Role of Phenothiazines and Structurally Similar Compounds of Plant Origin in the Fight against Infections by Drug Resistant Bacteria
Abstract
:1. Introduction
2. Antimicrobial Action of Phenothiazines
Phenothiazine | MIC µg/mL | Bacteriostatic/ Bactericidal | |
---|---|---|---|
Gram +ve | Gram –ve | ||
CPZ | 10–50 | 25–100 | Bacteriostatic for Gm −ve, Bactericidal for Gm +ve |
Pr | 10–50 | 10–100 | Bacteriostatic |
Pz | 50–200 | 100–200 | Bacteriostatic |
Pc | 25–100 | 50–400 | Bacteriostatic |
Md | 10–100 | 25–200 | Bactericidal |
Fz | 10–100 | 10–100 | Bactericidal |
Tm | 10–100 | 10–100 | Bactericidal |
Tf | 10–100 | 25–200 | Bactericidal |
Tp | 2–50 | 2–100 | Bactericidal |
Tz | 32–64 | 100–800 | Bacteriostatic for Gm –ve, Bactericidal for Gm +ve |
50–800 | |||
Fp | 5–50 | 10–100 | Bacteriostatic |
Phenothiazine | Drug (µg/g) per mouse | |
---|---|---|
Toxic dose | Protective dose | |
Pr | >64 | 2–8 |
Md | >320 | 15–30 |
Fz | >120 | 30–60 |
Tm | >16 | 4–8 |
Tf | >60 | 15–30 |
Tf | >60 | 15–30 |
Tz | >500 | 200 |
Fp | >60 | 15–30 |
3. Antimicrobial Action Phenothiazine-Like Compounds from Plants
Compound of plant origin | MIC (µg/mL) | Type of action | Animal protection dose / mouse | |
---|---|---|---|---|
Gm +ve | Gm –ve | |||
Prenylflavonone YS06 | 25–100 | 25–100 | Bactericidal | 40–80 µg |
Isoflavonoid YS19 | 25–200 | 25–200 | Bacteristatic | 30–60 µg |
Mesua ferrea flower extract | 50–100 | Bactericidal | 50–100 µg | |
Flavonone from Butea frondosa bark | 50–200 | 50–200 | Bacteristatic | 50–200 µg |
4. Special Aspects and Activities of Phenothiazines
Phenothiazines and the Plasma Membrane
5. Therapy of MDR/XDR/TDR TB
6. Concluding Remarks
References and Notes
- Falagas, M.E.; Bliziotis, I.A. Pandrug-resistant Gram-negative bacteria: The dawn of the post-antibiotic era. Int. J. Antimicrob. Agents 2007, 29, 630–636. [Google Scholar] [CrossRef]
- Amaral, L.; Udwadia, Z.F.; van Soolingen, D. A cheap and effective anti-Mdr/Xdr/Tdr Tb drug is already available. Biochem. Pharmacol. J. 2012. [Google Scholar] [CrossRef]
- Amaral, L.; Molnar, J. Why and how the old neuroleptic thioridazine cures the XDR-TB patient. Pharmaceuticals 2012, 5, 1021–1031. [Google Scholar] [CrossRef]
- Amaral, L.; Udwadia, Z.; Abbate, E.; van Soolingen, D. The added effect of Thioridazine in treatment of resistant TB. Int. J. Tuberc. Lung Dis. 2012, 16, 1706–1708. [Google Scholar] [CrossRef]
- Chopra, I.; Schofield, C.; Everett, M.; O'Neill, A.; Miller, K.; Wilcox, M.; Frère, J.-M.; Dawson, M.; Czaplewski, L.; Urleb, U.; et al. Treatment of health-careassociated infections caused by Gram-negative bacteria: A consensus statement. Lancet Infect. Dis. 2008, 8, 133–139. [Google Scholar] [CrossRef]
- Kristiansen, J.E. The antimicrobial activity of non-antibiotics. Report from a congress on the antimicrobial effect of drugs other than antibiotics on bacteria, viruses, protozoa, and other organisms. APMIS. Suppl. 1992, 30, 7–14. [Google Scholar]
