Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile?
Abstract
:1. Introduction
2. Bacteriocins
2.1. Classes of Bacteriocins
2.2. Mode of Action
2.3. Bacteriocin Resistance Mechanisms
3. Medical Applications of Bacteriocin Therapeutics
3.1. Infectious Disease
3.2. Anti-Cancer Activity
3.3. Factors Affecting Medical Application
4. Food Applications
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocin-Antimicrobial Synergy: A Medical and Food Perspective. Front. Microbiol. 2017, 8, 1205. [Google Scholar] [CrossRef] [Green Version]
- Harkins, C.P.; Pichon, B.; Doumith, M.; Parkhill, J.; Westh, H.; Tomasz, A.; Holden, M. Methicillin-resistant Staphylococcus aureus emerged long before the introduction of methicillin into clinical practice. Genome Boil. 2017, 18, 130. [Google Scholar] [CrossRef] [Green Version]
- Gould, K. Antibiotics: From prehistory to the present day. J. Antimicrob. Chemother. 2016, 71, 572–575. [Google Scholar] [CrossRef]
- Romero-Calle, D.; Guimarães Benevides, R.; Góes-Neto, A.; Billington, C. Bacteriophages as Alternatives to Antibiotics in Clinical Care. Antibiotics 2019, 8, 138. [Google Scholar] [CrossRef] [Green Version]
- Nicolaou, K.C.; Rigol, S. A brief history of antibiotics and select advances in their synthesis. J. Antibiot. 2017, 71, 153–184. [Google Scholar] [CrossRef]
- Ghodhbane, H.; Elaidi, S.; Sabatier, J.M.; Achour, S.; Benhmida, J.; Regaya, I. Bacteriocins Active Against Multi-Resistant Gram-Negative Bacteria Implicated in Nosocomial Infections. Infect. Disord. Drug Targets 2015, 15, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Baindara, P.; Korpole, S.; Grover, V. Bacteriocins: Perspective for the development of novel anticancer drugs. Appl. Microbiol. Biotechnol. 2018, 102, 10393–10408. [Google Scholar] [CrossRef] [PubMed]
- Mokoena, M.P. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review. Molecules 2017, 22, 1255. [Google Scholar] [CrossRef] [PubMed]
- Abanoz, H.S.; Kunduhoglu, B. Antimicrobial Activity of a Bacteriocin Produced by Enterococcus faecalis KT11 against Some Pathogens and Antibiotic-Resistant Bacteria. Korean J. Food Sci. Anim. Resour. 2018, 38, 1064–1079. [Google Scholar] [CrossRef] [Green Version]
- Geng, M.; Austin, F.R.; Smith, L. Covalent structure and bioactivity of the type AII lantibiotic salivaricin A2. Appl. Environ. Microbiol. 2018, 84, e02528-17. [Google Scholar] [CrossRef] [Green Version]
- Bakhtiary, A.; Cochrane, S.A.; Mercier, P.; McKay, R.T.; Miskolzie, M.; Sit, C.S.; Vederas, J.C. Insights into the mechanism of action of the two-peptide lantibiotic lacticin 3147. J. Am. Chem. Soc. 2017, 139, 17803–17810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grove, T.L.; Himes, P.M.; Hwang, S.; Yumerefendi, H.; Bonanno, J.B.; Kuhlman, B.; Almo, S.C.; Bowers, A.A. Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J. Am. Chem. Soc. 2017, 139, 11734–11744. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.E.; Patchett, M.L. The glycocins: In a class of their own. Curr. Opin. Struct. Biol. 2016, 40, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Moore, G.; Nodwell, J. Put a bow on it: Knotted antibiotics take center stage. Antibiotics 2019, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Wang, S.; Yu, X. Cryptand-imidazolium supported total synthesis of the lasso peptide BI-32169 and its d-enantiomer. Chem. Commun. 2019, 55, 3323–3326. [Google Scholar] [CrossRef]
- Perez, R.H.; Zendo, T.; Sonomoto, K. Novel bacteriocins from lactic acid bacteria (LAB): Various structures and applications. Microb. Cell Fact. 2014, 13. [Google Scholar] [CrossRef] [Green Version]
