First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Bacterial Isolates
4.2. Antimicrobial Susceptibility Testing
4.3. Resistance and Virulence Determinants
4.4. Molecular Methods
4.5. Transfer of blaKPC-3 and Plasmid Characterization
4.6. Multilocus Sequence Typing (MLST)
4.7. Ethical Approval
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Butler, C.C. Antibiotics: Responding to a Global Challenge. Antibiotics 2012, 1, 14–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Centre for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe 2014; European Centre for Disease Prevention and Control: Stockholm, Sweden, 2015. [Google Scholar]
- Perez, F.; Bonomo, R.A. Evidence to improve the treatment of infections caused by carbapenem-resistant Gram-negative bacteria. Lancet Infect. Dis. 2018, 18, 358–360. [Google Scholar] [CrossRef]
- Tacconelli, E.; Magrini, N. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics; World Health Organization: Geneva, Switzerland, 2017. [Google Scholar]
- Beceiro, A.; Tomas, M.; Bou, G. Antimicrobial resistance and virulence: A successful or deleterious association in the bacterial world? Clin. Microbiol. Rev. 2013, 26, 185–230. [Google Scholar] [CrossRef] [PubMed]
- Wasfi, R.; Elkhatib, W.F.; Ashour, H.M. Molecular typing and virulence analysis of multidrug resistant Klebsiella pneumoniae clinical isolates recovered from Egyptian hospitals. Sci Rep. 2016, 6, 38929. [Google Scholar] [CrossRef] [PubMed]
- Falagas, M.E.; Lourida, P.; Poulikakos, P.; Rafailidis, P.I.; Tansarli, G.S. Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: Systematic evaluation of the available evidence. Antimicrob. Agents Chemother. 2014, 58, 654–663. [Google Scholar] [CrossRef] [PubMed]
- Data from the ECDC Surveillance Atlas—Antimicrobial Resistance. Available online: https://ecdc.europa.eu/en/antimicrobial-resistance/surveillance-and-disease-data/data-ecdc (accessed on 7 September 2018).
- Antimicrobial Consumption Database (ESAC-Net). Available online: https://ecdc.europa.eu/en/antimicrobial-consumption/database/country-overview (accessed on 7 September 2018).
- Pang, F.; Jia, X.Q.; Zhao, Q.G.; Zhang, Y. Factors associated to prevalence and treatment of carbapenem-resistant Enterobacteriaceae infections: A seven years retrospective study in three tertiary care hospitals. Ann. Clin. Microbiol. Antimicrob. 2018, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Lemos, E.V.; de la Hoz, F.P.; Einarson, T.R.; McGhan, W.F.; Quevedo, E.; Castaneda, C.; Kawai, K. Carbapenem resistance and mortality in patients with Acinetobacter baumannii infection: Systematic review and meta-analysis. Clin. Microbiol. Infect. 2014, 20, 416–423. [Google Scholar] [CrossRef] [PubMed]
- Paul, M.; Daikos, G.L.; Durante-Mangoni, E.; Yahav, D.; Carmeli, Y.; Benattar, Y.D.; Skiada, A.; Andini, R.; Eliakim-Raz, N.; Nutman, A.; et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: An open-label, randomised controlled trial. Lancet Infect. Dis. 2018, 18, 391–400. [Google Scholar] [CrossRef]
