Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species
Abstract
:1. Introduction
2. Benzalkonium Chloride
2.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
2.2. Effect on Antibiotic Resistance Genes
2.3. Increase of Horizontal Gene Transfer
2.4. Induction of Common Efflux Pumps
2.5. Additional Findings
3. Chlorhexidine Digluconate
3.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
3.2. Increase of Horizontal Gene Transfer
3.3. Induction of Common Efflux Pumps
3.4. Additional Findings
4. Triclosan
4.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
4.2. Increase of Horizontal Gene Transfer
4.3. Additional Findings
5. Didecyldimethylammonium Chloride
5.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
5.2. Additional Findings
6. Sodium Hypochlorite
6.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
6.2. Effect on Antibiotic Resistance Genes
7. Other Biocidal Agents
7.1. Antibiotic Tolerance or Resistance after Low Level Biocide Exposure
7.2. Effect on Antibiotic Resistance Genes
7.3. Increase of Horizontal Gene Transfer
7.4. Additional Findings
8. Discussion
9. Conclusions
Funding
Conflicts of Interest
References
- Jones, R. Bacterial resistance and topical antimicrobial wash products. Am. J. Infect. Control 1999, 27, 351–363. [Google Scholar] [CrossRef]
- Department of Health and Human Services, Food and Drug Administration. Safety and effectiveness of consumer antiseptics; topical antimicrobial drug products for over-the-counter human use. Fed. Reg. 2016, 81, 61106–61130. [Google Scholar]
- McNamara, P.J.; Levy, S.B. Triclosan: An instructive tale. Antimicrob. Agents Chemother. 2016, 60, 7015–7016. [Google Scholar] [CrossRef] [PubMed]
- Kampf, G. Introduction. In Antiseptic Stewardship: Biocide Resistance and Clinical Implications; Kampf, G., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 1–7. [Google Scholar]
- Soumet, C.; Fourreau, E.; Legrandois, P.; Maris, P. Resistance to phenicol compounds following adaptation to quaternary ammonium compounds in Escherichia coli. Vet. Microbiol. 2012, 158, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Knapp, L.; Rushton, L.; Stapleton, H.; Sass, A.; Stewart, S.; Amezquita, A.; McClure, P.; Mahenthiralingam, E.; Maillard, J.Y. The effect of cationic microbicide exposure against Burkholderia cepacia complex (bcc); the use of Burkholderia lata strain 383 as a model bacterium. J. Appl. Microbiol. 2013, 115, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Gadea, R.; Fernandez Fuentes, M.A.; Perez Pulido, R.; Galvez, A.; Ortega, E. Effects of exposure to quaternary-ammonium-based biocides on antimicrobial susceptibility and tolerance to physical stresses in bacteria from organic foods. Food Microbiol. 2017, 63, 58–71. [Google Scholar] [CrossRef] [PubMed]
- Langsrud, S.; Sundheim, G.; Holck, A.L. Cross-resistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J. Appl. Microbiol. 2004, 96, 201–208. [Google Scholar] [CrossRef] [PubMed]
- Bore, E.; Hebraud, M.; Chafsey, I.; Chambon, C.; Skjaeret, C.; Moen, B.; Moretro, T.; Langsrud, O.; Rudi, K.; Langsrud, S. Adapted tolerance to benzalkonium chloride in Escherichia coli K-12 studied by transcriptome and proteome analyses. Microbiology 2007, 153, 935–946. [Google Scholar] [CrossRef]
- Braoudaki, M.; Hilton, A.C. Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J. Clin. Microbiol. 2004, 42, 73–78. [Google Scholar] [CrossRef]
- Nhung, N.T.; Thuy, C.T.; Trung, N.V.; Campbell, J.; Baker, S.; Thwaites, G.; Hoa, N.T.; Carrique-Mas, J. Induction of antimicrobial resistance in Escherichia coli and non-typhoidal Salmonella strains after adaptation to disinfectant commonly used on farms in Vietnam. Antibiotics 2015, 4, 480–494. [Google Scholar] [CrossRef]
- Pagedar, A.; Singh, J.; Batish, V.K. Efflux mediated adaptive and cross resistance to ciprofloxacin and benzalkonium chloride in Pseudomonas aeruginosa of dairy origin. J. Basic Microbiol. 2011, 51, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Joynson, J.A.; Forbes, B.; Lambert, R.J. Adaptive resistance to benzalkonium chloride, amikacin and tobramycin: The effect on susceptibility to other antimicrobials. J. Appl. Microbiol. 2002, 93, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Mc Cay, P.H.; Ocampo-Sosa, A.A.; Fleming, G.T. Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology 2010, 156, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Weigand, M.R.; Oh, S.; Hatt, J.K.; Krishnan, R.; Tezel, U.; Pavlostathis, S.G.; Konstantinidis, K.T. Widely used benzalkonium chloride disinfectants can promote antibiotic resistance. Appl. Environ. Microbiol. 2018, 84, e01201–18. [Google Scholar] [CrossRef] [PubMed]
- Condell, O.; Iversen, C.; Cooney, S.; Power, K.A.; Walsh, C.; Burgess, C.; Fanning, S. Efficacy of biocides used in the modern food industry to control Salmonella enterica, and links between biocide tolerance and resistance to clinically relevant antimicrobial compounds. Appl. Environ. Microbiol. 2012, 78, 3087–3097. [Google Scholar] [CrossRef] [PubMed]
