Anti-Biofilm Inhibitory Synergistic Effects of Combinations of Essential Oils and Antibiotics
Abstract
:1. Introduction
2. Results
2.1. EOs Chemical Composition
2.2. Antibacterial Activity
3. Discussion
4. Material and Methods
4.1. Materials
4.2. Methods
4.2.1. Gas Chromatography and Mass Spectrometry
4.2.2. Microbial Strains and Antimicrobial Testing
4.2.3. Biofilm Biomass Measurement and Reduction
4.2.4. Microdilution Checkerboard Method
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- ECDC/EMEA. Technical Report: The Bacterial Challenge: Time Toreact; European Centre for Disease Prevention and Control/European Medicines Agency Joint Working Group: Stockholm, Sweden, 2009. [Google Scholar]
- World Health Organization. Antimicrobial Resistance, Fact Sheet 194. 2018. Available online: http://www.who.int/mediacentre/factsheets/fs194/en/ (accessed on 17 July 2020).
- Langeveld, W.T.; Veldhuizen, E.J.A.; Burt, S.A. Synergy between essential oil components and antibiotics: A review. Crit. Rev. Microbiol. 2014, 40, 76–94. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, F.M.; Bruce, J.; Struelens, M.J.; Goossens, H.; Mollison, J.; Gould, I.M. ARPAC Steering Group. Antimicrobial drug use and infection control practices associated with the prevalence of methicillin-resistant Staphylococcus aureus in European hospitals. CMI 2007, 13, 269–276. [Google Scholar] [PubMed]
- Carlone, N.; Pompei, R. Chapter 10: Farmaci antibatterici. In Microbiologia Farmaceutica; EdiSES: Ida-Viru, Estonia, 2013. [Google Scholar]
- Nazzaro, F.; Fratianni, F.; De Martino, L.; Coppola, R.; De Feo, V. Effect of essential oils on pathogenic bacteria. Pharmaceuticals 2013, 6, 1451–1474. [Google Scholar] [CrossRef] [PubMed]
- Aljaafari, M.; Sultan Alhosani, M.; Abushelaibi, A.; Lai, K.S.; Erin Lim, S.H. Capter 2, Essential Oils: Partnering with Antibiotics. In Essential Oils-Oils Nature; IntechOpen Limited: London, UK, 2019. [Google Scholar] [CrossRef]
- Schmidt, E. Chapter 4: Production of Essential Oils. In Handbook of Essential Oils, Sciences Technology and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press, Taylor and Francis Group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Pollini, M.; Sannino, A.; Paladini, F.; Sportelli, M.C.; Picca, R.A.; Cioffi, N.; Fracchiolla, G.; Valentini, A. Chapter 14: Combining Inorganic Antibacterial Nanophases and Essential Oils: Recent Findings and Prospects. In Essential Oils and Nanotechnology for Treatment of Microbial Diseases; Rai, M., Zacchino, S., Derita, M.G., Eds.; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2017; ISBN 9781138630727. [Google Scholar]
- Zigadlo, J.A.; Zunino, M.P.; Pizzolitto, R.P.; Merlo, C.; Omarini, A.; Dambolena, J.S. Chapter 4: Antibacterial and antibiofilm Activities of Essential Oils and Their Components Including Modes of Action. In Essential Oils and Nanotechnology for Treatment of Microbial Diseases; Rai, M., Zacchino, S., Derita, M.G., Eds.; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2017; ISBN 9781138630727. [Google Scholar]
- Bueno, J.; Demirci, F.; Baser, K.H.C. Chapter 6: Essential Oils against Microbial Resistance Mechanisms Challenges and Applications in Drug Discovery. In Essential Oils and Nanotechnology for Treatment of Microbial Diseases; Rai, M., Zacchino, S., Derita, M.G., Eds.; CRC Press, Taylor & Francis: Boca Raton, FL, USA, 2017; ISBN 9781138630727. [Google Scholar]
- Sell, C. Chapter 5: Chemistry of Essential Oils. In Handbook of Essential Oils, Sciences Technology and Applications; Baser, K.H.C., Buchbauer, G., Eds.; CRC Press, Taylor and Francis group: Boca Raton, FL, USA, 2010. [Google Scholar]
- Van den Dool, H.; Kratz, P.D. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. A 1963, 11, 463–471. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Pub Corp.: Carol Stream, IL, USA, 2011; ISBN 9781932633214. [Google Scholar]
- NIST Chemistry WebBook. 2011. Available online: http://webbook.nist.gov/chemistry/ (accessed on 16 July 2020).
