Biotransformation of Antibiotics by Coriolopsis gallica: Degradation of Compounds Does Not Always Eliminate Their Toxicity
Abstract
1. Introduction
2. Results
2.1. Antibiotic Biotransformation by C. gallica
2.2. Detection of Degradation Metabolites
2.3. Laccase-like Activity in Submerged Fugal Cultures
2.4. In Vitro Analysis of Residual Antibiotics
3. Discussion
4. Materials and Methods
4.1. Fungal Strain and Culture Media
4.2. Chemicals and Reagents
4.3. Evolution of Antibiotic Concentration in the C. gallica Culture Filtrate
4.4. Laccase-like Activity Assay
4.5. Antibacterial Activity Assay
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2,6-DMP | 2,6-dimethoxyphenol |
TC | Tetracycline |
CHL | Chloramphenicol |
SULF | Sulfanilamide |
References
- Fayaz, T.; Renuka, N.; Ratha, S.K. Antibiotic Occurrence, Environmental Risks, and Their Removal from Aquatic Environments Using Microalgae: Advances and Future Perspectives. Chemosphere 2024, 349, 140822. [Google Scholar] [CrossRef]
- Harrabi, M.; Varela Della Giustina, S.; Aloulou, F.; Rodriguez-Mozaz, S.; Barceló, D.; Elleuch, B. Analysis of Multiclass Antibiotic Residues in Urban Wastewater in Tunisia. Environ. Nanotechnol. Monit. Manag. 2018, 10, 163–170. [Google Scholar] [CrossRef]
- Song, Q.; Li, J.; Zhou, P.; Chen, R.; Liu, Z.; Li, H.; Yin, X. Worldwide Antibiotic Prescription Practices in Primary Care and Associated Factors: A Systematic Review and Meta-Analysis. Am. J. Infect. Control 2025. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Li, X.; Chang, H.; Zhong, N.; Ren, N.; Ho, S.-H. Comprehensive Insights into Antibiotic Resistance Gene Migration in Microalgal-Bacterial Consortia: Mechanisms, Factors, and Perspectives. Sci. Total Environ. 2023, 901, 166029. [Google Scholar] [CrossRef] [PubMed]
- Viana, P.; Meisel, L.; Lopes, A.; de Jesus, R.; Sarmento, G.; Duarte, S.; Sepodes, B.; Fernandes, A.; Dos Santos, M.M.C.; Almeida, A.; et al. Identification of Antibiotics in Surface-Groundwater. A Tool towards the Ecopharmacovigilance Approach: A Portuguese Case-Study. Antibiotics 2021, 10, 888. [Google Scholar] [CrossRef]
- Wang, G.; Zhou, S.; Han, X.; Zhang, L.; Ding, S.; Li, Y.; Zhang, D.; Zarin, K. Occurrence, Distribution, and Source Track of Antibiotics and Antibiotic Resistance Genes in the Main Rivers of Chongqing City, Southwest China. J. Hazard. Mater. 2020, 389, 122110. [Google Scholar] [CrossRef] [PubMed]
- Murray, A.K.; Stanton, I.; Gaze, W.H.; Snape, J. Dawning of a New ERA: Environmental Risk Assessment of Antibiotics and Their Potential to Select for Antimicrobial Resistance. Water Res. 2021, 200, 117233. [Google Scholar] [CrossRef]
- Rodriguez-Mozaz, S.; Chamorro, S.; Marti, E.; Huerta, B.; Gros, M.; Sànchez-Melsió, A.; Borrego, C.M.; Barceló, D.; Balcázar, J.L. Occurrence of Antibiotics and Antibiotic Resistance Genes in Hospital and Urban Wastewaters and Their Impact on the Receiving River. Water Res. 2015, 69, 234–242. [Google Scholar] [CrossRef]
- Proia, L.; von Schiller, D.; Sànchez-Melsió, A.; Sabater, S.; Borrego, C.M.; Rodríguez-Mozaz, S.; Balcázar, J.L. Occurrence and Persistence of Antibiotic Resistance Genes in River Biofilms after Wastewater Inputs in Small Rivers. Environ. Pollut. 2016, 210, 121–128. [Google Scholar] [CrossRef]