- Slifierz, M.J.; Friendship, R.M.; Weese, J.S. Methicillin-resistant Staphylococcus aureus in commercial swine herds is associated with disinfectant and zinc usage. Appl. Environ. Microbiol. 2015, 81, 2690–2695. [Google Scholar] [CrossRef] [PubMed]
- Heir, E.; Langsrud, S.; Sidhu, M.S.; Steinbakk, M. [can disinfectants contribute to antibiotic resistance?]. Tidsskr. Nor. Laegeforen. 2001, 121, 3201–3206. [Google Scholar] [PubMed]
- Jiang, X.; Xu, Y.; Li, Y.; Zhang, K.; Liu, L.; Wang, H.; Tian, J.; Ying, H.; Shi, L.; Yu, T. Characterization and horizontal transfer of qacH-associated class 1 integrons in Escherichia coli isolated from retail meats. Int. J. Food Microbiol. 2017, 258, 12–17. [Google Scholar] [CrossRef]
- Morita, Y.; Murata, T.; Mima, T.; Shiota, S.; Kuroda, T.; Mizushima, T.; Gotoh, N.; Nishino, T.; Tsuchiya, T. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J. Antimicrob. Chemother. 2003, 51, 991–994. [Google Scholar] [CrossRef]
- Buffet-Bataillon, S.; Branger, B.; Cormier, M.; Bonnaure-Mallet, M.; Jolivet-Gougeon, A. Effect of higher minimum inhibitory concentrations of quaternary ammonium compounds in clinical E. coli isolates on antibiotic susceptibilities and clinical outcomes. J. Hosp. Infect. 2011, 79, 141–146. [Google Scholar] [CrossRef]
- Lavilla Lerma, L.; Benomar, N.; Casado Munoz Mdel, C.; Galvez, A.; Abriouel, H. Correlation between antibiotic and biocide resistance in mesophilic and psychrotrophic Pseudomonas spp. isolated from slaughterhouse surfaces throughout meat chain production. Food Microbiol. 2015, 51, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Karatzas, K.A.; Webber, M.A.; Jorgensen, F.; Woodward, M.J.; Piddock, L.J.; Humphrey, T.J. Prolonged treatment of Salmonella enterica serovar typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J. Antimicrob. Chemother. 2007, 60, 947–955. [Google Scholar] [CrossRef] [PubMed]
- Chuanchuen, R.; Khemtong, S.; Padungtod, P. Occurrence of qacE/qacEDelta1 genes and their correlation with class 1 integrons in Salmonella enterica isolates from poultry and swine. Southeast Asian J. Trop. Med. Public Health 2007, 38, 855–862. [Google Scholar] [PubMed]
- Kucken, D.; Feucht, H.; Kaulfers, P. Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of gram-negative bacteria. FEMS Microbiol. Lett. 2000, 183, 95–98. [Google Scholar] [CrossRef]
- Law, C.J.; Alegre, K.O. Clamping down on drugs: The Escherichia coli multidrug efflux protein MdtM. Res. Microbiol. 2018, 169, 461–467. [Google Scholar] [CrossRef] [PubMed]
- Bay, D.C.; Stremick, C.A.; Slipski, C.J.; Turner, R.J. Secondary multidrug efflux pump mutants alter Escherichia coli biofilm growth in the presence of cationic antimicrobial compounds. Res. Microbiol. 2017, 168, 208–221. [Google Scholar] [CrossRef] [PubMed]
- Nagai, K.; Murata, T.; Ohta, S.; Zenda, H.; Ohnishi, M.; Hayashi, T. Two different mechanisms are involved in the extremely high-level benzalkonium chloride resistance of a Pseudomonas fluorescens strain. Microbiol. Immunol. 2003, 47, 709–715. [Google Scholar] [CrossRef]
- Guo, W.; Cui, S.; Xu, X.; Wang, H. Resistant mechanism study of benzalkonium chloride selected Salmonella typhimurium mutants. Microb. Drug Resist. 2014, 20, 11–16. [Google Scholar] [CrossRef]
- Pumbwe, L.; Skilbeck, C.A.; Wexler, H.M. Induction of multiple antibiotic resistance in Bacteroides fragilis by benzene and benzene-derived active compounds of commonly used analgesics, antiseptics and cleaning agents. J. Antimicrob. Chemother. 2007, 60, 1288–1297. [Google Scholar] [CrossRef]
- Gadea, R.; Glibota, N.; Perez Pulido, R.; Galvez, A.; Ortega, E. Adaptation to biocides cetrimide and chlorhexidine in bacteria from organic foods: Association with tolerance to other antimicrobials and physical stresses. J. Agric. Food Chem. 2017, 65, 1758–1770. [Google Scholar] [CrossRef]
- Wesgate, R.; Grasha, P.; Maillard, J.Y. Use of a predictive protocol to measure the antimicrobial resistance risks associated with biocidal product usage. Am. J. Infect. Control 2016, 44, 458–464. [Google Scholar] [CrossRef]
- Wand, M.E.; Bock, L.J.; Bonney, L.C.; Sutton, J.M. Mechanisms of increased resistance to chlorhexidine and cross-resistance to colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob. Agents Chemother. 2017, 61, e01162–16. [Google Scholar] [CrossRef] [PubMed]