- Koo, I.; Kim, S.; Zhang, X. Comparative analysis of mass spectral matching-based compound identification in gas chromatography–mass spectrometry. J. Chromatog. A 2013, 1298, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, K.X.; Vidavsky, I.; Gross, M.L. Comparing similar spectra: From similarity index to spectral contrast angle. J. Am. Soc. Mass Spectrom. 2002, 13, 85–88. [Google Scholar] [CrossRef] [Green Version]
- Cardoso-Ugarte, G.A.; López-Malo, A.; Sosa-Morales, M.A. Chapter 38: Cinnamon (Cinnamomum zeylanicum) Essential Oils. In Essential Oils in Food Preservation, Flavor and Safety; Elsevier Inc.: Amsterdam, The Netherlands, 2016. [Google Scholar] [CrossRef]
- Sezik, E.; Kırımer, N.A.; Tümen, G.; Ozek, T. Essential Oil Composition of Four Origanum vulgare Subspecies of Anatolian Origin Article. J. Essent. Oil Res. 1993, 5, 425–431. [Google Scholar] [CrossRef]
- Borugă, O.; Jianu, C.; Mişcă, C.; Goleţ, I.; Gruia, A.T.; Horhat, F.G. Thymus vulgaris essential oil: Chemical composition and antimicrobial activity. J. Med. Life 2014, 7, 56–60, PMCID: PMC4391421. [Google Scholar] [PubMed]
- Rosato, A.; Carocci, A.; Catalano, A.; Clodoveo, M.L.; Franchini, C.; Corbo, F.; Carbonara, G.G.; Carrieri, A.; Fracchiolla, G. Elucidation of the synergistic action of Mentha Piperita essential oil with common antimicrobials. PLoS ONE 2018, 13, e0200902. [Google Scholar] [CrossRef] [PubMed]
- Salvagno, L.; Sblano, S.; Fracchiolla, G.; Corbo, F.; Clodoveo, M.L.; Rosato, A. Antibiotics—Mentha piperita essential oil synergism inhibits mature bacterial biofilm. Chem. Today 2020, 38, 49–52. [Google Scholar]
- The Methods for Detection of Biofilms and Screening Antibiofilm Activity of Agents, Antimicrobials, Antibiotic Resistance, Antibiofilm Strategies and Activity Methods; Kirmusaoglu, S. (Ed.) IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Rosato, A.; Maggi, F.; Cianfaglione, K.; Conti, F.; Ciaschetti, G.; Rakotosaona, R.; Fracchiolla, G.; Clodoveo, M.L.; Franchini, C.; Corbo, F. Chemical composition and antibacterial activity of seven uncommon essential oils. J. Essent. Oil Res. 2018, 30, 233–243. [Google Scholar] [CrossRef]
- Rosato, A.; Vitali, C.; De Laurentis, N.; Armenise, D.; Milillo, M.A. Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Patel, J.B.; Cockerill, F.R., III; Bradfod, P.A.; Eliopoulos, G.M.; Hindler, J.A.; Jenkins, S.G.; Lewis, J.S., II; Limbago, B.; Miller, L.A.; Nicolau, D.P.; et al. Chapter 1: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard. In CLSI Document M7-A10, 10th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2015; Volume 35, ISBN 1-56238-987-4. [Google Scholar]