- Wang, T.-T.; Zhang, H.-J.; Guo, T.-Q.; Luo, J.-Y.; Li, B.-J.; Liao, W.-Q.; Mo, L.; Wang, S.; Huang, Y.-H. Presence and Sources of Antibiotics in Dongzhai Harbor, Hainan Island. Mar. Pollut. Bull. 2025, 221, 118521. [Google Scholar] [CrossRef]
- Kuang, Z.; Zheng, W.; Song, W.; Zhao, P.; Wang, X. Occurrence, Distribution, and Risk Assessment of Antibiotics in Typical Aquaculture Environment of Southern Jiangsu. J. Environ. Sci. 2025; in press. [Google Scholar] [CrossRef]
- Men, C.; Jiang, H.; Ma, Y.; Cai, H.; Fu, H.; Li, Z. A Nationwide Probabilistic Risk Assessment and a New Insight into Source-Specific Risk Apportionment of Antibiotics in Eight Typical River Basins in China: Human Health Risk and Ecological Risk. J. Hazard. Mater. 2025, 484, 136674. [Google Scholar] [CrossRef]
- Wu, X.; Dodgen, L.K.; Conkle, J.L.; Gan, J. Plant Uptake of Pharmaceutical and Personal Care Products from Recycled Water and Biosolids: A Review. Sci. Total Environ. 2015, 536, 655–666. [Google Scholar] [CrossRef]
- Bhattacharjee, A.S.; Phan, D.; Zheng, C.; Ashworth, D.; Schmidt, M.; Men, Y.; Ferreira, J.F.S.; Muir, G.; Hasan, N.A.; Ibekwe, A.M. Dissemination of Antibiotic Resistance Genes through Soil-Plant-Earthworm Continuum in the Food Production Environment. Environ. Int. 2024, 183, 108374. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.K.; Hussein, S.; Qurbani, K.; Ibrahim, R.H.; Fareeq, A.; Mahmood, K.A.; Mohamed, M.G. Antimicrobial Resistance: Impacts, Challenges, and Future Prospects. J. Med. Surg. Public Health 2024, 2, 100081. [Google Scholar] [CrossRef]
- Rayan, R.A. Pharmaceutical Effluent Evokes Superbugs in the Environment: A Call to Action. Biosaf. Health 2023, 5, 363–371. [Google Scholar] [CrossRef]
- Wang, Y.; Du, B.; Wu, G. Tetracycline in Anaerobic Digestion: Microbial Inhibition, Removal Pathways, and Conductive Material Mitigation. J. Hazard. Mater. 2025, 496, 139378. [Google Scholar] [CrossRef] [PubMed]
- Topal, M.; Uslu Şenel, G.; Öbek, E.; Arslan Topal, E.I. Investigation of Relationships between Removals of Tetracycline and Degradation Products and Physicochemical Parameters in Municipal Wastewater Treatment Plant. J. Environ. Manag. 2016, 173, 1–9. [Google Scholar] [CrossRef]
- Hanekamp, J.C.; Bast, A. Antibiotics Exposure and Health Risks: Chloramphenicol. Environ. Toxicol. Pharmacol. 2015, 39, 213–220. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Brower, C.; Gilbert, M.; Grenfell, B.T.; Levin, S.A.; Robinson, T.P.; Teillant, A.; Laxminarayan, R. Global Trends in Antimicrobial Use in Food Animals. Proc. Natl. Acad. Sci. USA 2015, 112, 5649–5654. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Qin, T.; Zhao, C.; Zhou, Y. Degradation of Sulfanilamide in Aqueous Solution by Ionizing Radiation: Performance and Mechanism. Environ. Pollut. 2023, 338, 122681. [Google Scholar] [CrossRef]
- Giannakis, S.; Lin, K.-Y.A.; Ghanbari, F. A Review of the Recent Advances on the Treatment of Industrial Wastewaters by Sulfate Radical-Based Advanced Oxidation Processes (SR-AOPs). Chem. Eng. J. 2021, 406, 127083. [Google Scholar] [CrossRef]
- Jin, Q.; Liu, W.; Dong, Y.; Lu, Y.; Yang, C.; Lin, H. Single Atom Catalysts for Degradation of Antibiotics from Aqueous Environments by Advanced Oxidation Processes: A Review. J. Clean. Prod. 2023, 423, 138688. [Google Scholar] [CrossRef]