- Jutkina, J.; Marathe, N.P.; Flach, C.F.; Larsson, D.G.J. Antibiotics and common antibacterial biocides stimulate horizontal transfer of resistance at low concentrations. Sci. Total Environ. 2017, 616–617, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Ciusa, M.L.; Furi, L.; Knight, D.; Decorosi, F.; Fondi, M.; Raggi, C.; Coelho, J.R.; Aragones, L.; Moce, L.; Visa, P.; et al. A novel resistance mechanism to triclosan that suggests horizontal gene transfer and demonstrates a potential selective pressure for reduced biocide susceptibility in clinical strains of Staphylococcus aureus. Int. J. Antimicrob. Agents 2012, 40, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Fraud, S.; Campigotto, A.J.; Chen, Z.; Poole, K. MexCD-OprJ multidrug efflux system of Pseudomonas aeruginosa: Involvement in chlorhexidine resistance and induction by membrane-damaging agents dependent upon the AlgU stress response sigma factor. Antimicrob. Agents Chemother. 2008, 52, 4478–4482. [Google Scholar] [CrossRef] [PubMed]
- Maris, P. [resistance of 700 gram-negative bacterial strains to antiseptics and antibiotics]. Ann. Res. Vet. 1991, 22, 11–23. [Google Scholar]
- Fernandez-Cuenca, F.; Tomas, M.; Caballero-Moyano, F.J.; Bou, G.; Martinez-Martinez, L.; Vila, J.; Pachon, J.; Cisneros, J.M.; Rodriguez-Bano, J.; Pascual, A. Reduced susceptibility to biocides in Acinetobacter baumannii: Association with resistance to antimicrobials, epidemiological behaviour, biological cost and effect on the expression of genes encoding porins and efflux pumps. J. Antimicrob. Chemother. 2015, 70, 3222–3229. [Google Scholar] [CrossRef]
- Gajadhar, T.; Lara, A.; Sealy, P.; Adesiyun, A.A. Microbial contamination of disinfectants and antiseptics in four major hospitals in trinidad. Rev. Panam. Salud Publica 2003, 14, 193–200. [Google Scholar] [CrossRef]
- Tattawasart, U.; Maillard, J.-Y.; Furr, J.R.; Russell, A.D. Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int. J. Antimicrob. Agents 2000, 16, 233–238. [Google Scholar] [CrossRef]
- Tattawasart, U.; Maillard, J.-Y.; Furr, J.R.; Russell, A.D. Development of resistance to chlorhexidine diacetate and cetylpyridinium chloride in Pseudomonas stutzeri and changes in antibiotic susceptibility. J. Hosp. Infect. 1999, 42, 219–229. [Google Scholar] [CrossRef]
- Rose, H.; Baldwin, A.; Dowson, C.G.; Mahenthiralingam, E. Biocide susceptibility of the Burkholderia cepacia complex. J. Antimicrob. Chemother. 2009, 63, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Beier, R.C.; Anderson, P.N.; Hume, M.E.; Poole, T.L.; Duke, S.E.; Crippen, T.L.; Sheffield, C.L.; Caldwell, D.J.; Byrd, J.A.; Anderson, R.C.; et al. Characterization of Salmonella enterica isolates from turkeys in commercial processing plants for resistance to antibiotics, disinfectants, and a growth promoter. Foodborne Pathog. Dis. 2011, 8, 593–600. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D. Do biocides select for antibiotic resistance? J. Pharm. Pharmacol. 2000, 52, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.D.; Tattawasart, U.; Maillard, J.Y.; Furr, J.R. Possible link between bacterial resistance and use of antibiotics and biocides. Antimicrob. Agents Chemother. 1998, 42, 2151. [Google Scholar] [CrossRef]
- Oggioni, M.R.; Coelho, J.R.; Furi, L.; Knight, D.R.; Viti, C.; Orefici, G.; Martinez, J.L.; Freitas, A.T.; Coque, T.M.; Morrissey, I. Significant differences characterise the correlation coefficients between biocide and antibiotic susceptibility profiles in Staphylococcus aureus. Curr. Pharm. Des. 2015, 21, 2054–2057. [Google Scholar] [CrossRef]
- Lambert, R.J. Comparative analysis of antibiotic and antimicrobial biocide susceptibility data in clinical isolates of methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa between 1989 and 2000. J. Appl. Microbiol. 2004, 97, 699–711. [Google Scholar] [CrossRef]
- Russell, A.D. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. In Symposium Series (Society for Applied Microbiology); National Center for Biotechnology Information, U.S. National Library of Medicine: Bethesda, MD, USA, 2002. [Google Scholar]
- Sonbol, F.I.; El-Banna, T.E.; Abd El-Aziz, A.A.; El-Ekhnawy, E. Impact of triclosan adaptation on membrane properties, efflux and antimicrobial resistance of Escherichia coli clinical isolates. J. Appl. Microbiol. 2018. [Google Scholar] [CrossRef]
- McBain, A.J.; Ledder, R.G.; Sreenivasan, P.; Gilbert, P. Selection for high-level resistance by chronic triclosan exposure is not universal. J. Antimicrob. Chemother. 2004, 53, 772–777. [Google Scholar] [CrossRef] [Green Version]
- Gadea, R.; Fernández Fuentes, M.A.; Pérez Pulido, R.; Gálvez, A.; Ortega, E. Adaptive tolerance to phenolic biocides in bacteria from organic foods: Effects on antimicrobial susceptibility and tolerance to physical stresses. Food Res. Int. 2016, 85, 131–143. [Google Scholar] [CrossRef]
- Braoudaki, M.; Hilton, A.C. Low level of cross-resistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol. Lett. 2004, 235, 305–309. [Google Scholar] [CrossRef]