- Baquero, F.; Lanza, V.F.; Baquero, M.R.; del Campo, R.; Bravo-Vázquez, D.A. Microcins in Enterobacteriaceae: Peptide Antimicrobials in the Eco-Active Intestinal Chemosphere. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef]
- Gupta, V.G.; Pandey, A. New and Future Developments in Microbial Biotechnology and Bioengineering: Microbial Secondary Metabolites Biochemistry and Applications; Elsevier Science: Amsterdam, The Netherlands, 2019; ISBN 978-0-444-63504-4. [Google Scholar]
- Ge, J.; Kang, J.; Ping, W. Effect of Acetic Acid on Bacteriocin Production by Gram-Positive Bacteria. J. Microbiol. Biotechnol. 2019, 29, 1341–1348. [Google Scholar] [CrossRef]
- Bobbarala, V. Concepts, Compounds and the Alternatives of Antibacterials; IntechOpen: London, UK, 2015. [Google Scholar] [CrossRef]
- Hahn-Löbmann, S.; Stephan, A.; Schulz, S.; Schneider, T.; Shaverskyi, A.; Tusé, D.; Giritch, A.; Gleba, Y. Colicins and salmocins—New classes of plant-made non-antibiotic food antibacterials. Front. Plant Sci. 2019, 10, 437. [Google Scholar] [CrossRef]
- Yang, S.C.; Lin, C.H.; Sung, C.T.; Fang, J.Y. Antibacterial activities of bacteriocins: Application in foods and pharmaceuticals. Front. Microbiol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Ghequire, M.G.; De Mot, R. Ribosomally encoded antibacterial proteins and peptides from Pseudomonas. FEMS Microbiol. Rev. 2014, 38, 523–568. [Google Scholar] [CrossRef] [Green Version]
- Egan, K.; Field, D.; Rea, M.C.; Ross, R.P.; Hill, C.; Cotter, P.D. Bacteriocins: Novel Solutions to Age Old Spore-Related Problems? Front. Microbiol. 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hols, P.; Ledesma-García, L.; Gabant, P.; Mignolet, J. Mobilization of Microbiota Commensals and Their Bacteriocins for Therapeutics. Trends Microbiol. 2019, 27. [Google Scholar] [CrossRef] [Green Version]
- Potter, A.; Ceotto, H.; Coelho, M.L.V.; Guimaraes, A.J.; Bastos, M.D.C.F. The gene cluster of aureocyclicin 4185: The first cyclic bacteriocin of Staphylococcus aureus. Microbiology 2014, 160, 917–928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabrielsen, C.; Brede, D.A.; Nes, I.F.; Diep, D.B. Circular bacteriocins: Biosynthesis and mode of action. Appl. Environ. Microbiol. 2014, 80, 6854–6862. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumariya, R.; Kumari, G.; Raiput, Y.S.; Akhtar, N.; Patel, S. Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microb. Pathog. 2019, 128, 171–177. [Google Scholar] [CrossRef] [PubMed]
- O’Bryan, C.A.; Koo, O.K.; Sostrin, M.L.; Ricke, S.C.; Crandall, P.G.; Johnson, M.G. Characteristics of Bacteriocins and Use as Food Antimicrobials in the United States. Food Feed Saf. Syst. Anal. 2018, 273–286. [Google Scholar] [CrossRef]
- Mahlapuu, M.; Håkansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide Antimicrobial Agents. Clin. Microbiol. Rev. 2016, 19, 491–511. [Google Scholar] [CrossRef] [Green Version]
- Dicks, L.; Dreyer, L.; Smith, C.; van Staden, A.D. A Review: The Fate of Bacteriocins in the Human Gastro-Intestinal Tract: Do They Cross the Gut-Blood Barrier? Front. Microbiol. 2018, 9, 2297. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C.; Ross, R.P. Bacteriocins: Developing innate immunity for food. Nat. Rev. Microbiol. 2005, 3, 777–788. [Google Scholar] [CrossRef] [PubMed]
- Cameron, A.; Zaheer, R.; Adator, E.H.; Barbieri, R.; Reuter, T.; McAllister, T.A. Bacteriocin Occurrence and Activity in Escherichia coli Isolated from Bovines and Wastewater. Toxins 2019, 11, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastos Mdo, C.; Coelho, M.L.; Santos, O.C. Resistance to bacteriocins produced by Gram-positive bacteria. Microbiology 2015, 161, 683–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Field, D.; Daly, K.; O’Connor, P.M.; Cotter, P.D.; Hill, C.; Ross, R.P. Efficacies of nisin A and nisin V semipurified preparations alone and in combination with plant essential oils for controlling Listeria monocytogenes. Appl. Environ. Microbiol. 2015, 81, 2762–2769. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, G.; Silva, G.G.O.; Buccini, D.F.; Duque, H.M.; Dias, S.C.; Franco, O.L. Bacterial Proteinaceous Compounds with Multiple Activities Toward Cancers and Microbial Infection. Front. Microbiol. 2019, 10. [Google Scholar] [CrossRef] [Green Version]