- Guttmann, P.; Ehrlich, P. Ueber die wirkung des methylenblau bei malaria. Berliner Klinische Wochenschrift 1891, 39, 953–956. [Google Scholar]
- Kristiansen, J.E.; Amaral, L. The potential management of resistant infections with non-antibiotics. J. Antimicrob. Chemother. 1997, 40, 319–327. [Google Scholar] [CrossRef]
- Dastidar, S.G.; Saha, P.K.; Sanyamat, B.; Chakrabarty, A.N. Antibacterial activities of ambodryl and benadryl. J. Appl. Bact. 1976, 41, 209–214. [Google Scholar] [CrossRef]
- Annadurai, S.; Basu, S.; Ray, S.; Dastidar, S.G.; Chakrabarty, A.N. Antimicrobial activity of the antiinflammatory agent diclofenac sodium. Indian J. Exp. Biol. 1998, 36, 86–90. [Google Scholar]
- Kumar, K.A.; Ganguly, K.; Mazumdar, K.; Dutta, N.K.; Dastidar, S.G.; Chakrabarty, A.N. Amlodipine: A cardiovascular drug with powerful antimicrobial property. Acta Microbiol. Pol. 2003, 52, 285–292. [Google Scholar]
- Mazumdar, K.; Ganguly, K.; Kumar, K.A.; Dutta, N.K.; Chakrabarty, A.N.; Dastidar, S.G. Antimicrobial potentiality of a new non-antibiotic: The cardiovascular drug oxyfedrine hydrochloride. Microbiol. Res. 2003, 158, 259–264. [Google Scholar] [CrossRef]
- Dasgupta, A.; Dastidar, S.G.; Shiratki, Y.; Motohashi, N. Antibacterial Activity of Artificial Phenothiazines and Isoflavones from Plants. In Bioactive Heterocycles VI; Springer: Berlin/Heidelberg, Germany, 2008; Volume 15, pp. 67–132. [Google Scholar]
- Kristiansen, J.E. Experiments to illustrate the effect of chlorpromazine on the permeability of the bacterial cell wall. Acta Pathol. Microbiol. Scand. B 1979, 87, 317–319. [Google Scholar]
- Galeazzi, L.; Turchetti, G.; Grilli, G.; Groppa, G.; Giunta, S. Chlorpromazine as permeabilizer and reagent for detection of microbial peroxidase and peroxidaselike activities. Appl. Environ. Microbiol. 1986, 52, 1433–1435. [Google Scholar]
- Amaral, L.; Lorian, V. Effects of chlorpromazine on the cell envelope proteins of Echerichia coli. Antimicrob. Agents Chemother. 1991, 35, 1923–1924. [Google Scholar] [CrossRef]
- Amaral, L.; Kristiansen, J.E.; Thomsen, V.F.; Markowich, B. The effect of chlorpromazine on the outer cell wall constituents of Salmonella typhimurium ensuring resistance to the drug. Int. J. Antimicrob. Agents 2000, 14, 225–229. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Ganguly, K.; Ganguly, M.; Dastidar, S.G.; Chakrabarty, A.N. Potentiality of tricyclic compound thioridazine as an effective antibacterial and antiplasmid agent. Indian J. Exp. Biol. 1999, 37, 671–675. [Google Scholar]
- Page, A.M.; Lagnado, J.R. Effects of phenothiazine neuroleptic drugs on the microtubular-membrane complex in bloodstream forms of Trypanosoma brucei. Parasitology 1995, 111, 493–504. [Google Scholar] [CrossRef]
- Bourlioux, P.; Moreaux, J.M.; Su, W.J.; Boureau, H. In vitro antimicrobial activity of 18 phenothiazine derivatives: Structure-activity relationship. APMIS Suppl. 1992, 30, 40–43. [Google Scholar]
- Animal of Medical Research; Mitruka, B.M.; Rawnsle, H.M.; Vadehra, D.V. (Eds.) John Wiley & Sons, Inc.: NY, NY, USA, 1976; Volume 301, pp. 145–150.