- Cottell, A.; Denyer, S.P.; Hanlon, G.W.; Ochs, D.; Maillard, J.Y. Triclosan-tolerant bacteria: Changes in susceptibility to antibiotics. J. Hosp. Infect. 2009, 72, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Lear, J.C.; Maillard, J.Y.; Dettmar, P.W.; Goddard, P.A.; Russell, A.D. Chloroxylenol- and triclosan-tolerant bacteria from industrial sources—Susceptibility to antibiotics and other biocides. Int. Biodeterior. Biodegrad. 2006, 57, 51–56. [Google Scholar] [CrossRef]
- Nuonming, P.; Khemthong, S.; Dokpikul, T.; Sukchawalit, R.; Mongkolsuk, S. Characterization and regulation of AcrABR, a RND-type multidrug efflux system, in Agrobacterium tumefaciens C58. Microbiol. Res. 2018, 214, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Copitch, J.L.; Whitehead, R.N.; Webber, M.A. Prevalence of decreased susceptibility to triclosan in Salmonella enterica isolates from animals and humans and association with multiple drug resistance. Int. J. Antimicrob. Agents 2010, 36, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Thorrold, C.A.; Letsoalo, M.E.; Duse, A.G.; Marais, E. Efflux pump activity in fluoroquinolone and tetracycline resistant Salmonella and E. coli implicated in reduced susceptibility to household antimicrobial cleaning agents. Int. J. Food Microbiol. 2007, 113, 315–320. [Google Scholar] [CrossRef]
- Cole, E.C.; Addison, R.M.; Rubino, J.R.; Leese, K.E.; Dulaney, P.D.; Newell, M.S.; Wilkins, J.; Gaber, D.J.; Wineinger, T.; Criger, D.A. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J. Appl. Microbiol. 2003, 95, 664–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soumet, C.; Meheust, D.; Pissavin, C.; Le Grandois, P.; Fremaux, B.; Feurer, C.; Le Roux, A.; Denis, M.; Maris, P. Reduced susceptibilities to biocides and resistance to antibiotics in food-associated bacteria following exposure to quaternary ammonium compounds. J. Appl. Microbiol. 2016, 121, 1275–1281. [Google Scholar] [CrossRef]
- Wieland, N.; Boss, J.; Lettmann, S.; Fritz, B.; Schwaiger, K.; Bauer, J.; Holzel, C.S. Susceptibility to disinfectants in antimicrobial-resistant and -susceptible isolates of Escherichia coli, Enterococcus faecalis and Enterococcus faecium from poultry-ESBL/AmpC-phenotype of E. coli is not associated with resistance to a quaternary ammonium compound, DDAC. J. Appl. Microbiol. 2017, 122, 1508–1517. [Google Scholar]
- Forbes, S.; Knight, C.G.; Cowley, N.L.; Amezquita, A.; McClure, P.; Humphreys, G.; McBain, A.J. Variable effects of exposure to formulated microbicides on antibiotic susceptibility in firmicutes and proteobacteria. Appl. Environ. Microbiol. 2016, 82, 3591–3598. [Google Scholar] [CrossRef]
- Molina-González, D.; Alonso-Calleja, C.; Alonso-Hernando, A.; Capita, R. Effect of sub-lethal concentrations of biocides on the susceptibility to antibiotics of multi-drug resistant Salmonella enterica strains. Food Control 2014, 40, 329–334. [Google Scholar] [CrossRef]
- Lin, H.; Ye, C.; Chen, S.; Zhang, S.; Yu, X. Viable but non-culturable E. coli induced by low level chlorination have higher persistence to antibiotics than their culturable counterparts. Environ. Pollut. 2017, 230, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Salcedo, D.E.; Medriano, C.A.; Kim, S. Comparison of different disinfection processes in the effective removal of antibiotic-resistant bacteria and genes. J. Environ. Sci. 2014, 26, 1238–1242. [Google Scholar] [CrossRef]
- Calero-Caceres, W.; Muniesa, M. Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater. Water Res. 2016, 95, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, B.A.; Vance, C.C.; Gentry, T.J.; Karthikeyan, R. Effects of chlorination and ultraviolet light on environmental tetracycline-resistant bacteria and tet(W) in water. J. Environ. Chem. Eng. 2017, 5, 777–784. [Google Scholar] [CrossRef]
- Zheng, J.; Su, C.; Zhou, J.; Xu, L.; Qian, Y.; Chen, H. Effects and mechanisms of ultraviolet, chlorination, and ozone disinfection on antibiotic resistance genes in secondary effluents of municipal wastewater treatment plants. Chem. Eng. J. 2017, 317, 309–316. [Google Scholar] [CrossRef]
- Wang, H.; Hu, C.; Liu, L.; Xing, X. Interaction of ciprofloxacin chlorination products with bacteria in drinking water distribution systems. J. Hazard. Mater. 2017, 339, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, M.J.; Moore, G.; Wand, M.E.; Sutton, J.M.; Bock, L.J. Pseudomonas aeruginosa adapts to octenidine in the laboratory and a simulated clinical setting, leading to increased tolerance to chlorhexidine and other biocides. J. Hosp. Infect. 2018, 100, e23–e29. [Google Scholar] [CrossRef]
- Biswal, B.K.; Khairallah, R.; Bibi, K.; Mazza, A.; Gehr, R.; Masson, L.; Frigon, D. Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents. Appl. Environ. Microbiol. 2014, 80, 3656–3666. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, A.; Fontaneto, D.; Doppelbauer, J.; Corno, G. Fitness and recovery of bacterial communities and antibiotic resistance genes in urban wastewaters exposed to classical disinfection treatments. Environ. Sci. Technol. 2016, 50, 10153–10161. [Google Scholar] [CrossRef] [PubMed]