- Tong, Z.; Zhang, Y.; Ling, J.; Ma, J.; Huang, L.; Zhang, L. In vitro study on the effects of Nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS ONE 2014, 9, e89209. [Google Scholar] [CrossRef]
- Ongey, E.L.; Neubauer, P. Lanthipeptides: Chemical synthesis versus in vivo biosynthesis as tools for pharmaceutical production. Microb. Cell Fact. 2016, 15. [Google Scholar] [CrossRef] [Green Version]
- Mathur, H.; Field, D.; Rea, M.C.; Cotter, P.D.; Hill, C.; Ross, R.P. Fighting biofilms with lantibiotics and other groups of bacteriocins. NPJ Biofilms Microbiomes 2018, 4. [Google Scholar] [CrossRef] [Green Version]
- Lagha, A.B.; Hass, B.; Gottschalk, M.; Grenier, D. Antimicrobial potential of bacteriocins in poultry and swine production. Vet. Res. 2017, 48. [Google Scholar] [CrossRef] [Green Version]
- Lopetuso, L.R.; Giorgio, M.E.; Saviano, A.; Scaldaferri, F.; Gasbarrini, A.; Cammarota, G. Bacteriocins and Bacteriophages: Therapeutic Weapons for Gastrointestinal Diseases? Int. J. Mol. Sci. 2019, 20, 183. [Google Scholar] [CrossRef] [Green Version]
- Ghoul, M.; West, S.A.; Johansen, H.K.; Molin, S.; Harrison, O.B.; Maiden, M.C.J.; Griffin, A.S. Bacteriocin-mediated competition in cystic fibrosis lung infections. Proc. R. Soc. B Biol. Sci. 2015, 282, 20150972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabata, A.; Yamada, T.; Ohtani, H.; Ohkura, K.; Tomoyasu, T.; Nagamune, H. β-Hemolytic Streptococcus anginosus subsp. anginosus causes streptolysin S-dependent cytotoxicity to human cell culture lines in vitro. J. Oral Microbiol. 2019, 11, 1609839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naveen, S.V.; Kalaivani, K. Cancer stem cells and evolving novel therapies: A paradigm shift. Stem Cell Investig. 2018, 5. [Google Scholar] [CrossRef] [PubMed]
- Kaur, S.; Kaur, S. Bacteriocins as Potential Anticancer Agents. Front. Pharmacol. 2015, 10, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hetz, C.; Bono, M.R.; Barros, L.F.; Lagos, R. Microcin E492, a channel-forming bacteriocin from Klebsiella pneumoniae, induces apoptosis in some human cell lines. Proc. Natl. Acad. Sci. USA 2002, 99, 2696–2701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, J.M.; Gwak, J.W.; Kamarajan, P.; Fenno, J.C.; Rickard, A.H.; Kapila, Y.L. Biomedical applications of nisin. J. Appl. Microbiol. 2016, 120, 14491465. [Google Scholar] [CrossRef] [Green Version]
- Baindara, P.; Gautam, A.; Raghava, G.; Korple, S. Anticancer properties of a defensin like class IId bacteriocin Laterosporulin10. Sci. Rep. 2017, 7, 46541. [Google Scholar] [CrossRef] [Green Version]
- Hoskin, D.W.; Ramamoorthy, A. Studies on anticancer activities of antimicrobial peptides. Biochem. Biophys. Acta 2008, 1778, 357–375. [Google Scholar] [CrossRef] [Green Version]
- Oppegård, C.; Rogne, P.; Kristiansen, P.E.; Nissen-Meyer, J. Structure analysis of the two-peptide bacteriocin lactococcin G by introducing d-amino acid residues. Microbiology 2010, 156, 1883–1889. [Google Scholar] [CrossRef] [Green Version]
- BoÈttger, R.; Hoffmann, R.; Knappe, D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS ONE 2017, 12, e0178943. [Google Scholar] [CrossRef]