- Ordway, D.; Viveiros, M.; Leandro, C.; Arroz, M.J.; Amaral, L. Intracellular activity of clinical concentrations of phenothiazines including thioridazine against phagocytosed Staphylococcus aureus. Int. J. Antimicrob. Agents 2001, 20, 34–43. [Google Scholar]
- Martins, M.; Dastidar, S.G.; Fanning, S.; Kristiansen, J.E.; Molnar, J.; Pagès, J.M.; Schelz, Z.; Spengler, G.; Viveiros, M.; Amaral, L. Potential role of non-antibiotics (helper compounds) in the treatment of multi-drug resistant Gram negative infections: Mechanisms for their direct and indirect activities. Int. J. Antimicrob. Agents 2008, 31, 198–208. [Google Scholar] [CrossRef]
- Dutta, N.K.; Mazumdar, K.; Dastidar, S.G.; Amaral, L. New Patentable use of an old neuroleptic compound thioridazine to combat against tuberculosis: Gene regulation perspective. Recent Pat. Anti-Infect. Drug Discov. 2011, 6, 128–138. [Google Scholar] [CrossRef]
- Spengler, G.; Rodrigues, L.; Martins, M.; McCusker, M.; Cerca, P.; Machado, L.; Costa, S.S.; Ntokoue, E.; Couto, I.; Viveiros, M.; et al. Genetic Response of Salmonella enterica serovar Typhimurium to Thioridazine rendering the organism resistant to the agent. Int. J. Antimicrob. Agents 2012, 39, 16–21. [Google Scholar] [CrossRef]
- Dastidar, S.G.; Mahapatra, S.K.; Ganguly, K.; Chakrabarty, A.N. Antimicrobial activity of prenylflavanones. In Vivo 2001, 15, 519–524. [Google Scholar]
- Dastidar, S.G.; Manna, A.; Kumar, K.A.; Mazumdar, K.; Dutta, N.K.; Chakrabarty, A.N.; Motohashi, N.; Shirataki, Y. Studies on the antibacterial potentiality of isoflavones. Int. J. Antimicrob. Agents 2004, 23, 99–102. [Google Scholar] [CrossRef]
- Mazumder, R.; Dastidar, S.G.; Basu, S.P.; Mazumder, A. Effect of Mesua ferrea Linn. flower extract on Salmonella. Indian J. Exp. Biol. 2005, 43, 566–568. [Google Scholar]
- Ramalhete, C.; Spengler, G.; Mulhovo, S.; Costa, S.; Couto, I.; Viveiros, M.; Ferreira, M.J.U.; Amaral, L. Inhibition of efflux pumps of methicillin-resistant Staphylococcus aureus and Enterococcus faecalis resistant strains by triterpenoids from Momordica balsamina. Int. J. Antimicrob. Agents 2011, 77, 70–74. [Google Scholar]
- Martins, A.; Vasas, A.; Viveiros, M.; Molnar, J.; Hohmann, J.; Amaral, L. Antibacterial properties of compounds isolated from Carpobrotus edulis. Int. J. Antimicrob. Agents 2011, 37, 438–444. [Google Scholar] [CrossRef]
- Ramalhete, C.; Spengler, G.; Serly, J.; Amaral, L.; Molnar, J.; Mulhovo, S.; Ferreira, M.J.U. Efflux modulators from Momordica balsamina L. in multidrug resistant bacterial strains. Planta Med. 2009, 75, 896–896. [Google Scholar]
- Duarte, N.; Ferreira, M.J.; Martins, M.; Viveiros, M.; Amaral, L. Antibacterial activity of ergosterol peroxide against Mycobacterium tuberculosis: Dependence upon system and medium employed. Phytother. Res. 2007, 21, 601–604. [Google Scholar] [CrossRef]
- Lorenzi, V.; Muselli, A.; Bernardini, A.F.; Berti, L.; Pagès, J.M.; Amaral, L.; Bolla, J.M. Helichrysum italicum essential oil contains compounds that restore chloramphenicol activity on multi-drug resistant isolates from Gram-negative species. Antimicrob. Agents Chemother. 2008, 53, 2209–2211. [Google Scholar]