- Luprano, M.L.; De Sanctis, M.; Del Moro, G.; Di Iaconi, C.; Lopez, A.; Levantesi, C. Antibiotic resistance genes fate and removal by a technological treatment solution for water reuse in agriculture. Sci. Total Environ. 2016, 571, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Itzek, A.; Zheng, L.; Chen, Z.; Merritt, J.; Kreth, J. Hydrogen peroxide-dependent DNA release and transfer of antibiotic resistance genes in Streptococcus gordonii. J. Bacteriol. 2011, 193, 6912–6922. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Li, S.; Zhang, S.; Yu, X. Reduction in horizontal transfer of conjugative plasmid by UV irradiation and low-level chlorination. Water Res. 2016, 91, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, X.; Du, P.; Zhang, T.; Cai, M.; Sun, P.; Huang, C.H. Oxidation of beta-lactam antibiotics by peracetic acid: Reaction kinetics, product and pathway evaluation. Water Res. 2017, 123, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Cassini, A.; Hogberg, L.D.; Plachouras, D.; Quattrocchi, A.; Hoxha, A.; Simonsen, G.S.; Colomb-Cotinat, M.; Kretzschmar, M.E.; Devleesschauwer, B.; Cecchini, M.; et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: A population-level modelling analysis. Lancet Infect. Dis. 2018, in press. [Google Scholar] [CrossRef]
- Kampf, G. Antiseptic stewardship for alcohol-based hand rubs. In Antiseptic Stewardship: Biocide Resistance and Clinical Implications; Kampf, G., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 643–650. [Google Scholar]
- Kampf, G.; Kramer, A.; Suchomel, M. Lack of sustained efficacy for alcohol-based surgical hand rubs containing “residual active ingredients” according to en 12791. J. Hosp. Infect. 2017, 95, 163–168. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Guidelines for the Prevention of Surgical Site Infections; WHO: Geneva, Switzerland, 2016. [Google Scholar]
- KRINKO am Robert Koch Institut. Händehygiene in Einrichtungen des Gesundheitswesens. Bundesgesundheitsbl 2016, 59, 1189–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kampf, G. Antiseptic stewardship for skin antiseptics. In Antiseptic Stewardship: Biocide Resistance and Clinical Implications; Kampf, G., Ed.; Springer International Publishing: Cham, Switzerland, 2018; pp. 651–660. [Google Scholar]
- Harnoss, J.C.; Assadian, O.; Kramer, A.; Probst, P.; Muller-Lantzsch, C.; Scheerer, L.; Bruckner, T.; Diener, M.K.; Buchler, M.W.; Ulrich, A.B. Comparison of chlorhexidine-isopropanol with isopropanol skin antisepsis for prevention of surgical-site infection after abdominal surgery. Br. J. Surg. 2018, 105, 893–899. [Google Scholar] [CrossRef]
- Darouiche, R.O.; Wall, M.J.; Itani, K.M.; Otterson, M.F.; Webb, A.L.; Carrick, M.M.; Miller, H.J.; Awad, S.S.; Crosby, C.T.; Mosier, M.C.; et al. Chlorhexidine-alcohol versus povidone-iodine for surgical-site antisepsis. N. Engl. J. Med. 2010, 362, 18–26. [Google Scholar] [CrossRef]
- Tuuli, M.G.; Liu, J.; Stout, M.J.; Martin, S.; Cahill, A.G.; Odibo, A.O.; Colditz, G.A.; Macones, G.A. A randomized trial comparing skin antiseptic agents at cesarean delivery. N. Engl. J. Med. 2016, 374, 647–655. [Google Scholar] [CrossRef]
- Chaiyakunapruk, N.; Veenstra, D.L.; Lipsky, B.A.; Saint, S. Chlorhexidine compared with povidone-iodine solution for vascular catheter-site care: A meta-analysis. Ann. Intern. Med. 2002, 136, 792–801. [Google Scholar] [CrossRef]
- Mimoz, O.; Lucet, J.C.; Kerforne, T.; Pascal, J.; Souweine, B.; Goudet, V.; Mercat, A.; Bouadma, L.; Lasocki, S.; Alfandari, S.; et al. Skin antisepsis with chlorhexidine-alcohol versus povidone iodine-alcohol, with and without skin scrubbing, for prevention of intravascular-catheter-related infection (clean): An open-label, multicentre, randomised, controlled, two-by-two factorial trial. Lancet 2015, 386, 2069–2077. [Google Scholar] [CrossRef]
- Dettenkofer, M.; Wilson, C.; Gratwohl, A.; Schmoor, C.; Bertz, H.; Frei, R.; Heim, D.; Luft, D.; Schulz, S.; Widmer, A.F. Skin disinfection with octenidine dihydrochloride for central venous catheter site care: A double-blind, randomized, controlled trial. Clin. Microbiol. Infect. 2010, 16, 600–606. [Google Scholar] [CrossRef] [PubMed]
- Lutz, J.T.; Diener, I.V.; Freiberg, K.; Zillmann, R.; Shah-Hosseini, K.; Seifert, H.; Berger-Schreck, B.; Wisplinghoff, H. Efficacy of two antiseptic regimens on skin colonization of insertion sites for two different catheter types: A randomized, clinical trial. Infection 2016, 44, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Bourke, P.; Ziuzina, D.; Han, L.; Cullen, P.J.; Gilmore, B.F. Microbiological interactions with cold plasma. J. Appl. Microbiol. 2017, 123, 308–324. [Google Scholar] [CrossRef] [PubMed]
Species | Strain(s) | MIC Increase (BAC) | Antibiotic(s) | MIC Increase (Antibiotic) | Reference |