- Li, S.; Wu, Y.; Zheng, H.; Li, H.; Zheng, Y.; Nan, J.; Ma, J.; Nagarajan, D.; Chang, J.-S. Antibiotics Degradation by Advanced Oxidation Process (AOPs): Recent Advances in Ecotoxicity and Antibiotic-Resistance Genes Induction of Degradation Products. Chemosphere 2023, 311, 136977. [Google Scholar] [CrossRef] [PubMed]
- Baran, W.; Adamek, E. Degradation of Veterinary Antibiotics by Fenton Process: Products Identification and Toxicity Assessment. Chemosphere 2023, 341, 139854. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhao, Y.; Wang, J. Fenton/Fenton-like Processes with in-Situ Production of Hydrogen Peroxide/Hydroxyl Radical for Degradation of Emerging Contaminants: Advances and Prospects. J. Hazard. Mater. 2021, 404, 124191. [Google Scholar] [CrossRef]
- Iakovides, I.C.; Michael-Kordatou, I.; Moreira, N.F.F.; Ribeiro, A.R.; Fernandes, T.; Pereira, M.F.R.; Nunes, O.C.; Manaia, C.M.; Silva, A.M.T.; Fatta-Kassinos, D. Continuous Ozonation of Urban Wastewater: Removal of Antibiotics, Antibiotic-Resistant Escherichia Coli and Antibiotic Resistance Genes and Phytotoxicity. Water Res. 2019, 159, 333–347. [Google Scholar] [CrossRef]
- Hasani, K.; Peyghami, A.; Moharrami, A.; Vosoughi, M.; Dargahi, A. The Efficacy of Sono-Electro-Fenton Process for Removal of Cefixime Antibiotic from Aqueous Solutions by Response Surface Methodology (RSM) and Evaluation of Toxicity of Effluent by Microorganisms. Arab. J. Chem. 2020, 13, 6122–6139. [Google Scholar] [CrossRef]
- Liu, N.; Huang, W.; Li, Z.; Shao, H.; Wu, M.; Lei, J.; Tang, L. Radiolytic Decomposition of Sulfonamide Antibiotics: Implications to the Kinetics, Mechanisms and Toxicity. Sep. Purif. Technol. 2018, 202, 259–265. [Google Scholar] [CrossRef]
- Jin, X.; Xu, H.; Qiu, S.; Jia, M.; Wang, F.; Zhang, A.; Jiang, X. Direct Photolysis of Oxytetracycline: Influence of Initial Concentration, pH and Temperature. J. Photochem. Photobiol. Chem. 2017, 332, 224–231. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Lu, S.; Wang, Z.; Wang, Y.; Zhang, G.; Guo, X.; Guo, W.; Zhang, T.; Xi, B. Degradation Difference of Ofloxacin and Levofloxacin by UV/H2O2 and UV/PS (Persulfate): Efficiency, Factors and Mechanism. Chem. Eng. J. 2020, 385, 123987. [Google Scholar] [CrossRef]
- Liu, Y.; He, X.; Duan, X.; Fu, Y.; Fatta-Kassinos, D.; Dionysiou, D.D. Significant Role of UV and Carbonate Radical on the Degradation of Oxytetracycline in UV-AOPs: Kinetics and Mechanism. Water Res. 2016, 95, 195–204. [Google Scholar] [CrossRef]
- Dai, X.; Su, C.; Chen, Z.; Li, X.; Lu, P.; Qi, Z.; Luo, Z.; Chen, M. Sulfonamide and Quinolone Antibiotics Contaminated Wastewater Treatment by Constructed Rapid Infiltration: Efficiency and Microbial Community Structure. Process Saf. Environ. Prot. 2022, 161, 542–555. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Vatanpour, V.; Khataee, A. Removal of Antibiotics from Wastewaters by Membrane Technology: Limitations, Successes, and Future Improvements. Sci. Total Environ. 2022, 838, 156010. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Li, J.; Zhang, Y.; Zhang, M.; Tian, X.; Wang, A. Partial Degradation of Levofloxacin for Biodegradability Improvement by Electro-Fenton Process Using an Activated Carbon Fiber Felt Cathode. J. Hazard. Mater. 2016, 304, 320–328. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Chen, Y.; Cheng, F.; Yang, H.; Qu, J.; Zhang, Y.; Peijnenburg, W.J.G.M. Hydrophilicity-Dependent Photodegradation of Antibiotics in Ice: Freeze-Concentration Effects and Dissolved Organic Matter Interactions Drive Divergent Kinetics, Pathways and Toxicity. Water Res. 2025, 286, 124277. [Google Scholar] [CrossRef]