- Stepanovic, S.; Vukovic, D.; Dakic, I.; Savic, B.; Svabic-Vlahovic, M. A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J. Microbiol. Methods 2000, 40, 175–179. [Google Scholar] [CrossRef]
- Rosato, A.; Catalano, A.; Carocci, A.; Carrieri, A.; Carone, A.; Caggiano, G.; Franchini, C.; Corbo, F.; Montagna, M.T. In vitro interactions between anidulafungin and nonsteroidal anti-inflammatory drugs on biofilms of Candida spp. Bioorg. Med. Chem. 2016, 24, 1002–1005. [Google Scholar] [CrossRef] [PubMed]
- Ellof, J.N. Quantification the bioactivity of plant extracts during screening and bioassay guided fractionation. Phytomedicine 2004, 11, 370–371. [Google Scholar] [CrossRef] [PubMed]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Vitali, C.; Gallo, D.; Balenzano, L.; Mallamaci, R. The inhibition of Candida species by selected essential oils and their synergism with amphotericin B. Phytomedicine 2008, 15, 635–638. [Google Scholar] [CrossRef] [PubMed]
- Efferth, T.; Koch, E. Complex Interactions between Phytochemicals. The Multi-Target Therapeutic Concept of Phytotherapy. Curr. Drug. Targets 2011, 12, 122–132. [Google Scholar] [CrossRef] [PubMed]
N | COMPONENTS | LRI | AI | CINNAMOMUN ZEYLANICUM | ORIGANUM VULGARE | THYMUS VULGARIS | MENTHA PIPERITA | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
AREA% ± SEM | SI/MS | AREA% ± SEM | SI/MS | AREA% ± SEM | SI/MS | AREA% ± SEM | SI/MS | ||||
1 | n-propyl acetate | 712 | 712 | 0.03 ± 0.020 | 83 | ||||||
2 | propanoic acid, ethyl ester | 714 | 714 | 0.03 ± 0.025 | 91 | 0.03 ± 0.010 | 86 | 0.04 ± 0.015 | 86 | ||
3 | butanoic acid, 2-methyl-, methyl ester | 779 | 780 | 0.06 ± 0.035 | 83 | ||||||
4 | α-tricyclene | 915 | 919 | 0.45 ± 0.25 | 94 | ||||||
5 | artemisia triene | 922 | 922 | 0.14 ± 0.10 | 98 | ||||||
6 | α-thujene | 925 | 926 | 0.13 ± 0.40 | 91 | 0.49 ± 0.50 | 93 | ||||
7 | α-pinene | 930 | 934 | 0.18 ± 0.35 | 94 | 5.35 ± 0.99 | 97 | 1.45 ± 0.23 | 97 | ||
8 | camphene | 949 | 949 | 6.79 ± 1.01 | 96 | ||||||
9 | benzaldehyde | 956 | 958 | 0.91 ± 0.30 | 97 | ||||||
10 | 1-octen-3-ol | 980 | 979 | 0.55 ± 0.25 | 90 | ||||||
11 | 3-octanone | 984 | 984 | 0.25 ± 0.10 | 91 | ||||||
12 | β-myrcene | 985 | 990 | 0.38 ± 0.20 | 91 | 0.36 ± 0.09 | 83 | ||||
13 | 3-octanol | 990 | 995 | 0.53 ± 0.04 | 83 | ||||||
14 | 2-carene | 1020 | 1021 | 0.21 ± 0.12 | 97 | ||||||
15 | eucalyptol | 1021 | 1023 | 0.11 ± 0.05 | 97 | 1.05 ± 0.11 | 97 | 0.20 ± 0.02 | 98 | ||
