ATCC 25922 (ZI) | B. cereus ATCC 9634 (ZI) | B. subtilis ATCC 3366 (ZI) | |||
---|---|---|---|---|---|---|
MIC (µg/mL) | MIC (µM) | MIC (µg/mL) | MIC (µM) | MIC (µg/mL) | MIC (µM) | |
4a | 155 | 342 | 38 | 83 | 19 | 42 |
4b | 315 | 811 | 75 | 193 | 38 | 98 |
4c | 1250 | 2825 | 315 | 712 | 315 | 712 |
Ciprofloxacin | 15 | 45 | 12 | 36 | 12 | 36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Mrabet, A.; Diane, A.; Haloui, R.; El Monfalouti, H.; S. Alanazi, A.; Hefnawy, M.; Alanazi, M.M.; Kandri-Rodi, Y.; Elkhattabi, S.; Mazzah, A.; et al. Hybrid 2-Quinolone–1,2,3-triazole Compounds: Rational Design, In Silico Optimization, Synthesis, Characterization, and Antibacterial Evaluation. Antibiotics 2025, 14, 877. https://doi.org/10.3390/antibiotics14090877
El-Mrabet A, Diane A, Haloui R, El Monfalouti H, S. Alanazi A, Hefnawy M, Alanazi MM, Kandri-Rodi Y, Elkhattabi S, Mazzah A, et al. Hybrid 2-Quinolone–1,2,3-triazole Compounds: Rational Design, In Silico Optimization, Synthesis, Characterization, and Antibacterial Evaluation. Antibiotics. 2025; 14(9):877. https://doi.org/10.3390/antibiotics14090877
Chicago/Turabian StyleEl-Mrabet, Ayoub, Abderrahim Diane, Rachid Haloui, Hanae El Monfalouti, Ashwag S. Alanazi, Mohamed Hefnawy, Mohammed M. Alanazi, Youssef Kandri-Rodi, Souad Elkhattabi, Ahmed Mazzah, and et al. 2025. "Hybrid 2-Quinolone–1,2,3-triazole Compounds: Rational Design, In Silico Optimization, Synthesis, Characterization, and Antibacterial Evaluation" Antibiotics 14, no. 9: 877. https://doi.org/10.3390/antibiotics14090877
APA StyleEl-Mrabet, A., Diane, A., Haloui, R., El Monfalouti, H., S. Alanazi, A., Hefnawy, M., Alanazi, M. M., Kandri-Rodi, Y., Elkhattabi, S., Mazzah, A., Haoudi, A., & Kheira Sebbar, N. (2025). Hybrid 2-Quinolone–1,2,3-triazole Compounds: Rational Design, In Silico Optimization, Synthesis, Characterization, and Antibacterial Evaluation. Antibiotics, 14(9), 877. https://doi.org/10.3390/antibiotics14090877