- Bilal, M.; Ashraf, S.S.; Barceló, D.; Iqbal, H.M.N. Biocatalytic Degradation/Redefining “Removal” Fate of Pharmaceutically Active Compounds and Antibiotics in the Aquatic Environment. Sci. Total Environ. 2019, 691, 1190–1211. [Google Scholar] [CrossRef] [PubMed]
- Bhaskaralingam, A.; Sharma, G.; Wang, T.; Kumar, A.; Dhiman, P.; Kumar, D.; Shi, H. Bioremediation of Pharmaceuticals Waste and Pesticides Using Various Microorganisms: A Review. Process Saf. Environ. Prot. 2025, 194, 1116–1132. [Google Scholar] [CrossRef]
- Periyasamy, A.P. A Review of Bioremediation of Textile Dye Containing Wastewater. Clean. Water 2025, 4, 100092. [Google Scholar] [CrossRef]
- Pereira-Silva, G.; Leonardo-Silva, L.; Camilo-Cotrim, C.F.; de Araujo Toschi, L.; dos Reis, M.J.; Xavier-Santos, S. Barriers and Guidelines in the Use of Fungi in Pesticide Bioremediation: A Global Overview. Sci. Total Environ. 2025, 991, 179913. [Google Scholar] [CrossRef]
- Shaji, A.; Kamalesh, R.; Saravanan, A.; Yaashikaa, P.R.; Vickram, A.S. A Comprehensive Review on Bioremediation and Biomonitoring of Microplastics: Circular Bioeconomy and Future Perspective. Groundw. Sustain. Dev. 2025, 30, 101479. [Google Scholar] [CrossRef]
- Oziegbe, O.; Oziegbe, E.J.; Ojo-Omoniyi, O. Bioremediation of Heavy Metals in Aquatic Environment: A Review. Clean. Chem. Eng. 2025, 11, 100193. [Google Scholar] [CrossRef]
- Naseem, A.; Alneghery, L.M.; Al-Zharani, M.; Nasr, F.A.; Jawad, S.S.; Umer, M.; Sayyed, R.; Ilyas, N. An Insight into the Impacts of Pharmaceutical Pollutants on the Ecosystem and the Potential Role of Bioremediation in Mitigating Pharmaceutical Pollutants. Int. J. Pharm. 2025, 680, 125791. [Google Scholar] [CrossRef]
- Alex, A.M.; Vivekanadam, S.; Periyasamy, V.; Vairaperumal, T. Chapter 12—Bioremediation of Pharmaceuticals and Antibiotics Emerging Contaminants from Wastewater. In Biotechnologies for Wastewater Treatment and Resource Recovery; Srivastav, A.L., Zinicovscaia, I., Cepoi, L., Eds.; Elsevier: Amsterdam, The Netherlands, 2025; pp. 159–169. ISBN 978-0-443-27376-6. [Google Scholar]
- Plaisance, A.; Wayment, D.; Raje, H.; Boopathy, R. Biodegradation of Sulfamethoxazole by a Bacterium Isolated from the Hurricane Overtop Sediments. Bioresour. Technol. Rep. 2024, 27, 101926. [Google Scholar] [CrossRef]
- He, Q.; Lin, Z.; Zhang, X.; Qin, M.; Huang, Y.; Liao, X.; Liu, Y.; Ren, H.; Sun, J. Designing a Reengineered Probiotic Yeast to Spontaneously Degrade Residual Antibiotics in Gut during Antimicrobial Therapy. J. Clean. Prod. 2024, 483, 144177. [Google Scholar] [CrossRef]
- Shakhir, K.S.; Sulaiman, F.A.; Alwared, A.I.; Mohammed, N.A. Removal of Levofloxacin from Aqueous Solutions by Using Micro Algae: Optimization, Isotherm, and Kinetic Study. Results Eng. 2024, 23, 102529. [Google Scholar] [CrossRef]