- Shea, E.F.; O’Connor, P.M.; Cotter, P.D.; Ross, R.; Hill, C. Synthesis of trypsin-resistant variants of the Listeria bacteriocin salivaricin P. Appl. Environ. Microbiol. 2010, 76, 5356–5362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvey, M.; Rowan, N. Pulsed UV as a potential surface sanitizer in food production processes to ensure consumer safety. Curr. Opin. Food Sci. 2019, 26, 65–70. [Google Scholar] [CrossRef]
- Meade, E.; Slattery, M.A.; Garvey, M. Antimicrobial resistance: An agent in zoonotic disease and increased morbidity. J. Clin. Exp. Toxicol. 2017, 1, 30–37. [Google Scholar]
- Silva, C.C.G.; Silva, S.P.M.; Ribeiro, S.C. Application of Bacteriocins and Protective Cultures in Dairy Food Preservation. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Field, D.; Ross, R.P.; Hill, C. Developing bacteriocins of lactic acid bacteria into next generation biopreservatives. Curr. Opin. Food Sci. 2018, 20, 1–6. [Google Scholar] [CrossRef]
- Da Costa, R.J.; Voloski, F.L.S.; Mondadori, R.G.; Duval, E.H.; Fiorentini, Â.M. Preservation of Meat Products with Bacteriocins Produced by Lactic Acid Bacteria Isolated from Meat. J. Food Qual. 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Skarp, C.P.A.; Hänninen, M.L.; Rautelin, H.I.K. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [Green Version]
- Yongkiettrakul, S.; Maneerat, K.; Arechanajan, B.; Malila, Y.; Srimanote, P.; Gottschalk, M.; Visessanguan, W. Antimicrobial susceptibility of Streptococcus suis isolated from diseased pigs, asymptomatic pigs, and human patients in Thailand. BMC Vet. Res. 2019, 15, 5. [Google Scholar] [CrossRef] [Green Version]
Bacteriocin | Host Producer | Intrinsic Function | Mol. Mass (kDa) | No. A. Acids | Physiochemical Properties |
---|---|---|---|---|---|
Class I: Ripps—Ribosomally synthesized Post-translationally modified Peptides | |||||
Heat stable, lanthionine and methyllanthionine containing peptides (<5 kDa) | |||||
Lantibiotics | |||||
Subtype A1: Leader peptides are cleaved by a dedicated serin proteinase | |||||
Microbisporicin | Microbispora corallina | Bind to a docking molecule, either inhibiting cell wall synthesis or forming pores in the cell membrane | 2.2 | 24 | Modified by LanB (dehydration) and LanC (ring formation). Exported by LanT and released from leader peptide by LanP [10] Elongated, linear, flexible, amphipathic molecules |
Nisin A/Z | Lactococcus lactis | 3.4 | 34 | ||
Pep5 | Staphylococcus epidermidis | 3.3 | 34 | ||
Subtilin | Bacillus subtilis | 3.3 | 32 | ||
Subtype A2: Leader peptides are cleaved by a dedicated ABC ATP-binding cassette [ATP] transporter | |||||
Carnobacterium piscicola | Bind to a docking molecule, inhibiting cell wall synthesis | 4.6 | 35–37 | Modified by LanM (bifunctional—dehydration and ring formation). Transported and processed by LanT [10] Globular, negatively charged or neutral molecules. | |
Lacticin 481 | Lactococcus lactis | 2.9 | 27 | ||
Plantaricin C | Lactobacillus plantarum LL441 | 2.9 | 27 | ||
Subtype B | |||||
Actagardine | Actinoplanes liguriae | Bind to a docking molecule, inhibiting cell wall synthesis | 1.9 | 19 | |
Mersacidin | Bacillus sp. strain HIL Y-85,54728 | 1.8 | 19 | ||
Lacticin 3147 (LtnA1 and LtnA2) | Lactococcus lactis subsp. lactis DPC3147 | Bind to lipid II, inhibiting cell wall synthesis or forming pores [11] | 4.2 | 59 | |
Sactipeptides | |||||
Subtilosin A | Bacillus subtilis | Not completely understood | 3.4 | 32 | Peptides with cysteine sulfur to α-carbon crosslinks which are catalyzed by radical S-adenosylmethionine (SAM) [12] |
Thurincin H | Bacillus thuringiensis SF361 | 3.1 | 31 | ||
Thuricin CD (Trn-R and Trn-β) | Bacillus thuringiensis | 2.8 | 30 | ||
Glycocins | |||||
Glycocin F | Lactobacillus plantarum | Bacteriostatic—Little know | 4.0 | 43 | Glycosylated antimicrobial peptides [13] |
