Study of Disinfectant Resistance Genes in Ocular Isolates of Pseudomonas aeruginosa
Abstract
:1. Introduction
2. Results
2.1. Distribution of Disinfectant Resistance Genes
2.2. Susceptibility of P. aeruginosa to MPDS
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Analysis of Disinfectant Resistance Genes
4.3. In-Vitro Susceptibility Testing of Multi-Purpose Disinfectant Solution (MPDS)
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stapleton, F.; Dart, J.K.; Seal, D.V.; Matheson, M. Epidemiology of Pseudomonas aeruginosa keratitis in contact lens wearers. Epidemiol. Infect. 1995, 114, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Subedi, D.; Vijay, A.K.; Willcox, M. Overview of mechanisms of antibiotic resistance in Pseudomonas aeruginosa: An ocular perspective. Clin. Exp. Optom. 2018, 101, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F.; Edwards, K.; Keay, L.; Naduvilath, T.; Dart, J.K.; Brian, G.; Holden, B. Risk factors for moderate and severe microbial keratitis in daily wear contact lens users. Ophthalmology 2012, 119, 1516–1521. [Google Scholar] [CrossRef] [PubMed]
- Fleiszig, S.M.; Evans, D.J. The pathogenesis of bacterial keratitis: Studies with Pseudomonas aeruginosa. Clin. Exp. Optom. 2002, 85, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Yahr, T.L.; Parsek, M.R. Pseudomonas aeruginosa. In The Prokaryotes: A Handbook on the Biology of Bacteria, 3rd ed.; Springer: New York, NY, USA, 2006; pp. 704–713. ISBN 978-0-387-30740-4. [Google Scholar]
- Willcox, M.D. Review of resistance of ocular isolates of Pseudomonas aeruginosa and staphylococci from keratitis to ciprofloxacin, gentamicin and cephalosporins. Clin. Exp. Optom. 2011, 94, 161–168. [Google Scholar] [CrossRef] [PubMed]
- Abidi, S.H.; Sherwani, S.K.; Siddiqui, T.R.; Bashir, A.; Kazmi, S.U. Drug resistance profile and biofilm forming potential of Pseudomonas aeruginosa isolated from contact lenses in Karachi-Pakistan. BMC Ophthalmol. 2013, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinia, M.; Rahmani, S.; Eslami, G.; Ghassemi-Broumand, M.; Aghazadh Amiri, M.; Aghaie, G.; Tabatabaee, S.M.; Taheri, S.; Behgozin, A. Contact lens disinfecting solutions antibacterial efficacy: comparison between clinical isolates and the standard ISO ATCC strains of Pseudomonas aeruginosa and Staphylococcus aureus. Eye (Lond.) 2012, 26, 327–330. [Google Scholar] [CrossRef] [PubMed]
- Green, M.D.; Apel, A.J.; Naduvilath, T.; Stapleton, F.J. Clinical outcomes of keratitis. Clin. Exp. Ophthalmol. 2007, 35, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Stapleton, F. Contact lens-related microbial keratitis: What can epidemiologic studies tell us? Eye Contact Lens 2003, 29, S85–S89. [Google Scholar] [CrossRef] [PubMed]
- Kilvington, S.; Shovlin, J.; Nikolic, M. Identification and susceptibility to multipurpose disinfectant solutions of bacteria isolated from contact lens storage cases of patients with corneal infiltrative events. Contact Lens Anterior Eye 2013, 36, 294–298. [Google Scholar] [CrossRef] [PubMed]
- Hildebrandt, C.; Wagner, D.; Kohlmann, T.; Kramer, A. In-vitro analysis of the microbicidal activity of 6 contact lens care solutions. BMC Infect. Dis. 2012, 12, 241. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Maillard, J.Y.; Lambert, R.J.W.; Russell, A.D. Development of resistance to chlorhexidine diacetate in Pseudomonas aeruginosa and the effect of a ‘residual’ concentration. J. Hosp. Infect. 2000, 46, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Boost, M.V.; Chan, J.; Shi, G.S.; Cho, P. Effect of multipurpose solutions against Acinetobacter carrying QAC genes. Optom. Vis. Sci. 2014, 91, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.S.; Boost, M.; Cho, P. Prevalence of Antiseptic-Resistance Genes in Staphylococci Isolated From Orthokeratology Lens and Spectacle Wearers in Hong Kong. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3069–3074. [Google Scholar] [CrossRef] [PubMed]