---|---|---|---|---|---|
Escherichia coli | ATCC 25922 and 9 avian and porcine strains | 2.6-fold | Florfenicol Cefotaxime Chloramphenicol Ceftazidime Nalidixic acid Ampicillin Tetracycline Ciprofloxacin Sulfamethoxazole Trimethoprim | 7-fold 1 6.3-fold 1 6.1-fold 1 4.8-fold 1 4.4-fold 1 4.3-fold 1 4.2-fold 1 3.8-fold 1 3.7-fold 1 3.3-fold 1 | [5] |
Species | Strain(s) | MIC Increase (BAC) | Antibiotic(s) | Pre-Value | Post-Value | Category | Reference |
---|---|---|---|---|---|---|---|
Burkholderia cepacia complex | B. lata strain 383 (4 experiments) | - | Imipenem Meropenem Ciprofloxacin Ceftazidime Tobramycin | 24 1 40.7 1 30 1 40.3 1 7.3 1 | 16 (1) 1 34–35.5 (2) 1 12–24 (2) 1 12 (1) 1 0 (1) 1 | - - - - - | [6] |
Chryseobacterium spp. | Biocide-sensitive strain from organic foods | 20-fold | Ampicillin | - | 641 | R | [7] |
Enterobacter cloacae | Two biocide-sensitive strains from organic foods | 12-fold–30-fold | Cefotaxime Ampicillin | - - | 128 (1) 1 64 (1) 1 | R R | [7] |
Enterobacter ludwigii | Biocide-sensitive strain from organic foods | 30-fold | Cefotaxime | - | 128 1 | R | [7] |
Enterobacter spp. | Six biocide-sensitive strains from organic foods | 5-fold–300-fold | Ampicillin Sulfamethoxazol Ceftazidime Cefotaxime Trimethoprim-sulfamethoxazol | - - - - - | 64 (5) 1 1014 (2) 1 64 (1) 1 64 (1) 1 8/152 (1) 1 | R R R R R | [7] |
Escherichia coli | ATCC 11775 | 6-fold | Ampicillin Chloramphenicol Erythromycin Gentamicin Kanamycin Nalidixic acid Norfloxacin Penicillin Tetracycline | 10 1 10 1 140 1 2 1 8 1 8 1 0.15 1 250 1 4 1 | 50 1 240 1 180 1 4 1 16 1 30 1 0.4 1 400 1 16 1 | - - - - - - - - - | [8] |
Escherichia coli | DSM 682 | 6-fold | Ampicillin Chloramphenicol Erythromycin Gentamicin Kanamycin Nalidixic acid Norfloxacin Penicillin Tetracycline | 5 1 5 1 100 1 2 1 10 1 4 1 0.1 1 100 1 4 1 | 20 1 60 1 160 1 4 1 10 1 30 1 0.15 1 200 1 6 1 | - - - - n.a. - - - - | [8] |
Escherichia coli | ATCC 47076 | 6-fold–7-fold | Chloramphenicol Florfenicol Ciprofloxacin Nalidixic acid Ampicillin Cefotaxime | 8 1 8 1 0.06 1 8 1 4 1 0.06 1 | 8–128 1 16–64 1 0.25 1 32–64 1 4–8 1 0.12–0.5 1 | - - - - - - | [9] |
Escherichia coli | NCTC 12900 strain O157 | Approx. 100-fold | Amoxicillin-clavulanic acid Amoxicillin Chloramphenicol Ciprofloxacin Clindamycin Colistin sulfate Erythromycin Fusidic acid Gentamicin Imipenem Rifampicin Tetracycline Trimethoprim Vancomycin | 12 2 12 2 19 2 14 2 0 2 10 2 4 2 0 2 13 2 15 2 5 2 10 2 14 2 0 2 | 0 2 0 2 0 2 14 2 0 2 104 2 0 2 13 2 10 2 5 2 4 2 0 2 0 2 | R R R n. a. n. a. n. a. n. a. n. a. n. a. R n. a. R R n. a. | [10] |
Escherichia coli and Salmonella spp. (non-typhoidal) | 12 pan-susceptible strains (6 per species) | 24% 4 | Tetracycline Ciprofloxacin Chloramphenicol Trimethoprim-Sulfamethoxazol Ampicillin Gentamicin | 2.4 3,4 0.03 3,4 6.5 3,4 0.09 3,4 18.6 2,4 1.1 3,4 | 23.3 3,4 0.11 3,4 13.7 3,4 0.14 3,4 12.0 2,4 1.3 3,4 | R (5) S I (6) S R (6) S | [11] |
Klebsiella oxytoca | Biocide-sensitive strain from organic foods | 3-fold | Ampicillin Cefotaxime Ciprofloxacin Imipenem Ceftazidime Tetracycline Trimethoprim-Sulfamethoxazol Sulfamethoxazol Nalidixic acid | No cross-tolerance 1 (all antibiotics) | n. a. | [7] | |
Klebsiella spp. | Biocide-sensitive strain from organic foods | 36-fold | Ampicillin | - | 64 1 | R | [7] |
Pantoea agglomerans | Four biocide-sensitive strains from organic foods | 20-fold–70-fold | Ampicillin Ceftazidime Cefotaxime | - - - | 64 (4) 1 32–64 (2) 1 128 (1) 1 | R R R | [7] |
Pantoea ananatis | Biocide-sensitive strain from organic foods | 25-fold | Ampicillin Cefotaxime Sulfamethoxazol | - - - | 64 1 64 1 1024 1 | R R R | [7] |
Pantoea spp. | Three biocide-sensitive strains from organic foods | 100-fold–500-fold | Ampicillin Cefotaxime Sulfamethoxazol | - - - | 64 (1) 1 128 (1) 1 1024 (1) 1 | R R R | [7] |
Pseudomonas aeruginosa | 22 isolates from biofilm samples in dairy | ≤2.2-fold | Ciprofloxacin | 0.25–32 1 | 3.5–55 1,5 | - | [12] |
Pseudomonas aeruginosa | Strain NCIMB 10421 | 12-fold | Amikacin Ceftazidime Ciprofloxacin Gentamycin Imipenem Ticarcillin | 3.5 3 2 3 0.125 3 2.5 3 2 3 0.875 3 | 1.75 3 0.44 3 0.047 3 0.75 3 0.5 3 0.285 3 | n. a. n. a. n. a. n. a. n. a. n. a. | [13] |
Pseudomonas aeruginosa | Strain NCIMB 10421 | >12-fold | Ciprofloxacin Tobramycin Minocycline Aztreonam Polymyxin B Amikacin Gentamicin Vancomycin Imipenem | 0.125 3 1.5 3 >128 3 3 3 4 3 8 3 4 3 >128 3 2 3 | 32 3 1.0 3 16 3 3 3 2 3 6 3 6 3 >128 3 2 3 | - - - - - - - - - | [14] |
Pseudomonas aeruginosa | Isolate from river sediment | 4-fold | Polymyxin B | 0.2–0.4 1 | 0.8–1.6 1 | - | [15] |
Salmonella Enteritidis | Clinical isolate | Approx. 200-fold | Various antibiotics | No cross-resistance 2 | n.a. | [10] | |