- Castaneda-Garcia, A.; Blazquez, J.; Rodriguez-Rojas, A. Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics 2013, 2, 217–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dijkmans, A.C.; Zacarias, N.V.O.; Burggraaf, J.; Mouton, J.W.; Wilms, E.B.; van Nieuwkoop, C.; Touw, D.J.; Stevens, J.; Kamerling, I.M.C. Fosfomycin: Pharmacological, Clinical and Future Perspectives. Antibiotics 2017, 6, 24. [Google Scholar] [CrossRef] [PubMed]
- Choi, U.; Lee, C.R. Antimicrobial agents that inhibit the outer membrane assembly machines of Gram negative bacteria. J. Microbiol. Biotechnol. 2018. [Google Scholar] [CrossRef]
- Hamzaoui, Z.; Ocampo-Sosa, A.; Martinez, M.F.; Landolsi, S.; Ferjani, S.; Maamar, E.; Saidani, M.; Slim, A.; Martinez-Martinez, L.; Boubaker, I.B. Role of association of OmpK35 and OmpK36 alteration and blaESBL and/or blaAmpC in conferring carbapenem resistance among non-producing carbapenemase-Klebsiella pneumoniae. Int. J. Antimicrob. Agents 2018. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, A.; Chmelnitsky, I.; Ofek, I.; Carmeli, Y.; Navon-Venezia, S. Plasmid pKpQIL encoding KPC-3 and TEM-1 confers carbapenem resistance in an extremely drug-resistant epidemic Klebsiella pneumoniae strain. J. Antimicrob. Chemother. 2010, 65, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Perilli, M.; Bottoni, C.; Grimaldi, A.; Segatore, B.; Celenza, G.; Mariani, M.; Bellio, P.; Frascaria, P.; Amicosante, G. Carbapenem-resistant Klebsiella pneumoniae harbouring blaKPC-3 and blaVIM-2 from central Italy. Diagn. Microbiol. Infect. Dis. 2013, 75, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Chan, W.W.; Peirano, G.; Smyth, D.J.; Pitout, J.D. The characteristics of Klebsiella pneumoniae that produce KPC-2 imported from Greece. Diagn. Microbiol. Infect. Dis. 2013, 75, 317–319. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.S.; Kim, H.M.; Yoo, J.I.; Yang, J.W.; Kim, H.S.; Chung, G.T.; Lee, Y.S. Detection of clonal KPC-2-producing Klebsiella pneumoniae ST258 in Korea during nationwide surveillance in 2011. J. Med. Microbiol. 2013, 62, 1338–1342. [Google Scholar] [CrossRef] [PubMed]
- Babouee, B.; Widmer, A.F.; Dubuis, O.; Ciardo, D.; Droz, S.; Betsch, B.Y.; Garzoni, C.; Fuhrer, U.; Battegay, M.; Frei, R.; et al. Emergence of four cases of KPC-2 and KPC-3-carrying Klebsiella pneumoniae introduced to Switzerland, 2009–10. Euro Surveill. 2011, 16, 19817. [Google Scholar] [CrossRef] [PubMed]
- Leavitt, A.; Navon-Venezia, S.; Chmelnitsky, I.; Schwaber, M.J.; Carmeli, Y. Emergence of KPC-2 and KPC-3 in carbapenem-resistant Klebsiella pneumoniae strains in an Israeli hospital. Antimicrob. Agents Chemother. 2007, 51, 3026–3029. [Google Scholar] [CrossRef] [PubMed]
- Le, J.; Castanheira, M.; Burgess, D.S.; McKee, B.; Iqbal, R.; Jones, R.N. Clonal dissemination of Klebsiella pneumoniae carbapenemase KPC-3 in Long Beach, California. J. Clin. Microbiol. 2010, 48, 623–625. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Fernandez, A.; Villa, L.; Carta, C.; Venditti, C.; Giordano, A.; Venditti, M.; Mancini, C.; Carattoli, A. Klebsiella pneumoniae ST258 producing KPC-3 identified in italy carries novel plasmids and OmpK36/OmpK35 porin variants. Antimicrob. Agents Chemother. 2012, 56, 2143–2145. [Google Scholar] [CrossRef] [PubMed]