- Wainwright, M.; Amaral, L.; Kristiansen, J.E. The Evolution of Antimycobacterial Agents from Non-Antibiotics. Open J. Pharmacol. 2012, 2, e1. [Google Scholar]
- Pluta, K.; Morak-Młodawska, B.; Jeleń, M. Recent progress in biological activities of synthesized phenothiazines. Eur. J. Med. Chem. 2011, 46, 3179–3189. [Google Scholar] [CrossRef]
- Kristiansen, J.E.; Hendricks, O.; Delvin, T.; Butterworth, T.S.; Aagaard, L.; Christensen, J.B.; Flores, V.C.; Keyzer, H. Reversal of resistance in microorganisms by help of non-antibiotics. J. Antimicrob. Chemother. 2007, 59, 1271–1279. [Google Scholar] [CrossRef]
- Harris, F.; Chatfield, L.K.; Phoenix, D.A. Phenothiazinium based photosensitisers-photodynamic agents with a multiplicity of cellular targets and clinical applications. Curr. Drug Targets 2005, 6, 615–627. [Google Scholar] [CrossRef]
- Lala, A.K. Fluorescent and photoactivable probes in depth-dependent analysis of membranes. Chem. Phys. Lipids 2002, 116, 177–188. [Google Scholar] [CrossRef]
- Michalak, K.; Wesolowska, O.; Motohashi, N.; Molnar, J.; Hendrich, A.B. Interactions of phenothiazines with lipid bilayer and their role in multidrug resistance reversal. Curr. Drug Targets 2006, 7, 1095–1105. [Google Scholar] [CrossRef]
- Cheeseman, H.J.; Neal, M.J. Interaction of chlorpromazine with tea and coffee. Br. J. Clin. Pharmacol. 1981, 12, 165–169. [Google Scholar]
- Weiss, B.; Prozialeck, W.; Cimino, M.; Barnette, M.S.; Wallace, T.L. Pharmacological regulation of calmodulin. Ann. NY Acad. Sci. 1980, 356, 319–345. [Google Scholar] [CrossRef]
- Davidoff, R.A. Antispasticity drugs: Mechanisms of action. Ann. Neurol. 1985, 17, 107–116. [Google Scholar] [CrossRef]
- Amaral, L.; Spengler, G.; Martins, A.; Armada, A.; Handzlik, J.; Kiec-Kononowicz, K.; Molnar, J. Inhibitors of bacterial efflux pumps that also inhibit efflux pumps of cancer cells. Anticancer Res. 2012, 32, 2947–2957. [Google Scholar]
- Vila, J.; Martínez, J.L. Clinical impact of the over-expression of efflux pump in nonfermentative Gram-negative bacilli, development of efflux pump inhibitors. Curr. Drug Targets 2008, 9, 797–807. [Google Scholar] [CrossRef]
- Pagès, J.M.; Amaral, L. Mechanisms of drug efflux and strategies to combat them: challenging the efflux pump of Gram-negative bacteria. Biochim. Biophys. Acta 2009, 1794, 826–833. [Google Scholar] [CrossRef]
- Amaral, L.; Fanning, S.; Pagès, J.M. Efflux pumps of gram-negative bacteria: Genetic responses to stress and the modulation of their activity by pH, inhibitors, and phenothiazine. Adv. Enzymol. Relat. Areas Mol. Biol. 2011, 77, 61–108. [Google Scholar]
- Spengler, G.; Molnar, J.; Viveiros, M.; Amaral, L. Thioridazine induces apoptosis of multidrug-resistant mouse lymphoma cells transfected with the human ABCB1 andinhibits the expression of P-glycoprotein. Anticancer Res. 2011, 31, 4201–4205. [Google Scholar]
- Spengler, G.; Handzlik, J.; Ocsovszki, I.; Viveiros, M.; Kiec-Kononowicz, K.; Molnar, J.; Amaral, L. Modulation of multidrug efflux pump activity by new hydantoin derivatives on colon adenocarcinoma cells without inducing apoptosis. Anticancer Res. 2011, 31, 3285–3288. [Google Scholar]