- Akrout, I.; Staita, K.; Zouari-Mechichi, H.; Ghariani, B.; Khmaissa, M.; Navarro, D.; Doan, A.; Albert, Q.; Faulds, C.; Sciara, G.; et al. Valorizing Fungal Diversity for the Degradation of Fluoroquinolones. Heliyon 2024, 10, e30611. [Google Scholar] [CrossRef] [PubMed]
- Morsi, R.; Bilal, M.; Iqbal, H.M.N.; Ashraf, S.S. Laccases and Peroxidases: The Smart, Greener and Futuristic Biocatalytic Tools to Mitigate Recalcitrant Emerging Pollutants. Sci. Total Environ. 2020, 714, 136572. [Google Scholar] [CrossRef]
- Lucas, D.; Castellet-Rovira, F.; Villagrasa, M.; Badia-Fabregat, M.; Barceló, D.; Vicent, T.; Caminal, G.; Sarrà, M.; Rodríguez-Mozaz, S. The Role of Sorption Processes in the Removal of Pharmaceuticals by Fungal Treatment of Wastewater. Sci. Total Environ. 2018, 610–611, 1147–1153. [Google Scholar] [CrossRef]
- Tan, Z.; Beltrán-Flores, E.; Ramos-Meza, G.D.; Alonso, L.L.; Sarrà, M. Eliminating Antibiotics by White-Rot-Fungi Trametes Versicolor from Manure Solids and Synthetic Wastewater. Environ. Pollut. 2025, 378, 126504. [Google Scholar] [CrossRef] [PubMed]
- Torres-Farradá, G.; Thijs, S.; Rineau, F.; Guerra, G.; Vangronsveld, J. White Rot Fungi as Tools for the Bioremediation of Xenobiotics: A Review. J. Fungi 2024, 10, 167. [Google Scholar] [CrossRef]
- Lin, S.; Wei, J.; Yang, B.; Zhang, M.; Zhuo, R. Bioremediation of Organic Pollutants by White Rot Fungal Cytochrome P450: The Role and Mechanism of CYP450 in Biodegradation. Chemosphere 2022, 301, 134776. [Google Scholar] [CrossRef]
- Ben Ayed, A.; Akrout, I.; Albert, Q.; Greff, S.; Simmler, C.; Armengaud, J.; Kielbasa, M.; Turbé-Doan, A.; Chaduli, D.; Navarro, D.; et al. Biotransformation of the Fluoroquinolone, Levofloxacin, by the White-Rot Fungus Coriolopsis Gallica. J. Fungi 2022, 8, 965. [Google Scholar] [CrossRef]
- Ghariani, B.; Alessa, A.H.; Ben Atitallah, I.; Louati, I.; Alsaigh, A.A.; Mechichi, T.; Zouari-Mechichi, H. Fungal Bioremediation of the β-Lactam Antibiotic Ampicillin under Laccase-Induced Conditions. Antibiotics 2024, 13, 407. [Google Scholar] [CrossRef]
- Kwak, J.; Yoon, S.; Mahanty, B.; Kim, C.-G. Redox-Mediator-Free Degradation of Sulfathiazole and Tetracycline Using PhanerochaeteChrysosporium. J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng. 2017, 52, 1211–1217. [Google Scholar] [CrossRef] [PubMed]
- Aydin, S. Enhanced Biodegradation of Antibiotic Combinations via the Sequential Treatment of the Sludge Resulting from Pharmaceutical Wastewater Treatment Using White-Rot Fungi Trametes Versicolor and BjerkanderaAdusta. Appl. Microbiol. Biotechnol. 2016, 100, 6491–6499. [Google Scholar] [CrossRef]
- He, W.; Jiang, R.; Li, S.; Zhang, M.; Zhang, T.; Zhu, X.; Wang, X. Biodegradation Mechanism of Chlortetracycline by a Novel Fungal Aspergillus Sp. LS-1. Chemosphere 2023, 340, 139792. [Google Scholar] [CrossRef]
- Baran, W.; Adamek, E.; Włodarczyk, A.; Lazur, J.; Opoka, W.; Muszyńska, B. The Remediation of Sulfonamides from the Environment by PleurotusEryngii Mycelium. Efficiency, Products and Mechanisms of Mycodegradation. Chemosphere 2021, 262, 128026. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.; Liu, B.; Sun, F.; Jing, L.; Shao, L.; Cui, Y.; Yao, Q.; Wang, M.; Meng, C.; et al. Synergistic Degradation of Azure B and Sulfanilamide Antibiotics by the White-Rot Fungus Trametes Versicolor with an Activated Ligninolytic Enzyme System. J. Hazard. Mater. 2023, 458, 131939. [Google Scholar] [CrossRef] [PubMed]