- Robustillo Rodela, A.; Diaz-Agero Perez, C.; Sanchez Sagrado, T.; Ruiz-Garbajosa, P.; Pita Lopez, M.J.; Monge, V. Emergence and outbreak of carbapenemase-producing KPC-3 Klebsiella pneumoniae in Spain, September 2009 to February 2010: Control measures. Euro Surveill. 2012, 17, 20086. [Google Scholar] [PubMed]
- Machado, P.; Silva, A.; Lito, L.; Melo-Cristino, J.; Duarte, A. Emergence of Klebsiella pneumoniae ST-11 producing KPC-3 carbapenemase at a Lisbon hospital. Clin. Microbiol. Infect. 2010, 16, S28. [Google Scholar]
- Caneiras, C.; Calisto, F.; Da Silva, G.; Lito, L.; Melo Cristino, J.; Duarte, A. Enterobacteriaceae isolates and KPC-3 carbapenemase in Portugal: Overview of 2010–2011. In Proceedings of the European Congress of Clinical Microbiology and Infectious Diseases, London, UK, 31 March–2 April 2012. [Google Scholar]
- Pires, D.; Zagalo, A.; Santos, C.; Cota de Medeiros, F.; Duarte, A.; Lito, L.; Melo Cristino, J.; Caldeira, L. Evolving epidemiology of carbapenemase-producing Enterobacteriaceae in Portugal: 2012 retrospective cohort at a tertiary hospital in Lisbon. J. Hosp. Infect. 2016, 92, 82–85. [Google Scholar] [CrossRef] [PubMed]
- Direção-Geral da Saúde. Vigilância Epidemiológica das Resistências Aos Antimicrobianos; Norma No. 004/2013 de 21/02/2013; Direção-Geral da Saúde: Lisboa, Portugal, 2013. [Google Scholar]
- Chen, L.; Chavda, K.D.; Melano, R.G.; Jacobs, M.R.; Levi, M.H.; Bonomo, R.A.; Kreiswirth, B.N. Complete sequence of a bla(KPC-2)-harboring IncFII(K1) plasmid from a Klebsiella pneumoniae sequence type 258 strain. Antimicrob. Agents Chemother. 2013, 57, 1542–1545. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Resistance plasmid families in Enterobacteriaceae. Antimicrob. Agents Chemother. 2009, 53, 2227–2238. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A. Plasmids and the spread of resistance. Int. J. Med. Microbiol. 2013, 303, 298–304. [Google Scholar] [CrossRef] [PubMed]
- Schroll, C.; Barken, K.B.; Krogfelt, K.A.; Struve, C. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 2010, 10, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, C.N.; Mortensen, M.S.; Krogfelt, K.A.; Clegg, S. Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect. Immun. 2013, 81, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Siu, L.K.; Huang, D.B.; Chiang, T. Plasmid transferability of KPC into a virulent K2 serotype Klebsiella pneumoniae. BMC Infect. Dis. 2014, 14, 176. [Google Scholar] [CrossRef] [PubMed]
- Bielaszewska, M.; Aldick, T.; Bauwens, A.; Karch, H. Hemolysin of enterohemorrhagic Escherichia coli: Structure, transport, biological activity and putative role in virulence. Int. J. Med. Microbiol. 2014, 304, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Rafiq, A.; Zhang, Z.; Aslani, F.; Fijak, M.; Lei, T.; Wang, M.; Kumar, S.; Klug, J.; Bergmann, M.; et al. Uropathogenic Escherichia coli virulence factor hemolysin A causes programmed cell necrosis by altering mitochondrial dynamics. FASEB J. 2018, 32, 4107–4120. [Google Scholar] [CrossRef] [PubMed]