- Viveiros, M.; Portugal, I.; Bettencourt, R.; Victor, T.C.; Jordaan, A.M.; Leandro, C.; Ordway, D.; Amaral, L. Isoniazid-induced transient high-level resistance in Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2002, 46, 2804–2810. [Google Scholar] [CrossRef]
- Viveiros, M.; Jesus, A.; Brito, M.; Leandro, C.; Martins, M.; Ordway, D.; Molnar, A.M.; Molnar, J.; Amaral, L. Inducement and reversal of tetracycline resistance in Escherichia coli K-12 and the expression of proton gradient dependent multidrug efflux pump genes. Antimicrob. Agents Chemother. 2005, 49, 3578–3582. [Google Scholar] [CrossRef]
- Martins, A.; Spengler, G.; Rodrigues, L.; Viveiros, M.; Ramos, J.; Martins, M.; Couto, I.; Fanning, S.; Pages, J.M.; Bolla, J.M.; et al. AcrAB mediated MDR phenotype is maintained after efflux pump genes and their regulators have restored wild type activities. Int. J. Antimicrob. Agents 2009, 34, 602–604. [Google Scholar] [CrossRef]
- Martins, A.; Spengler, G.; Molnar, J.; Amaral, L. Sequential responses of bacteria to noxious agents (antibiotics) leading to accumulation of mutations and permanent resistance. Biochem. Pharmacol. 2012, 1. [Google Scholar] [CrossRef]
- Chopra, I.; O'Neill, A.J.; Miller, K. The role of mutators in the emergence of antibiotic-resistant bacteria. Drug Resist. Updat. 2003, 6, 137–145. [Google Scholar] [CrossRef]
- Costa, S.S.; Falcão, C.; Viveiros, M.; Machado, D.; Martins, M.; Melo-Cristino, J.; Amaral, L.; Couto, I. Exploring the contribution of efflux on the resistance to fluoroquinolones in clinical isolates of Staphylococcus aureus. BMC Microbiol. 2011, 11. [Google Scholar] [CrossRef]
- Costa, S.S.; Ntokou, E.; Martins, A.; Viveiros, M.; Pournaras, S.; Couto, I.; Amaral, L. Identification of the plasmid-encoded qacA efflux pump gene in meticillin-resistant Staphylococcus aureus (MRSA) strain HPV107, a representative of the MRSA Iberian clone. Int. J. Antimicrob. Agents 2010, 36, 557–561. [Google Scholar] [CrossRef]
- Spengler, G.; Martins, A.; Schelz, Z.; Rodrigues, L.; Aagaard, L.; Martins, M.; Costa, S.S.; Couto, I.; Viveiros, M.; Fanning, S.; et al. Characterization of intrinsic efflux activity of Enterococcus faecalis ATCC29212 by a semi-automated ethidium bromide method. In Vivo 2009, 23, 81–87. [Google Scholar]
- Viveiros, M.; Martins, M.; Rodrigues, L.; Machado, D.; Couto, I.; Ainsa, J.; Amaral, L. Inhibitors of mycobacterial efflux pumps as potential boosters for TB drugs. Expert Rev. Anti-Infect. Ther. 2012, 10, 983–998. [Google Scholar] [CrossRef]
- Machado, D.; Couto, I.; Perdigão, J.; Rodrigues, L.; Portugal, I.; Baptista, P.; Veigas, B.; Amaral, L.; Viveiros, M. Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis. PLoS One 2012, 7, e34538. [Google Scholar]
- Rodrigues, L.; Machado, D.; Couto, I.; Amaral, L.; Viveiros, M. Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Infect. Genet. Evol. 2012, 12, 695–700. [Google Scholar] [CrossRef]