- Holanda, F.H.e.; Birolli, W.G.; Morais, E.d.S.; Sena, I.S.; Ferreira, A.M.; Faustino, S.M.M.; Grace da, S.; Solon, L.; Porto, A.L.M.; Ferreira, I.M. Study of Biodegradation of Chloramphenicol by Endophytic Fungi Isolated from Bertholletia Excelsa (Brazil Nuts). Biocatal. Agric. Biotechnol. 2019, 20, 101200. [Google Scholar] [CrossRef]
- Tan, Z.; Losantos, D.; Li, Y.; Sarrà, M. Biotransformation of Chloramphenicol by White-Rot-Fungi Trametes Versicolor under Cadmium Stress. Bioresour. Technol. 2023, 369, 128508. [Google Scholar] [CrossRef]
- Daâssi, D.; Nasraoui-Hajaji, A.; Bawasir, S.; Frikha, F.; Mechichi, T. Biodegradation of C20 Carbon Clusters from Diesel Fuel by Coriolopsis Gallica: Optimization, Metabolic Pathway, Phytotoxicity. 3 Biotech 2021, 11, 214. [Google Scholar] [CrossRef]
- Daâssi, D.; Sellami, S.; Frikha, F.; Rodriguez-Couto, S.; Nasri, M.; Mechichi, T. Assessment of Coriolopsis Gallica-Treated Olive Mill Wastewater Phytotoxicity on Tomato Plants. Environ. Sci. Pollut. Res. Int. 2016, 23, 15370–15380. [Google Scholar] [CrossRef]
- Daâssi, D.; Prieto, A.; Zouari-Mechichi, H.; Martínez, M.J.; Nasri, M.; Mechichi, T. Degradation of Bisphenol A by Different Fungal Laccases and Identification of Its Degradation Products. Int. Biodeterior. Biodegrad. 2016, 110, 181–188. [Google Scholar] [CrossRef]
- Daâssi, D.; Zouari-Mechichi, H.; Belbahri, L.; Barriuso, J.; Martínez, M.J.; Nasri, M.; Mechichi, T. Phylogenetic and Metabolic Diversity of Tunisian Forest Wood-Degrading Fungi: A Wealth of Novelties and Opportunities for Biotechnology. 3 Biotech 2016, 6, 46. [Google Scholar] [CrossRef] [PubMed]
- Lou, Q.; Wu, Y.; Ding, H.; Zhang, B.; Zhang, W.; Zhang, Y.; Han, L.; Liu, M.; He, T.; Zhong, J. Degradation of Sulfonamides in Aquaculture Wastewater by Laccase–Syringaldehyde Mediator System: Response Surface Optimization, Degradation Kinetics, and Degradation Pathway. J. Hazard. Mater. 2022, 432, 128647. [Google Scholar] [CrossRef]
- Mamy, L.; Patureau, D.; Barriuso, E.; Bedos, C.; Bessac, F.; Louchart, X.; Martin-laurent, F.; Miege, C.; Benoit, P. Prediction of the Fate of Organic Compounds in the Environment From Their Molecular Properties: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 1277–1377. [Google Scholar] [CrossRef] [PubMed]
- Shang, Z.; Salim, A.A.; Khalil, Z.; Bernhardt, P.V.; Capon, R.J. Fungal Biotransformation of Tetracycline Antibiotics. J. Org. Chem. 2016, 81, 6186–6194. [Google Scholar] [CrossRef]
- Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Overview on the Biochemical Potential of Filamentous Fungi to Degrade Pharmaceutical Compounds. Front. Microbiol. 2017, 8, 1792. [Google Scholar] [CrossRef]
- Sun, X.; Leng, Y.; Wan, D.; Chang, F.; Huang, Y.; Li, Z.; Xiong, W.; Wang, J. Transformation of Tetracycline by Manganese Peroxidase from PhanerochaeteChrysosporium. Molecules 2021, 26, 6803. [Google Scholar] [CrossRef] [PubMed]
- Permana, D.; Kitaoka, T.; Ichinose, H. Conversion and Synthesis of Chemicals Catalyzed by Fungal Cytochrome P450 Monooxygenases: A Review. Biotechnol. Bioeng. 2023, 120, 1725–1745. [Google Scholar] [CrossRef]