Salmonella Hvittingfoss | Strain S41 | 4-fold | Ampicillin Amoxicillin-clavulanic acid Piperacillin Cephalexin Cefpodoxime Ceftiofur Ceftriaxone Tetracycline Ciprofloxacin Chloramphenicol Cefoxitin Nalidixic acid | <2 6 <2 6 <4 6 <4 6 <0.25 6 <1 6 <0.25 6 <1 6 0.06 6 4 6 8 6 4 6 | 16 6 4 6 64 6 16 6 2 6 >8 6 2 6 8 6 0.5 6 16 6 >32 6 32 6 | I - I I I I R I I I - R | [16] |
Salmonella Typhimurium | NCTC 74 | Approx. 10-fold | Amoxicillin-clavulanic acid Amoxicillin Chloramphenicol Ciprofloxacin Clindamycin Colistin sulfate Erythromycin Fusidic acid Gentamicin Imipenem Rifampicin Tetracycline Trimethoprim Vancomycin | 14 2 15 2 15 2 13 2 0 2 9 2 0 2 0 2 13 2 17 2 4 2 6 2 13 2 0 2 | 14 2 14 2 15 2 15 2 0 2 9 2 0 2 0 2 11 2 16 2 4 2 9 2 13 2 0 2 | n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. | [10] |
Salmonella Virchow | Food isolate | Approx. 200-fold | Amoxicillin-clavulanic acid Amoxicillin Chloramphenicol Ciprofloxacin Clindamycin Colistin sulfate Erythromycin Fusidic acid Gentamicin Imipenem Rifampicin TetracyclineTrimethoprim Vancomycin | 16 2 16 2 14 2 0 2 0 2 9 2 4 2 0 2 16 2 16 2 5 2 8 2 14 2 0 2 | 0 2 1 2 2 2 0 2 0 2 11 2 4 2 0 2 15 2 12 2 5 2 8 2 0 2 0 2 | R R R n. a. n. a. n. a. n. a. n. a. n. a. R n. a. n. a. R n. a. | [10] |
Species | Strain(s) | MIC Increase (CHG) | Antibiotic(s) | Pre-Value | Post-Value | Category | Reference |
---|---|---|---|---|---|---|---|
Bacteroides fragilis | ATCC 25285 | - | Ampicillin Cefoxitin Cefoperazone Chloramphenicol Metronidazole Norfloxacin Tetracycline | 46 1 7 1 52 1 2 1 0.6 1 0.6 1 0.6 1 | 77 1 13 1 126 1 2 1 0.9 1 0.9 1 2 1 | - - - - - - - | [30] |
Burkholderia cepacia complex | B. lata strain 383 | - | Imipenem Meropenem Ciprofloxacin Ceftazidime Tobramycin | 24 2 40.7 2 30 2 40.3 2 7.3 2 | 15–21 (2) 2 33 (1) 2 11–20 (2) 2 30–33 (2) 2 - | - - - - - | [6] |
Chrysobacterium spp. | 2 biocide-sensitive strains from organic foods | 5-fold–6-fold | Ampicillin Cefotaxime Ceftazidime Sulfamethoxazol Tetracycline | - - - - - | 64 (1) 2 128 (2) 2 64 (2) 2 1024 (1) 2 16 (1) 2 | R R R R R | [31] |
Enterobacter cloacae | 2 biocide-sensitive strains from organic foods | 10-fold–16-fold | Cefotaxime Ceftazidime Imipenem Sulfamethoxazol Tetracycline | - - - - - | 64 (1) 2 64 (2) 2 16 (2) 2 1024 (2) 2 32 (1) 2 | R R R R R | [31] |
Enterobacter ludwigii | 2 biocide-sensitive strains from organic foods | 6-fold–8-fold | Ceftazidime Imipenem Sulfamethoxazol | - - - | 64 (2) 2 16 (2) 2 1024 (2) 2 | R R R | [31] |
Enterobacter spp. | 6 biocide-sensitive strains from organic foods | 4-fold–10-fold | Cefotaxime Ceftazidime Imipenem Sulfamethoxazol | - - - - - | 64 (1) 2 128 (1) 2 64 (3) 2 16 (3) 2 1024 (2) 2 | R R R R R | [31] |
Escherichia coli | NCIMB 8545 | ≤6-fold | Tobramycin | - | - 2 | R 3 | [32] |
Escherichia coli | NCTC 12900 strain O157 | Approx. 50-fold | Various antibiotics | No cross-resistance 4 | n.a. | [10] | |
Klebsiella oxytoca | 2 biocide-sensitive strains from organic foods | 2-fold–8-fold | Various antibiotics | No cross-resistance 2 | n.a. | [31] | |
Klebsiella pneumoniae | 6 clinical strains with a variety of antibiotic resistance markers | 4-fold–16-fold | Azithromycin Cefepime Colistin Teicoplanin | 8–64 (6) 0.06–0.125 (1) ≥64 (5) 2–4 (6) >64 (6) | 8–64 (6) 2 0.06–0.5 (2) 2 ≥64 (4) 2 >64 (5) 2 >64 (6) 2 | n.a. n.a. n.a. R n.a. | [33] |
Klebsiella spp. | Biocide-sensitive strain from organic foods | 2-fold | Ceftazidime Imipenem | - - | 64 2 16 2 | R R | [31] |
Pantoea agglomerans | 5 biocide-sensitive strains from organic foods | 5-fold–10-fold | Cefotaxime Ceftazidime Imipenem Sulfamethoxazol Tetracycline | - - - - - | 64–128 (3) 2 64 (3) 2 16 (1) 2 1024 (2) 2 16–32 (2) 2 | R R R R R | [31] |
Pantoea ananatis | 2 biocide-sensitive strains from organic foods | 10-fold–50-fold | Cefotaxime Ceftazidime Imipenem Sulfamethoxazol Tetracycline | - - - - - | 64–128 (2) 2 64 (1) 2 16 (1) 2 1024 (1) 2 16 (1) 2 | R R R R R | [31] |
Pantoea spp. | 3 biocide-sensitive strains from organic foods | 5-fold–16-fold | Ampicillin Cefotaxime Ceftazidime Imipenem Sulfamethoxazol Tetracycline | - - - - - - | 32 (1) 2 128 (1) 2 64 (1) 2 16 (1) 2 1024 (1) 2 16–32 (2) 2 | R R R R R R | [31] |
Salmonella Virchow | Food isolate | Approx. 10-fold | Various antibiotics | No cross-resistance 4 | n.a. | [10] | |
Salmonella spp. | 3 biocide-sensitive strains from organic foods | 5-fold–10-fold | Cefotaxime Imipenem Nalidixic acid Sulfamethoxazol Tetracycline | - - - - | 128 (2) 2 16 (2) 2 64 (2) 2 1024 (1) 2 32 (1) 2 | R R R R R | [31] |
Salmonella spp. | 6 strains with higher MICs to biocidal products | 50-fold–200-fold (2 strains) | Tetracycline Chloramphenicol Nalidixic acid | <1 4 4 4 4 4 | >16 (1) 5 8 (1) 5 16 (1) 5 | R I I | [16] |
Species | Strain(s) | MIC Increase (TRI) | Antibiotic(s) | Pre-Value | Post-Value | Category | Reference |
---|---|---|---|---|---|---|---|
Actinomyces naeslundii | Strain WVU627 | 4.9-fold | Metronidazole Tetracycline | 125 1 5.2 1 | 125 1 7.8 1 | - - | [50] |