- Amaral, L.; Cerca, P.; Spengler, G.; Machado, L.; Couto, I.; Viveiros, M.; Fanning, S.; Pagès, J.-M. Ethidium bromide efflux by salmonella: Modulation by metabolic energy, pH, ions and phenothiazine. Int. J. Antimicrob. Agents 2011, 38, 140–145. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Cherepanov, D.A.; Heberle, J.; Junge, W. Proton transfer dynamics at membrane/water interface and mechanism of biological energy conversion. Biochemistry (Moscow) 2005, 70, 251–256. [Google Scholar] [CrossRef]
- Mulkidjanian, A.Y.; Heberle, J.; Cherepanov, D.A. Protons @ interfaces: Implications for biological energy conversion. Biochim. Biophys. Acta 2006, 1757, 913–930. [Google Scholar] [CrossRef]
- Varga, Z.G.; Armada, A.; Cerca, P.; Amaral, L.; Mior Ahmad Subki, M.A.; Savka, M.A.; Szegedi, E.; Kawase, M.; Motohashi, N.; Molnár, J. Inhibition of quorum sensing and efflux pump system by trifluoromethyl ketone proton pump inhibitors. In Vivo 2012, 26, 277–285. [Google Scholar]
- Ren, J.K.; Petöfi, S.; Molnár, J. Mechanisms of antimotility action of tricyclic compounds in Proteus vulgaris. Acta Microbiol. Hung. 1993, 40, 369–377. [Google Scholar]
- Crowle, A.J.; Douvas, G.S.; May, M.H. Chlorpromazine: A drug potentially useful for treating mycobacteria infections. Chemotherapy 1992, 38, 410–419. [Google Scholar] [CrossRef]
- Amaral, L.; Kristiansen, J.E.; Abebe, L.S.; Millet, W. Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacterium tuberculosis by Thioridazine: Potential use for the initial therapy of freshly diagnosed tuberculosis. J. Antimicrob. Chemother. 1996, 38, 1049–1053. [Google Scholar] [CrossRef]
- Ordway, D.; Viveiros, M.; Leandro, C.; Amaral, L. Clinical concentrations of Thioridazine kill intracellular Multi-drug resistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 2003, 47, 917–922. [Google Scholar] [CrossRef]
- Martins, M.; Viveiros, M.; Amaral, L. Sila Compound 421, an Inhibitor of efflux pumps of cancer cells, enhances the killing of intracellular XDRTB. Int. J. Antimicrob. Agents 2008, 33, 479–482. [Google Scholar] [CrossRef]
- Martins, M.; Viveiros, M.; Amaral, L. The curative activity of thioridazine on mice infected with Mycobacterium tuberculosis. In Vivo 2007, 21, 771–776. [Google Scholar]
- van Soolingen, D.; Pando, R.H.; Orozco, H.; Aguilar, D.; Magis, C.; van Ingen, J.; Amaral, L.; Boeree, M. Thioridazine shows promising activity in a murine model of multi-drug resistant tuberculosis. PloS One 2010, 5, e12640. [Google Scholar]
- Abbate, E.; Vescovo, M.; Natiello, M.; Cufré, M.; García, A.; Gonzalez Montaner, P.; Ambroggi, M.; Ritacco, V.; van Soolingen, D. Successful alternative treatment of extensively drug-resistant tuberculosis in Argentina with a combination of linezolid, moxifloxacin and thioridazine. J. Antimicrob. Chemother. 2012, 67, 473–477. [Google Scholar] [CrossRef]
- Amaral, L. Totally Drug Resistant Tuberculosis can be Treated with Thioridazine in Combination with Antibiotics to which the Patient was Initially Resistant. Biochem. Pharmacol. 2012. [Google Scholar] [CrossRef]
- Amaral, L.; Viveiros, M. Why thioridazine in combination with antibiotics cures extensively drug-resistant Mycobacterium tuberculosis infections. Int. J. Antimicrob. Agents 2012, 39, 376–380. [Google Scholar] [CrossRef]