- Bay, D.C.; Rommens, K.L.; Turner, R.J. Small multidrug resistance proteins: A multidrug transporter family that continues to grow. Biochim. Biophys. Acta 2008, 1778, 1814–1838. [Google Scholar] [CrossRef] [PubMed]
- Winsor, G.L.; Griffiths, E.J.; Lo, R.; Dhillon, B.K.; Shay, J.A.; Brinkman, F.S. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 2016, 44, D646–D653. [Google Scholar] [CrossRef] [PubMed]
- Stickler, D.J.; Thomas, B. Antiseptic and Antibiotic-Resistance in Gram-Negative Bacteria Causing Urinary-Tract Infection. J. Clin. Pathol. 1980, 33, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.M.; Jeawon, R.H.; Persad, S. Disinfectant Resistance in Antibiotic-Resistant Organisms. S. Afr. J. Sci. 1991, 87, 614–617. [Google Scholar]
- Chapman, J.S. Disinfectant resistance mechanisms, cross-resistance, and co-resistance. Int. Biodeterior. Biodegrad. 2003, 51, 271–276. [Google Scholar] [CrossRef]
- Chung, Y.J.; Saier, M.H., Jr. SMR-type multidrug resistance pumps. Curr. Opin. Drug Discov. Dev. 2001, 4, 237–245. [Google Scholar]
- Chung, Y.J.; Saier, M.H., Jr. Overexpression of the Escherichia coli sugE gene confers resistance to a narrow range of quaternary ammonium compounds. J. Bacteriol. 2002, 184, 2543–2545. [Google Scholar] [CrossRef] [PubMed]
- Su, L.H.; Chen, H.L.; Chia, J.H.; Liu, S.Y.; Chu, C.; Wu, T.L.; Chiu, C.H. Distribution of a transposon-like element carrying bla(CMY-2) among Salmonella and other Enterobacteriaceae. J. Antimicrob. Chemother. 2006, 57, 424–429. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.; Marquez, C.; Ingold, A.; Merlino, J.; Djordjevic, S.P.; Stokes, H.W.; Chowdhury, P.R. Diverse mobilized class 1 integrons are common in the chromosomes of pathogenic Pseudomonas aeruginosa clinical isolates. Antimicrob. Agent. Chemother. 2012, 56, 2169–2172. [Google Scholar] [CrossRef] [PubMed]
- Kucken, D.; Feucht, H.; Kaulfers, P. Association of qacE and qacEDelta1 with multiple resistance to antibiotics and antiseptics in clinical isolates of Gram-negative bacteria. FEMS Microbiol. Lett. 2000, 183, 95–98. [Google Scholar] [CrossRef]
- International Standards Organization (ISO). 14729 Ophthalmic Optics—Contact Lens Care Products—Microbiological Requirements and Test Methods for Products and Regimens for Hygienic Management of Contact Lenses; ISO: Geneva, Switzerland, 2001. [Google Scholar]
- Watanabe, K.; Zhu, H.; Willcox, M. Susceptibility of Stenotrophomonas maltophilia clinical isolates to antibiotics and contact lens multipurpose disinfecting solutions. Investig. Ophthalmol. Vis. Sci. 2014, 55, 8475–8479. [Google Scholar] [CrossRef] [PubMed]
- Willcox, M.D. Solutions for care of silicone hydrogel lenses. Eye Contact Lens 2013, 39, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Lambert, R.J.; Hanlon, G.W.; Denyer, S.P. The synergistic effect of EDTA/antimicrobial combinations on Pseudomonas aeruginosa. J. Appl. Microbiol. 2004, 96, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Tabata, A.; Nagamune, H.; Maeda, T.; Murakami, K.; Miyake, Y.; Kourai, H. Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob. Agents Chemother. 2003, 47, 2093–2099. [Google Scholar] [CrossRef] [PubMed]
- Adair, F.W.; Geftic, S.G.; Gelzer, J. Resistance of Pseudomonas to quaternary ammonium compounds. I. Growth in benzalkonium chloride solution. Appl. Microbiol. 1969, 18, 299–302. [Google Scholar] [PubMed]
- Bruinsma, G.M.; Rustema-Abbing, M.; van der Mei, H.C.; Lakkis, C.; Busscher, H.J. Resistance to a polyquaternium-1 lens care solution and isoelectric points of Pseudomonas aeruginosa strains. J. Antimicrob. Chemother. 2006, 57, 764–766. [Google Scholar] [CrossRef] [PubMed]