- Ku, Y.H.; Chuang, Y.C.; Chen, C.C.; Lee, M.F.; Yang, Y.C.; Tang, H.J.; Yu, W.L. Klebsiella pneumoniae Isolates from Meningitis: Epidemiology, Virulence and Antibiotic Resistance. Sci. Rep. 2017, 7, 6634. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Olson, R.; Macdonald, U.; Metzger, D.; Maltese, L.M.; Drake, E.J.; Gulick, A.M. Aerobactin mediates virulence and accounts for increased siderophore production under iron-limiting conditions by hypervirulent (hypermucoviscous) Klebsiella pneumoniae. Infect. Immun. 2014, 82, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.F.; Lin, T.L.; Lee, C.Z.; Tsai, S.F.; Wang, J.T. Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J. Infect. Dis. 2008, 197, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.L.; Lee, L.M.; Tang, H.J.; Chang, M.C.; Chuang, Y.C. Low prevalence of rmpA and high tendency of rmpA mutation correspond to low virulence of extended spectrum β-lactamase-producing Klebsiella pneumoniae isolates. Virulence 2015, 6, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Tzouvelekis, L.S.; Miriagou, V.; Kotsakis, S.D.; Spyridopoulou, K.; Athanasiou, E.; Karagouni, E.; Tzelepi, E.; Daikos, G.L. KPC-producing, multidrug-resistant Klebsiella pneumoniae sequence type 258 as a typical opportunistic pathogen. Antimicrob. Agents Chemother. 2013, 57, 5144–5146. [Google Scholar] [CrossRef] [PubMed]
- De Cassia Andrade Melo, R.; de Barros, E.M.; Loureiro, N.G.; de Melo, H.R.; Maciel, M.A.; Souza Lopes, A.C. Presence of fimH, mrkD, and irp2 Virulence Genes in KPC-2-Producing Klebsiella pneumoniae Isolates in Recife-PE, Brazil. Curr. Microbiol. 2014. [Google Scholar] [CrossRef] [PubMed]
- Krapp, F.; Morris, A.R.; Ozer, E.A.; Hauser, A.R. Virulence Characteristics of Carbapenem-Resistant Klebsiella pneumoniae Strains from Patients with Necrotizing Skin and Soft Tissue Infections. Sci. Rep. 2017, 7, 13533. [Google Scholar] [CrossRef] [PubMed]
- Delfino, E.; Giacobbe, D.R.; Del Bono, V.; Coppo, E.; Marchese, A.; Manno, G.; Morelli, P.; Minicucci, L.; Viscoli, C. First report of chronic pulmonary infection by KPC-3-producing and colistin-resistant Klebsiella pneumoniae sequence type 258 (ST258) in an adult patient with cystic fibrosis. J. Clin. Microbiol. 2015, 53, 1442–1444. [Google Scholar] [CrossRef] [PubMed]
- Gartzonika, K.; Rossen, J.W.A.; Sakkas, H.; Rosema, S.; Priavali, E.; Friedrich, A.W.; Levidiotou, S.; Bathoorn, E. Identification of a KPC-9-producing Klebsiella pneumoniae ST258 cluster among KPC-2-producing isolates of an ongoing outbreak in Northwestern Greece: A retrospective study. Clin. Microbiol. Infect. 2018, 24, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Jousset, A.B.; Bonnin, R.A.; Rosinski-Chupin, I.; Girlich, D.; Cuzon, G.; Cabanel, N.; Frech, H.; Farfour, E.; Dortet, L.; Glaser, P.; et al. 4.5 years within-patient evolution of a colistin resistant KPC-producing Klebsiella pneumoniae ST258. Clin. Infect. Dis. 2018. [Google Scholar] [CrossRef] [PubMed]