- Amaral, L.; Molnar, J. Potential therapy of multidrug-resistant and extremely drug-resistant tuberculosis with thioridazine. In Vivo 2012, 26, 231–236. [Google Scholar]
- Udwadia, Z.F.; Sen, T.; Pinto, L.M. Safety and efficacy of thioridazine as salvagetherapy in Indian patients with XDR-TB. Recent Pat. Antiinfect. Drug Discov. 2011, 6, 88–91. [Google Scholar] [CrossRef]
- Amaral, L.; Udwadia, Z.; Abbate, E.; van Soolingen, D. The added effect of Thioridazine in treatment of resistant TB. Int. J. Tuberc. Lung Dis. 2012, 16, 1706–1708. [Google Scholar] [CrossRef]
- Wolfart, K.; Spengler, G.; Kawase, M.; Motohashi, N.; Molnár, J.; Viveiros, M.; Amaral, L. Synergistic interaction between proton pump inhibitors and resistance modifiers: Promoting effects of antibiotics and plasmid curing. In Vivo 2006, 20, 367–372. [Google Scholar]
- Spengler, G.; Miczák, A.; Hajdú, E.; Kawase, M.; Amaral, L.; Molnár, J. Enhancement of plasmid curing by 9-aminoacridine and two phenothiazines in the presence of proton pump inhibitor 1-(2-benzoxazolyl)-3,3,3-trifluoro-2-propanone. Int. J. Antimicrob. Agents 2003, 22, 223–227. [Google Scholar] [CrossRef]
- Radhakrishnan, V.; Ganguly, K.; Ganguly, M.; Dastidar, S.G.; Chakrabarty, A.N. Potentiality of tricyclic compound thioridazine as an effective antibacterial and antiplasmid agent. Indian J. Exp. Biol. 1999, 37, 671–675. [Google Scholar]
- Evdokimova, O.V.; Smirnov, I.V.; Artem'eva, N.A.; Rozhkova, E.A. Effect of promethazine hydrochloride (pipolphen) on the stability of R plasmid resistance in Escherichia coli (in Russian). Antibiot Khimioter 1997, 42, 8–11. [Google Scholar]
- Molnár, J.; Gálfi, M.; Lózsa, A.; Nakamura, M.J. Inhibition of bacterial plasmid replication by stereoselective binding by tricyclic psychopharmacons. Res. Commun. Chem. Pathol. Pharmacol. 1984, 43, 235–249. [Google Scholar]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Dastidar, S.G.; Kristiansen, J.E.; Molnar, J.; Amaral, L. Role of Phenothiazines and Structurally Similar Compounds of Plant Origin in the Fight against Infections by Drug Resistant Bacteria. Antibiotics 2013, 2, 58-72. https://doi.org/10.3390/antibiotics2010058
Dastidar SG, Kristiansen JE, Molnar J, Amaral L. Role of Phenothiazines and Structurally Similar Compounds of Plant Origin in the Fight against Infections by Drug Resistant Bacteria. Antibiotics. 2013; 2(1):58-72. https://doi.org/10.3390/antibiotics2010058
Chicago/Turabian StyleDastidar, Sujata G., Jette E. Kristiansen, Joseph Molnar, and Leonard Amaral. 2013. "Role of Phenothiazines and Structurally Similar Compounds of Plant Origin in the Fight against Infections by Drug Resistant Bacteria" Antibiotics 2, no. 1: 58-72. https://doi.org/10.3390/antibiotics2010058
APA StyleDastidar, S. G., Kristiansen, J. E., Molnar, J., & Amaral, L. (2013). Role of Phenothiazines and Structurally Similar Compounds of Plant Origin in the Fight against Infections by Drug Resistant Bacteria. Antibiotics, 2(1), 58-72. https://doi.org/10.3390/antibiotics2010058