- Harguindeguy, M.; Pochat-Bohatier, C.; Sanchez-Marcano, J.; Belleville, M.-P. Enzymatic Degradation of Tetracycline by Trametes Versicolor Laccase in a Fluidized Bed Reactor. Sci. Total Environ. 2023, 907, 168152. [Google Scholar] [CrossRef]
- Wang, X.; Meng, F.; Zhang, B.; Xia, Y. Elimination of Tetracyclines in Seawater by Laccase-Mediator System. Chemosphere 2023, 333, 138916. [Google Scholar] [CrossRef]
- Yang, J.; Lin, Y.; Yang, X.; Ng, T.B.; Ye, X.; Lin, J. Degradation of Tetracycline by Immobilized Laccase and the Proposed Transformation Pathway. J. Hazard. Mater. 2017, 322, 525–531. [Google Scholar] [CrossRef]
- Navada, K.K.; Kulal, A. Enzymatic Degradation of Chloramphenicol by Laccase from TrametesHirsuta and Comparison among Mediators. Int. Biodeterior. Biodegrad. 2019, 138, 63–69. [Google Scholar] [CrossRef]
- Margot, J.; Copin, P.-J.; von Gunten, U.; Barry, D.A.; Holliger, C. Sulfamethoxazole and Isoproturon Degradation and Detoxification by a Laccase-Mediator System: Influence of Treatment Conditions and Mechanistic Aspects. Biochem. Eng. J. 2015, 103, 47–59. [Google Scholar] [CrossRef]
- Yang, C.; Qin, Y.; Zhang, Y.; Farhadi, A.; Wang, S.; Diao, X.; Xie, J. Distribution and Occurrence of Antibiotic Resistance Genes and Microbial Diversity in Western Hainan’s Inshore Seawaters: A Seasonal Study. Emerg. Contam. 2025, 11, 100550. [Google Scholar] [CrossRef]
- Delius, J.; Emmerich, M.; Özyurt, V.; Hamscher, G. Biotransformation of Tetracyclines by Fungi: Challenges and Future Research Perspectives. J. Agric. Food Chem. 2022, 70, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Li, X.; Yao, X.; Liu, X.; Pan, C.; Guo, L.; Bai, J.; Chen, T.; Yu, H.; Hu, C. Detoxification of Tetracycline and Synthetic Dyes by a Newly Characterized Lentinula Edodes Laccase, and Safety Assessment Using Proteomic Analysis. Ecotoxicol. Environ. Saf. 2024, 276, 116324. [Google Scholar] [CrossRef]
Antibiotic | Class | Formula | Chemical Structure |
---|---|---|---|
Tetracycline | Tetracyclines | C22H24N2O8 | |
Chloramphenicol | Phenicols | C11H12Cl2N2O5 | |
Sulfanilamide | Sulfonamides | C6H8N2O2S |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghariani, B.; Zouari-Mechichi, H.; Alessa, A.H.; Alqahtani, H.; Alsaigh, A.A.; Mechichi, T. Biotransformation of Antibiotics by Coriolopsis gallica: Degradation of Compounds Does Not Always Eliminate Their Toxicity. Antibiotics 2025, 14, 897. https://doi.org/10.3390/antibiotics14090897
Ghariani B, Zouari-Mechichi H, Alessa AH, Alqahtani H, Alsaigh AA, Mechichi T. Biotransformation of Antibiotics by Coriolopsis gallica: Degradation of Compounds Does Not Always Eliminate Their Toxicity. Antibiotics. 2025; 14(9):897. https://doi.org/10.3390/antibiotics14090897
Chicago/Turabian StyleGhariani, Bouthaina, Héla Zouari-Mechichi, Abdulrahman H. Alessa, Hussain Alqahtani, Ahmad A. Alsaigh, and Tahar Mechichi. 2025. "Biotransformation of Antibiotics by Coriolopsis gallica: Degradation of Compounds Does Not Always Eliminate Their Toxicity" Antibiotics 14, no. 9: 897. https://doi.org/10.3390/antibiotics14090897
APA StyleGhariani, B., Zouari-Mechichi, H., Alessa, A. H., Alqahtani, H., Alsaigh, A. A., & Mechichi, T. (2025). Biotransformation of Antibiotics by Coriolopsis gallica: Degradation of Compounds Does Not Always Eliminate Their Toxicity. Antibiotics, 14(9), 897. https://doi.org/10.3390/antibiotics14090897