Sublancin 168 | Bacillus subtilis | Bactericidal—Affects protein and DNA synthesis | 3.7 | 37 | |
Lasso Peptides: An N-terminal macrolactam with the C-terminal tail threaded through the ring | |||||
Subtype I | |||||
Siamycin-I | Streptomyces spp. | Inhibition of cell wall synthesis | 2.1 | 21 | two disulfide bridges linking the macrocyclic ring with the threaded tail |
Aborycin | Streptomyces spp. | 2.1 | 21 | ||
Subtype II | |||||
Capistruin | Burkholderia thailandensis E264 | Inhibition of RNA synthesis [14] | 2.0 | 19 | Contain no disulfide bridge |
Microcin J25 | Escherichia coli | 2.1 | 21 | ||
Klebsidin | Klebsiella pneumoniae | 2.0 | 19 | ||
Subtype III | |||||
BI-32169 | Streptomyces spp. | Glucagon receptor antagonist [15] | 2.0 | 19 | one disulfide bridge that links the N-terminal ring and the C-terminal tail |
Subtype IV | |||||
LP2006 | Nocardiopsis alba | Not completely understood | 2.0 | 17 | one disulfide bridge that links the C-terminal tail to itself [14] |
Class II: Unmodified peptides | |||||
Heat-stable, non-lanthionine containing bacteriocins (<10 kDa) | |||||
Subtype IIa: Pediocin-like peptides | |||||
Pediocin PA-1 | P. acidilactici PAC1.0 | Membrane active—Disrupt the proton motive force of the target cell by pore formation. | 4.6 | 44 | Linear peptides which contain a highly conserved hydrophilic and charged N-terminal region that has a disulphide bond linkage and a consensus sequence of YGNGVXC [16] |
Leucocin A | Leuconostoc geldium UAL 187 | 3.9 | 37 | ||
Enterocin NKR-5-3C | Enterococcus faecium NKR-5-3 | 4.5 | 43 | ||
Microcin L | Escherichia coli | Disruption of cell membrane [17] | 8.9 | 90 | Plasmid-mediated, contain disulfide bonds but no further posttranslational modification [18] |
Microcin N/24 | Escherichia coli | Unknown | 7.3 | 73 | |
Subtype IIb: Two-peptides | |||||
Lactacin F | Lactobacillus acidophilus | Disrupt the proton motive force of the target cell by pore formation. | 6.3 | 57 | Mostly cationic peptides. Requires synergy of two different peptides to form an active poration complex [16] |
Enterocin NKR-5-3AZ | Enterococcus faecium | 5.2 | 59 | ||
Microcin M | Escherichia coli | Impairs the cellular proton channel [17] | 7.3 | 77 | Chromosomally encoded, linear peptides that may carry a C-terminal posttranslational modification [18] |
Microcin H47 | Escherichia coli | Unknown | 4.9 | 60 | |
Subtype IIc: Circular | |||||
Lactococcin B | Lactococcus lactissubsp. cremoris 9 B4 | Disrupt the proton motive force of the target cell by pore formation. | 5.3 | 47 | Cyclic peptides formed by the ligation of their N-terminus to the C-terminus via an amide bond (saposin fold) [16] |
Enterocin B [19] | Enterococcus faecium T136 | 5.5 | 53 | ||
Subtype IId: Non-pediocin-like linear | |||||
Lacticin Q | Lactococcus lactis QU 5 | Disrupt the proton motive force of the target cell by pore formation. | 5.9 | 53 | Other class II bacteriocins, including sec-dependent bacteriocins and leaderless bacteriocins [16] |
Leucocin N | Leuconostoc pseudomesenteroides QU 15 | 3.7 | 32 | ||
Class III: Large proteins | |||||
Heat-sensitive, hydrophilic peptides (>10 kDa) | |||||
Subtype IIIa: Bacteriolytic | |||||
Helveticin V-1829 | Lactobacillus helveticus 1829 | bacteriolysins catalyze the hydrolysis of cell wall resulting in cell lysis | The C-terminal contain a recognition site for the target cell while the N-terminus has homology to endopeptidases involved in cell wall synthesis [20] | ||
Lysostaphin | Staphylococcus simulans subsp. staphylolyticus | 27 | 246 | ||
Subtype IIIb: Non-bacteriolytic | |||||
Helveticin J | Lactobacillus helveticus 481 | Can disturb the glucose uptake by cells, starving them and also disturbs the membrane potential [19] | 37 | 37 | |