- Zajmi, A.; Mohd Hashim, N.; Noordin, M.I.; Khalifa, S.A.; Ramli, F.; Mohd Ali, H.; El-Seedi, H.R. Ultrastructural Study on the Antibacterial Activity of Artonin E versus Streptomycin against Staphylococcus aureus Strains. PLoS ONE 2015, 10, e0128157. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, Approved Standard—Ninth Edition; M07-A9; CLSI: Wayne, PA, USA, 2012; Volume 32. [Google Scholar]
Strains | Disinfectant Resistance Genes | ||||||
---|---|---|---|---|---|---|---|
sugE1 | sugE2 | sugE3 | emrE (qacE) | qacEdelta1 | qacF | qacG | |
PA17 | − | + | + | + | − | − | − |
PA31 | + | + | + | + | + | − | − |
PA32 | + | + | + | + | + | − | − |
PA33 | + | + | + | + | + | − | − |
PA34 | − | + | + | + | + | − | − |
PA35 | + | + | + | + | + | − | − |
PA37 | + | + | + | + | + | − | − |
PA40 | − | + | + | + | − | − | − |
PA82 | − | + | + | + | − | − | − |
PA149 | − | + | + | + | − | − | − |
PA157 | − | + | + | + | − | − | − |
PA171 | − | + | + | + | − | − | − |
PA175 | + | + | + | + | − | − | − |
Strains | Multipurpose Disinfectant Solution (Dilution Factor in Water) | |||||||
---|---|---|---|---|---|---|---|---|
OPTI-FREE® Puremoist® | renu® fresh™ | Biotrue® | RevitaLens Ocutech® | |||||
MIC | MBC (≥99.9%) | MIC | MBC (≥99.9%) | MIC | MBC (≥99.9%) | MIC | MBC (≥99.9%) | |
PA17 | 1:4 | 1:4 | 1:4 | 1:2 | 1:2 | 1 | 1:4 | 1:2 |
PA31 | 1:8 | 1:4 | 1:2 | 1:2 | 1:2 | 1 | 1:4 | 1:2 |
PA32 | 1:4 | 1:4 | 1:4 | 1:2 | 1:2 | 1 | 1:4 | 1:2 |
PA33 | 1:8 | 1:4 | 1:2 | 1:2 | 1:2 | 1:2 | 1:4 | 1:2 |
PA34 | 1:8 | 1:4 | 1:4 | 1:2 | 1:4 | 1:2 | 1:4 | 1:2 |
PA35 | 1:4 | 1:2 | 1:4 | 1:2 | 1:2 | 1:2 | 1:4 | 1:2 |
PA37 | 1:8 | 1:4 | 1:4 | 1 | 1:2 | 1 | 1:4 | 1:2 |
PA40 | 1:4 | 1:4 | 1:4 | 1:2 | 1:2 | 1 | 1:2 | 1:2 |
PA82 | 1:8 | 1:4 | 1:4 | 1:2 | 1:4 | 1:2 | 1:8 | 1:2 |
PA149 | 1:4 | 1:4 | 1:4 | 1:2 | 1:4 | 1 | 1:4 | 1:2 |
PA157 | 1:4 | 1:4 | 1:2 | 1:2 | 1:4 | 1 | 1:4 | 1:2 |
PA171 | 1:4 | 1:4 | 1:4 | 1 | 1:2 | 1 | 1:4 | 1:2 |
PA175 | 1:8 | 1:4 | 1:4 | 1 | 1:4 | 1 | 1:8 | 1:2 |
Median | 1:4 | 1:4 | 1:4 | 1:2 | 1:2 | 1 | 1:4 | 1:2 |
MPDS (Manufacturer) | Ingredients |
---|---|
Biotrue® (Bausch & Lomb, Rochester, NY, USA) | Hyaluronan, sulfobetaine, poloxamine, boric acid, sodium borate, edetate sodium, sodium chloride, water, polyquaternium (POLYQUAD®; 0.0001%), polyaminopropyl biguanide (PHMB; 0.00013%) |
OPTI-FREE® Puremoist® (Alcon Laboratories Inc., Forth Worth, TX, USA) | Sodium citrate, sodium chloride, boric acid, sorbitol, aminomethylpropanol, disodium EDTA, Tetronic®1304, EOBO-41TM [polyethyleneoxide-polybutyleneoxide-41], water, Polyquaternium (POLYQUAD®; 0.001%), myristamidopropyl dimethylamine (ALDOX®; 0.0006%) |
renu® fresh™ (Bausch & Lomb, Rochester, NY, USA) | Hydroxyalkylphosphonate, boric acid, edetate disodium, poloxamine, sodium borate, sodium chloride, water DYMEDTM [Polyaminopropyl biguanide (PHMB; 0.0001%)] |
RevitaLens Ocutech® (Abbott Medical Optics Inc., Santa Ana, CA, USA) | Alexidine dihydrochloride (0.00016%), Polyquaternium-1 (0.0003%), boric acid, sodium borate decahydrate, edetate disodium, TETRONIC 904, sodium citrate, sodium chloride, water |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subedi, D.; Vijay, A.K.; Willcox, M. Study of Disinfectant Resistance Genes in Ocular Isolates of Pseudomonas aeruginosa. Antibiotics 2018, 7, 88. https://doi.org/10.3390/antibiotics7040088
Subedi D, Vijay AK, Willcox M. Study of Disinfectant Resistance Genes in Ocular Isolates of Pseudomonas aeruginosa. Antibiotics. 2018; 7(4):88. https://doi.org/10.3390/antibiotics7040088
Chicago/Turabian StyleSubedi, Dinesh, Ajay Kumar Vijay, and Mark Willcox. 2018. "Study of Disinfectant Resistance Genes in Ocular Isolates of Pseudomonas aeruginosa" Antibiotics 7, no. 4: 88. https://doi.org/10.3390/antibiotics7040088
APA StyleSubedi, D., Vijay, A. K., & Willcox, M. (2018). Study of Disinfectant Resistance Genes in Ocular Isolates of Pseudomonas aeruginosa. Antibiotics, 7(4), 88. https://doi.org/10.3390/antibiotics7040088