- Sorlozano-Puerto, A.; Esteva-Fernandez, D.; Oteo-Iglesias, J.; Navarro-Mari, J.M.; Gutierrez-Fernandez, J. A new case report of urinary tract infection due to KPC-3-producing klebsiella pneumoniae (ST258) in Spain. Arch. Esp. Urol. 2016, 69, 437–440. [Google Scholar] [PubMed]
- Moubareck, C.A.; Mouftah, S.F.; Pal, T.; Ghazawi, A.; Halat, D.H.; Nabi, A.; AlSharhan, M.A.; AlDeesi, Z.O.; Peters, C.C.; Celiloglu, H.; et al. Clonal emergence of Klebsiella pneumoniae ST14 co-producing OXA-48-type and NDM carbapenemases with high rate of colistin resistance in Dubai, United Arab Emirates. Int. J. Antimicrob. Agents 2018, 52, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Pitout, J.D.; Thomson, K.S.; Hanson, N.D.; Ehrhardt, A.F.; Moland, E.S.; Sanders, C.C. beta-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob. Agents Chemother. 1998, 42, 1350–1354. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.J.; Ko, W.C.; Jung, Y.C.; Chuang, C.L.; Wu, J.J. Emergence of Klebsiella pneumoniae isolates producing inducible DHA-1 beta-lactamase in a university hospital in Taiwan. J. Clin. Microbiol. 2002, 40, 3121–3126. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.; Perez-Trallero, E.; Marimon, J.M.; Aliaga, R.; Gomariz, M.; Mirelis, B. CMY-2-producing Salmonella enterica, Klebsiella pneumoniae, Klebsiella oxytoca, Proteus mirabilis and Escherichia coli strains isolated in Spain (October 1999–December 2000). J. Antimicrob. Chemother. 2001, 48, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Conceicao, T.; Brizio, A.; Duarte, A.; Lito, L.M.; Cristino, J.M.; Salgado, M.J. First description of CTX-M-15-producing Klebsiella pneumoniae in Portugal. Antimicrob. Agents Chemother. 2005, 49, 477–478. [Google Scholar] [CrossRef] [PubMed]
- Yigit, H.; Queenan, A.M.; Anderson, G.J.; Domenech-Sanchez, A.; Biddle, J.W.; Steward, C.D.; Alberti, S.; Bush, K.; Tenover, F.C. Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2001, 45, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Senda, K.; Arakawa, Y.; Ichiyama, S.; Nakashima, K.; Ito, H.; Ohsuka, S.; Shimokata, K.; Kato, N.; Ohta, M. PCR detection of metallo-beta-lactamase gene (blaIMP) in gram-negative rods resistant to broad-spectrum beta-lactams. J. Clin. Microbiol. 1996, 34, 2909–2913. [Google Scholar] [PubMed]
- Lee, K.; Lim, J.B.; Yum, J.H.; Yong, D.; Chong, Y.; Kim, J.M.; Livermore, D.M. bla(VIM-2) cassette-containing novel integrons in metallo-beta-lactamase-producing Pseudomonas aeruginosa and Pseudomonas putida isolates disseminated in a Korean hospital. Antimicrob. Agents Chemother. 2002, 46, 1053–1058. [Google Scholar] [CrossRef] [PubMed]
- Poirel, L.; Heritier, C.; Tolun, V.; Nordmann, P. Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 2004, 48, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Carattoli, A.; Bertini, A.; Villa, L.; Falbo, V.; Hopkins, K.L.; Threlfall, E.J. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 2005, 63, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Martinez, L.; Pascual, A.; Jacoby, G.A. Quinolone resistance from a transferable plasmid. Lancet 1998, 351, 797–799. [Google Scholar] [CrossRef]