16 | p-cymene | 1024 | 1024 | 5.09 ± 0.98 | 95 | 5.09 ± 0.99 | 95 | ||||
17 | α-terpinolene | 1025 | 1026 | 5.03 ± 0.85 | 97 | ||||||
18 | β-phellandrene | 1028 | 1028 | 0.22 ± 0.01 | 91 | ||||||
19 | limonene | 1033 | 1033 | 1.16 ± 0.12 | 97 | ||||||
20 | salicylaldehyde | 1040 | 1041 | 0.14 ± 0.05 | 87 | ||||||
21 | γ-terpinene | 1063 | 1060 | 0.37 ± 0.15 | 95 | 1.42 ± 0.20 | 94 | ||||
22 | p-cymenene | 1090 | 1092 | 0.36 ± 0.07 | 96 | ||||||
23 | hydrocinnamic aldehyde | 1123 | 1123 | 0.19 ± 0.01 | 93 | ||||||
24 | phenylethyl alcohol | 1135 | 1139 | 0.45 ± 0.25 | 91 | ||||||
25 | camphor | 1143 | 1145 | 1.19 ± 0.9 | 98 | ||||||
26 | (Ε)-β-terpineol | 1145 | 1145 | 0.38 ± 0.10 | 96 | 12.28 ± 0.99 | 90 | ||||
27 | isopulegol | 1140 | 1146 | 1.35 ± 0.99 | 98 | ||||||
28 | menthone | 1148 | 1150 | 17.87 ± 1.07 | 97 | ||||||
29 | D,L-isoborneol | 1160 | 1167 | 0.13 ± 0.01 | 90 | 0.55 ± 0.17 | 97 | 26.34 ± 1.78 | 97 | ||
30 | menthol | 1169 | 1169 | 67.98 ± 1.59 | 91 | ||||||
31 | terpinen-4-ol | 1174 | 1174 | 0.82 ± 0.21 | 97 | 2.19 ± 0.98 | 97 | ||||
32 | verbenone | 1200 | 1205 | 0.70 ± 0.04 | 94 | ||||||
33 | pulegone | 1230 | 1236 | 0.40 ± 0.01 | 97 | ||||||
34 | carvenone | 1248 | 1252 | 1.52 ± 0.87 | 94 | ||||||
35 | o-anisaldehyde | 1252 | 1252 | 0.87 ± 0.08 | 99 | ||||||
36 | piperitone | 1253 | 1253 | 0.85 ± 0.30 | 96 | ||||||
37 | (E)-cinnamaldehyde | 1266 | 1266 | 78.07 ± 1.99 | 97 | ||||||
38 | bornyl acetate | 1285 | 1287 | 2.44 ± 0.33 | 99 | ||||||
39 | p-cymen-7-ol | 1287 | 1290 | 0.11 ± 0.012 | 70 | ||||||
40 | thymol | 1290 | 1292 | 59.25 ± 1.80 | 94 | 11.35 ± 1.11 | 99 | 4.74 ± 0.80 | 91 | ||
41 | carvacrol | 1304 | 1304 | 25.09 ± 1.59 | 93 | ||||||
42 | durenol | 1319 | 1319 | 0.14 ± 0.03 | 78 | ||||||
43 | cubenene | 1345 | 1348 | 0.35 ± 0.12 | 95 | 0.32 ± 0.09 | 99 | ||||
44 | α-ylangene | 1368 | 1368 | 0.17 ± 0.08 | 80 | ||||||
45 | linalool isobutyrate | 1372 | 1374 | 0.12 ± 0.06 | 90 | ||||||
46 | α-copaene | 1379 | 1379 | 0.13 ± 0.01 | 99 | ||||||
47 | β-bourbonene | 1380 | 1382 | 0.13 ± 0.03 | 97 | 0.23 ± 0.09 | 93 | ||||
48 | (E)−β-caryophyllene | 1415 | 1419 | 1.8 ± 0.28 | 99 | 7.81 ± 1.33 | 99 | 0.58 ± 0.10 | 99 | ||
49 | β-gurjunene | 1428 | 1428 | 0.14 ± 0.05 | 90 | ||||||
50 | coumarin | 1430 | 1432 | 1.00 ± 0.10 | 95 | ||||||
51 | (E)-cinnamic acid | 1455 | 1457 | 2.93 ± 0.21 | 98 | ||||||
52 | alloaromadendrene | 1455 | 1458 | 0.23 ± 0.04 | 99 | ||||||
53 | β-farnesene | 1459 | 1459 | 0.41 ± 0.11 | 97 | 0.23 ± 0.07 | 90 | ||||