Caseicin 80 | Lactobacillus casei | 42 | |||
Colicins, Pyocins, Salmocins | |||||
SalE1a | Salmonella enterica | Membrane pore formation | 52.8 | Colicin-like bacteriocins. Can be efficiently expressed in plants [21] | |
Colicin B | Escherichia coli | 54.9 | 511 | Subtype B—Use Ton system to penetrate the outer membrane of bacteria [22] | |
Colicin A | Escherichia coli | 63.0 | 204 | Subtype A—Use Tol system to penetrate the outer membrane of sensitive bacteria [22] | |
Colicin E2 | Escherichia coli | DNase activity | 59.6 | 581 | |
Pyocin S1 | Pseudomonas aeruginosa | 65.5 | 617 | protease-sensitive “soluble” (S-type) Pyocins [23] | |
SalE2 | Salmonella enterica | 62.0 | Colicin-like bacteriocins. Can be efficiently expressed in plants [21] | ||
Pyocin R1-5 | Pseudomonas aeruginosa | Depolarization of the cytoplasmic membrane | R-type pyocins resemble the contractile tails of Myoviridae bacteriophages, are rigid and non-flexuous particles [23] | ||
Class 1V: Circular proteins | |||||
Heat-stable, hydrophobic lipid- or carbohydrate-conjugated complex proteins (∼5.5–7.5 kDa) | |||||
Enterocin AS-48 | Enterococcus faecalis | Insertion into cell membrane, resulting in membrane permeabilization [24] | 7.14 | 70 | cyclic peptides formed by the ligation of their N-terminus to the C-terminus via an amide bond [20] |
Characteristic | Bacteriocins | Antibiotic |
---|---|---|
Synthesis | Ribosomal (primary metabolite) | Enzymes (secondary metabolite) |
Bioengineering | Highly amendable [16] | Not amendable |
Spectrum of activity | Narrow (confined to closely related species) | Mainly broad |
Potency | often in the nanomolar range [1] | Potent |
Biocompatibility | Only toxic at high concentrations | Toxic |
Working concentrations (MIC) | Lower (Often in the pico-nanomolar range) | Higher (usually in the micromolar range) |
Chemical and thermal Stability | Tolerate a wide range of pH and temperature | Tolerate a narrow range PH and temperature |
Adverse effects | None identified | Many |
Diversity (i.e., in terms of size, microbial target, mode of action, etc.) | Broad | Narrow |
Biodegradable | Completely metabolized in the human body | Persistent |
Antibiofilm properties | Strong [38] | Resistance |
Cost | High | Economically cost-effective |
Purification | Complicated, low yield [25] | Possible, high yield |
Specificity | Non-specific | Specific |
Selectivity | Non-selective | Selective |
Route of administration | protein degradation | Oral, IV, IM, topical, transdermal, nebulization etc. |
Bioavailability | Size dependent | Good |
Oral bioavailability | Poor | Good |
Solubility | Low | Variable (low to high) |
Metabolic stability | Low (Fast biotransformation) | Slow-fast biotransformation |
Plasma stability | Low | Dependent on drug |
Half Life | Low | Dependent on drug |
Degradation | Enzymatic (proteolytic enzymes), [31] | Oxidative, Hydrolysis, photolytic, thermal |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meade, E.; Slattery, M.A.; Garvey, M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics 2020, 9, 32. https://doi.org/10.3390/antibiotics9010032
Meade E, Slattery MA, Garvey M. Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics. 2020; 9(1):32. https://doi.org/10.3390/antibiotics9010032
Chicago/Turabian StyleMeade, Elaine, Mark Anthony Slattery, and Mary Garvey. 2020. "Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile?" Antibiotics 9, no. 1: 32. https://doi.org/10.3390/antibiotics9010032
APA StyleMeade, E., Slattery, M. A., & Garvey, M. (2020). Bacteriocins, Potent Antimicrobial Peptides and the Fight against Multi Drug Resistant Species: Resistance Is Futile? Antibiotics, 9(1), 32. https://doi.org/10.3390/antibiotics9010032