Enterobacter spp. | 5 biocide-sensitive strains from organic foods | 2-fold–15-fold | Ampicillin Cefotaxime Ceftazidime Sulfamethoxazol | - - - - | 64 (2) 1 128 (1) 1 64 (2) 1 1024 (2) 1 | R R R R | [51] |
Escherichia coli | ATCC 8729 | 391-fold | Metronidazole Tetracycline | 250 1 15.6 1 | 125 1 10.4 1 | - - | [50] |
Escherichia coli | NCTC 12900 strain O157 | 16-fold (P1)8192-fold (P2) | Amoxicillin-clavulanic acid Amoxicillin Chloramphenicol Ciprofloxacin Clindamycin Colistin sulfate Erythromycin Fusidic acid Gentamicin Imipenem Rifampicin Tetracycline Trimethoprim Vancomycin | 11 2 13 2 13 2 14 2 0 2 9 2 7 2 0 2 12 2 15 2 5 2 17 2 13 2 0 2 | 0 2 0 2 5 2 14 2 0 2 10 2 0 2 0 2 12 2 11 2 5 2 14 2 0 2 0 2 | R R R n. a. n. a. n. a. R n. a. n. a. R n. a. R R n. a. | [10] |
Escherichia coli | ATCC 27325 | 4096-fold | Amoxicillin Amoxicillin-clavulanic acid Chloramphenicol Ciprofloxacin Clindamycin Colistin sulfate Fusidic acid Gentamicin Rifampicin Tetracycline Trimethoprim Vancomycin | 8 1 8 1 16 1 4 1 >256 1 16 1 >256 1 8 1 256 1 32 1 32 1 >256 1 | 8 1 8 1 256 1 4 1 >256 1 16 1 >256 1 8 1 256 1 32 1 32 1 >256 1 | n. a. n. a. R n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. | [52] |
Escherichia coli | Strain O55:H7 | 2048-fold | Amoxicillin Amoxicillin-clavulanic acid Chloramphenicol Ciprofloxacin Clindamycin Colistin sulfate Fusidic acid Gentamicin Rifampicin Tetracycline Trimethoprim Vancomycin | 8 1 16 1 16 1 2 1 >256 1 16 1 >256 1 8 1 >256 1 32 1 32 1 0 1 | 8 1 8 1 8 1 2 1 >256 1 16 1 >256 1 16 1 >256 1 32 1 256 1 0 1 | n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. n. a. R n. a. | [52] |
Escherichia coli | NCTC 12900 | 8192-fold | Amoxicillin Amoxicillin-clavulanic acid Chloramphenicol Ciprofloxacin Clindamycin Colistin sulfate Fusidic acid Gentamicin Rifampicin Tetracycline Trimethoprim Vancomycin | 32 1 4 1 32 1 2 1 >256 1 8 1 >256 1 16 1 >256 1 32 1 64 1 0 1 | >256 1 256 1 256 1 2 1 >256 1 16 1 >256 1 16 1 >256 1 >256 1 >256 1 0 1 | R R R n. a. n. a. n. a. n. a. n. a. n. a. R R n. a. | [52] |
Fusobacterium nucleatum | ATCC 10953 | None | Metronidazole Tetracycline | 250 1 3.9 1 | 500 1 2.9 1 | - - | [50] |
Neisseria subflava | Strain A1078 | None | Metronidazole Tetracycline | 62.5 1 3.9 1 | 52.1 1 6.8 1 | - - | [50] |
Pantoea agglomerans | Biocide-sensitive strain from organic foods | 150-fold | Ampicillin Ceftazidime Sulfamethoxazol | - - - | 64 1 64 1 1024 1 | R R R | [51] |
Pantoea ananatis | 2 biocide-sensitive strains from organic foods | 5-fold– 200-fold | Sulfamethoxazol Trimethoprim-sulfamethoxazol Ampicillin Cefotaxime | - - - - | 1024 (2) 1 8/152 (2) 1 32 (1) 1 64 (1) 1 | R R R R | [51] |
Pantoea spp. | 2 biocide-sensitive strains from organic foods | 2-fold–3-fold | Sulfamethoxazol Ceftazidime Cefotaxime | - - - | 1024 (1) 1 64 (1) 1 128 (1) 1 | R R R | [51] |
Porphyromonas gingivalis | Strain W50 | None | Metronidazole Tetracycline | 31.3 1 3.0 1 | 62.5 1 1.0 1 | - - | [50] |
Prevotella nigrescens | Strain T588 | 2-fold | Metronidazole Tetracycline | 62.5 1 1.0 1 | 62.5 1 1.0 1 | - - | [50] |
Salmonella spp. | 3 biocide-sensitive strains from organic foods | 2-fold– 200-fold | Trimethoprim-sulfamethoxazol Cefotaxime Nalidixic acid Ampicillin Sulfamethoxazol Imipenem | - - - - - - | 8/152 (2) 1 64/128 (2) 1 64 (2) 1 64 (1) 1 1024 (1) 1 32 (1) 1 | R R R R R R | [51] |
Salmonella spp. | 6 strains with higher MICs to biocidal products | 500-fold– 10.000-fold (3) | Piperacillin Ceftiofur Amikacin Gentamicin Kanamycin Chloramphenicol Cefoxitin Nalidixic acid Sulfisoxazole | <4 3 2 3 4 3 <1 3 <8 3 4 3 16 3 8 3 32 3 | 16 3 >8 3 16 3 4 3 32 3 16 3 32 3 32 3 >256 3 | I R I I I I R R I | [16] |
Veillonella dispar | ATCC 17745 | None | Metronidazole Tetracycline | 78.1 1 31.3 1 | 31.3 1 27.4 1 | - - | [50] |
Species | Strain(s) | Type of DDAC Exposure | Antibiotic(s) | Reference |
---|---|---|---|---|
Escherichia coli | 54 strains from pig faeces or pork meat | 7 d at various concentrations. | 32 strains became multiresistant, most of them with a new resistance 1 to chloramphenicol, ampicillin, cefotaxime, ceftazidime and ciprofloxacin | [59] |
Salmonella enterica | 54 strains from pig faeces or pork meat | 7 d at various concentrations | 7 strains acquired a new resistance 1, mainly to chloramphenicol (3 strains) | [59] |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kampf, G. Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species. Antibiotics 2018, 7, 110. https://doi.org/10.3390/antibiotics7040110
Kampf G. Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species. Antibiotics. 2018; 7(4):110. https://doi.org/10.3390/antibiotics7040110
Chicago/Turabian StyleKampf, Günter. 2018. "Biocidal Agents Used for Disinfection Can Enhance Antibiotic Resistance in Gram-Negative Species" Antibiotics 7, no. 4: 110. https://doi.org/10.3390/antibiotics7040110