54 | cinnamaldehyde, o-methoxy | 1464 | 1464 | 11.32 ± 1.50 | 97 | ||||||
55 | γ-muurolene | 1477 | 1477 | 0.13 ± 0.09 | 93 | 0.37 ± 0.12 | 97 | 0.69 ± 0.24 | 96 | ||
56 | β-bisabolene | 1505 | 1505 | 0.17 ± 0.10 | 86 | ||||||
57 | caryophyllene oxide | 1580 | 1592 | 1.66 ± 0.59 | 91 | ||||||
58 | n-valeric acid | 1722 | 1720 | 1.39 ± 0.10 | 99 | 0.49 ± 0.05 | 90 | ||||
59 | benzyl benzoate | 1730 | 1753 | 0.14 ± 0.09 | 96 | ||||||
% Characterized | 96.97 | 97.69 | 96.48 | 97.58 | |||||||
Others | 3.03 | 2.31 | 3.52 | 2.42 |
EO mg/mL | Gentamicin µg/mL | Synergism | |||||||
---|---|---|---|---|---|---|---|---|---|
Strains | Essential Oil | sMIC50 a | %Destr. ± SD b | sMIC50 c | % Destr. ± SD d | AB ug/mL e | EO mg/mL f | AB ± EO%. Destr. ± SD g | FICI |
E. faecalis ATCC 29212 | Cinnammonum zeylanicum | 50.4 | 52.5 ± 0.70 | 128 | 59.9 ± 0.05 | 4.0 | 2.5 | 64.8 ± 0.05 | 0.08 |
S.aureus Ig22 | Cinnammonum zeylanicum | 6.3 | 52.1 ± 0.70 | 128 | 52.7 ± 0.40 | 4.0 | 0.3 | 50.3 ± 0.70 | 0.08 |
S.epidermidis IG4 | Cinnammonum zeylanicum | 12.6 | 60.0 ± 1.00 | 64 | 58.3 ± 0.90 | 1.9 | 0.6 | 63.2 ± 0.80 | 0.08 |
S. aureus ATCC 29213 | Cinnammonum zeylanicum | 12.6 | 48.0 ± 1.00 | 512 | 52.2 ± 0.70 | 15.4 | 0.6 | 56.7 ± 0.60 | 0.08 |
E. faecalis ATCC 29212 | Mentha piperita | 11.3 | 50.0 ± 1.00 | 128 | 59.9 ± 0.50 | 4.0 | 0.6 | 55.9 ± 1.00 | 0.08 |
S. aureus Ig22 | Mentha piperita | 11.3 | 51.1 ± 0.60 | 128 | 52.7 ± 0.60 | 4.0 | 0.6 | 51.2 ± 1.00 | 0.08 |
S. epidermidis IG4 | Mentha piperita | 45.5 | 44.8 ± 0.70 | 64 | 58.3 ± 0.08 | 1.9 | 4.6 | 51.9 ± 0.50 | 0.13 |
S. aureus ATCC 29213 | Mentha piperita | 22.8 | 45.1 ± 1.00 | 512 | 52.2 ± 0.60 | 15.4 | 1.1 | 68.7 ± 0.80 | 0.08 |
E. faecalis ATCC 29212 | Origanum vulgare | 5.5 | 49.2 ± 0.60 | 128 | 59.9 ± 0.80 | 4.0 | 0.3 | 53.2 ± 0.03 | 0.08 |
S. aureus Ig22 | Origanum vulgare | 11.0 | 57.3 ± 1.00 | 128 | 52.7 ± 1.00 | 4.0 | 0.6 | 63.4 ± 0.10 | 0.08 |
S. epidermidis IG4 | Origanum vulgare | 5.8 | 61.9 ± 0.60 | 64 | 58.3 ± 0.30 | 1.9 | 0.3 | 50.3 ± 0.60 | 0.08 |
S. aureus ATCC 29213 | Origanum vulgare | 5.8 | 56.8 ± 1.00 | 512 | 52.2 ± 1.00 | 30.7 | 0.3 | 51.8 ± 0.90 | 0.11 |
E. faecalis ATCC 29212 | Thymus vulgaris | 21.7 | 47.8 ± 0.80 | 128 | 59.9 ± 1.00 | 4.0 | 1.1 | 51.5 ± 0.60 | 0.08 |
S. aureus Ig22 | Thymus vulgaris | 43.5 | 50.5 ± 0.50 | 128 | 52.7 ± 0.70 | 4.0 | 2.2 | 72.1 ± 0.70 | 0.08 |
S. epidermidis IG4 | Thymus vulgaris | 10.9 | 54.1 ± 0.30 | 64 | 58.3 ± 0.10 | 3.8 | 1.1 | 67.0 ± 0.70 | 0.16 |
S. aureus ATCC 29213 | Thymus vulgaris | 10.9 | 59.4 ± 0.40 | 512 | 52.2 ± 0.80 | 15.4 | 0.5 | 63.0 ± 0.80 | 0.08 |