- Diancourt, L.; Passet, V.; Verhoef, J.; Grimont, P.A.; Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 2005, 43, 4178–4182. [Google Scholar] [CrossRef] [PubMed]
Classes of Antibiotics | List of Antibiotics 1 (n = 15 Agents) | K. pneumoniae 69633 | A. baumannii4 86982 |
---|---|---|---|
Penicillins | Ampicillin | R | R |
β-lactam/β-lactamase inhibitor combinations | Amoxicillin-clavulanic acid | R | R |
Piperacillin-tazobactam | R | R | |
Cephalosporins | Cefoxitin-C2G 2 | R | R |
Cefotaxime-C3G 3 | R | R | |
Ceftazidime-C3G 3 | R | R | |
Monobactams | Aztreonam | R | R |
Carbapenems | Imipenem | R | R |
Meropenem | R | R | |
Ertapenem | R | R | |
Aminoglycosides | Gentamicin | R | R |
Fluoroquinolones | Ciprofloxacin | R | R |
Levofloxacin | R | R | |
Polymyxins | Colistin | S | R |
Tetracyclines | Tigecycline | S | R |
Strain | β-Lactamases Identified | PBRT 1 | MLST | Virulence Profile |
---|---|---|---|---|
K. pneumoniae 69633 | KPC-3 + SHV-1 + TEM-1 | IncFrepB | ST-14 | K2 + fimH + mrkDV1 + mrkDV2-4 + khe + iucC |
A. baumannii 86982 | KPC-3 + SHV-1 + TEM-1 | IncFrepB | - | - |
Gene | DNA Sequence (5′ to 3′) | Amplicon Size (bp) | EMBL Accession Number (Genbank) |
---|---|---|---|
blaNDM | F: TATCGCCGTCTAGTTCTGCTG | 871 | AB604954 |
R: ACTGCCCGTTGACGCCCAAT | |||
K2A | F: CAACCATGGTGGTCGATTAG | 531 | EF221827 |
R: TGGTAGCCATATCCCTTTGG | |||
fimH | F: TGTTCACCACCCTGCTGCTG | 512 | NC_012731.1 |
R: CACCACGTCGTTCTTGGCGT | |||
mrkDV1 | F: CGGTGATGCTGGACATGGT | 300 | EU682505.2 |
R: CCTCTAGCGAATAGTTGGTG | |||
mrkDV2–4 | F: CTTAATGGCGMTGGGCACCA | 950 | AY225463.1 |
R: TCATATGCGACTCCACCTCG | AY225464.1 | ||
AY225465.1 | |||
khe | F: TGATTGCATTCGCCACTGG | 428 | NC_012731.1 |
R: GGTCAACCCAACGATCCTGG | |||
iucC | F: GTGCTGTCGATGAGCGATGC | 944 | NC_005249.1 |
R: GTGAGCCAGGTTTCAGCGTC | |||
rmpA | F: ACTGGGCTACCTCTGCTTCA | 516 | NC_012731.1 |
R: CTTGCATGAGCCATCTTTCA | |||
magA | F: TCTGTCATGGCTTAGACCGAT | 1137 | NC_012731.1 |
R: GCAATCGAAGTGAAGAGTGC | |||
ompK35 | F: ATATTCTGGCAGTGGTGATCC | 1012 | AJ303057 |
R:GCTTTGGTGTAATCGTTGTC | |||
ompK36 | F: TAGCAGGCGCAGCAAATGC | 1031 | GU461279 |
R: TGCAACCACGTCGTCGGTA |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caneiras, C.; Calisto, F.; Jorge da Silva, G.; Lito, L.; Melo-Cristino, J.; Duarte, A. First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics 2018, 7, 96. https://doi.org/10.3390/antibiotics7040096
Caneiras C, Calisto F, Jorge da Silva G, Lito L, Melo-Cristino J, Duarte A. First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics. 2018; 7(4):96. https://doi.org/10.3390/antibiotics7040096
Chicago/Turabian StyleCaneiras, Cátia, Filipa Calisto, Gabriela Jorge da Silva, Luis Lito, José Melo-Cristino, and Aida Duarte. 2018. "First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal" Antibiotics 7, no. 4: 96. https://doi.org/10.3390/antibiotics7040096
APA StyleCaneiras, C., Calisto, F., Jorge da Silva, G., Lito, L., Melo-Cristino, J., & Duarte, A. (2018). First Description of Colistin and Tigecycline-Resistant Acinetobacter baumannii Producing KPC-3 Carbapenemase in Portugal. Antibiotics, 7(4), 96. https://doi.org/10.3390/antibiotics7040096