EO mg/mL | Oxacillin µg/mL | Synergism | |||||||
---|---|---|---|---|---|---|---|---|---|
Strains | Essential Oil | sMIC50 a | %Destr. ± SD b | sMIC50 c | % Destr. ± SD d | AB ug/mL e | EO mg/mL f | AB ± EO% Destr. ± SD g | FICI |
E. faecalis ATCC 29212 | Cinnammonum zeylanicum | 50.4 | 52.5 ± 0.70 | 128 | 66.0 ± 0.19 | 4.0 | 2.5 | 56.6 ± 1.00 | 0.08 |
S.aureus Ig22 | Cinnammonum zeylanicum | 6.3 | 52.1 ± 0.70 | 64 | 59.1 ± 0.40 | 2.0 | 0.3 | 52.2 ± 0.70 | 0.08 |
S.epidermidis IG4 | Cinnammonum zeylanicum | 12.6 | 60.0 ± 1.00 | 256 | 64.8 ± 0.09 | 7.7 | 0.6 | 64.3 ± 0.04 | 0.08 |
S. aureus ATCC 29213 | Cinnammonum zeylanicum | 12.6 | 48.0 ± 1.00 | 256 | 47.8 ± 0.50 | 7.7 | 0.6 | 67.2 ± 0.32 | 0.08 |
E. faecalis ATCC 29212 | Mentha piperita | 11.3 | 50.0 ± 1.00 | 128 | 66.0 ± 0.18 | 8.0 | 0.6 | 45.2 ± 0.90 | 0.11 |
S. aureus Ig22 | Mentha piperita | 11.3 | 51.1 ± 0.60 | 64 | 59.1 ± 0.50 | 2.0 | 2.3 | 59.0 ± 0.88 | 0.08 |
S. epidermidis IG4 | Mentha piperita | 45.5 | 44.8 ± 0.70 | 256 | 64.8 ± 1.00 | 7.7 | 2.3 | 67.6 ± 0.50 | 0.08 |
S. aureus ATCC 29213 | Mentha piperita | 22.8 | 45.1 ± 1.00 | 256 | 47.8 ± 0.70 | 15.4 | 1.1 | 61.9 ± 1.00 | 0.11 |
E. faecalis ATCC 29212 | Origanum vulgare | 5.5 | 49.2 ± 0.60 | 128 | 66.0 ± 0.05 | 4.0 | 0.3 | 51.9 ± 1.00 | 0.08 |
S.aureus Ig22 | Origanum vulgare | 11.0 | 57.3 ± 1.00 | 64 | 59.1 ± 0.39 | 2.0 | 0.6 | 61.7 ± 1.00 | 0.23 |
S. epidermidis IG4 | Origanum vulgare | 5.8 | 61.9 ± 0.60 | 256 | 64.8 ± 0.60 | 7.7 | 0.3 | 53.3 ± 0.77 | 0.08 |
S. aureus ATCC 29213 | Origanum vulgare | 5.8 | 56.8 ± 1.00 | 256 | 47.8 ± 1.00 | 15.4 | 0.3 | 52.4 ± 0.35 | 0.11 |
E. faecalis ATCC 29212 | Thymus vulgaris | 21.7 | 47.8 ± 0.80 | 128 | 66.0 ± 1.00 | 4.0 | 1.1 | 58.1 ± 0.69 | 0.08 |
S. aureus Ig22 | Thymus vulgaris | 43.5 | 50.5 ± 0.50 | 64 | 59.1 ± 0.13 | 2.0 | 2.2 | 55.4 ± 0.65 | 0.08 |
S. epidermidis IG4 | Thymus vulgaris | 10.9 | 54.1 ± 0.30 | 256 | 64.8 ± 0.20 | 30.7 | 0.5 | 55.0 ± 0.40 | 0.17 |
S. aureus ATCC 29213 | Thymus vulgaris | 10.9 | 59.4 ± 0.40 | 256 | 47.8 ± 0.90 | 30.7 | 0.5 | 66.1 ± 1.00 | 0.17 |
EO mg/mL | Norfloxacin µg/mL | Synergism | |||||||
---|---|---|---|---|---|---|---|---|---|
Strains | Essential Oil | sMIC50 a | % Destr. ± SD b | sMIC50 c | % Destr. ± SD d | AB ug/mL e | EO mg/mL f | AB ± EO% Destr. ± SD g | FICI |
E. faecalis ATCC 29212 | Cinnammonum zeylanicum | 50.4 | 52.5 ± 0.70 | 256 | 49.2 ± 0.90 | 8.0 | 2.5 | 53.2 ± 1.00 | 0.08 |
S. aureus Ig22 | Cinnammonum zeylanicum | 6.3 | 52.1 ± 0.70 | 512 | 37.0 ± 0.39 | 16.0 | 0.3 | 60.2 ± 0.77 | 0.08 |
S. epidermidis IG4 | Cinnammonum zeylanicum | 12.6 | 60.0 ± 1.00 | 64 | 56.0 ± 0.50 | 2.0 | 0.6 | 64.5 ± 0.04 | 0.08 |
S. aureus ATCC 29213 | Cinnammonum zeylanicum | 12.6 | 48.0 ± 1.00 | 256 | 52.2 ± 1.00 | 8.0 | 0.6 | 66.9 ± 0.90 | 0.08 |
E. faecalis ATCC 29212 | Mentha piperita | 11.4 | 50.0 ± 1.00 | 256 | 49.2 ± 0.80 | 16.0 | 0.6 | 53.5 ± 0.90 | 0.11 |
S. aureus Ig22 | Mentha piperita | 11.4 | 51.1 ± 0.60 | 512 | 37.0 ± 0.10 | 16.0 | 2.3 | 47.7 ± 0.12 | 0.23 |
S. epidermidis IG4 | Mentha piperita | 45.5 | 44.8 ± 0.70 | 64 | 56.0 ± 0.59 | 2.0 | 2.3 | 58.9 ± 0.90 | 0.08 |
S. aureus ATCC 29213 | Mentha piperita | 22.7 | 45.1 ± 1.00 | 256 | 52.2 ± 0.70 | 8.0 | 1.1 | 50.1 ± 1.00 | 0.08 |
E. faecalis ATCC 29212 | Origanum vulgare | 5.5 | 49.2 ± 0.60 | 256 | 49.2 ± 0.70 | 8.0 | 0.3 | 53.2 ± 0.20 | 0.08 |
S. aureus Ig22 | Origanum vulgare | 11.0 | 57.3 ± 1.00 | 512 | 37.0 ± 0.88 | 32.0 | 0.6 | 47.7 ± 0.55 | 0.11 |
S. epidermidis IG4 | Origanum vulgare | 5.7 | 61.9 ± 0.60 | 64 | 56.0 ± 1.00 | 2.0 | 0.3 | 59.4 ± 0.90 | 0.08 |
S. aureus ATCC 29213 | Origanum vulgare | 5.7 | 56.8 ± 1.00 | 256 | 52.2 ± 0.05 | 32.0 | 0.3 | 55.6 ± 0.32 | 0.18 |
E. faecalis ATCC 29212 | Thymus vulgaris | 21.7 | 47.8 ± 0.80 | 256 | 49.2 ± 0.77 | 8.0 | 1.1 | 65.7 ± 0.80 | 0.08 |
S. aureus Ig22 | Thymus vulgaris | 43.5 | 50.5 ± 0.50 | 512 | 37.0 ± 0.90 | 16.0 | 2.2 | 63.9 ± 0.80 | 0.08 |
S. epidermidis IG4 | Thymus vulgaris | 10.9 | 54.1 ± 0.30 | 64 | 56.0 ± 0.33 | 4.0 | 0.5 | 52.4 ± 1.00 | 0.11 |
S. aureus ATCC 29213 | Thymus vulgaris | 10.9 | 59.4 ± 0.40 | 256 | 52.2 ± 0.80 | 8.0 | 0.5 | 58.4 ± 0.90 | 0.08 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosato, A.; Sblano, S.; Salvagno, L.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Anti-Biofilm Inhibitory Synergistic Effects of Combinations of Essential Oils and Antibiotics. Antibiotics 2020, 9, 637. https://doi.org/10.3390/antibiotics9100637
Rosato A, Sblano S, Salvagno L, Carocci A, Clodoveo ML, Corbo F, Fracchiolla G. Anti-Biofilm Inhibitory Synergistic Effects of Combinations of Essential Oils and Antibiotics. Antibiotics. 2020; 9(10):637. https://doi.org/10.3390/antibiotics9100637
Chicago/Turabian StyleRosato, Antonio, Sabina Sblano, Lara Salvagno, Alessia Carocci, Maria Lisa Clodoveo, Filomena Corbo, and Giuseppe Fracchiolla. 2020. "Anti-Biofilm Inhibitory Synergistic Effects of Combinations of Essential Oils and Antibiotics" Antibiotics 9, no. 10: 637. https://doi.org/10.3390/antibiotics9100637